summaryrefslogtreecommitdiff
path: root/include/linux
diff options
context:
space:
mode:
authorDave Airlie <airlied@redhat.com>2021-09-22 15:30:38 +1000
committerDave Airlie <airlied@redhat.com>2021-09-22 15:30:40 +1000
commit0dfc70818a3c4bbab647a0683cc6ed448f5cdbea (patch)
tree4c6734c3aa26c9eef34970841685573de8872768 /include/linux
parente4e737bb5c170df6135a127739a9e6148ee3da82 (diff)
parente4f868191138975f2fdf2f37c11318b47db4acc9 (diff)
Merge tag 'drm-misc-next-2021-09-16' of git://anongit.freedesktop.org/drm/drm-misc into drm-next
drm-misc-next for $kernel-version: UAPI Changes: Cross-subsystem Changes: - dma-buf: Avoid a warning with some allocations, Remove DMA_FENCE_TRACE macros Core Changes: - bridge: New helper to git rid of panels in drivers - fence: Improve dma_fence_add_callback documentation, Improve dma_fence_ops->wait documentation - ioctl: Unexport drm_ioctl_permit - lease: Documentation improvements - fourcc: Add new macro to determine the modifier vendor - quirks: Add the Steam Deck, Chuwi HiBook, Chuwi Hi10 Pro, Samsung Galaxy Book 10.6, KD Kurio Smart C15200 2-in-1, Lenovo Ideapad D330 - resv: Improve the documentation - shmem-helpers: Allocate WC pages on x86, Switch to vmf_insert_pfn - sched: Fix for a timer being canceled too soon, Avoid null pointer derefence if the fence is null in drm_sched_fence_free, Convert drivers to rely on its dependency tracking - ttm: Switch to kerneldoc, new helper to clear all DMA mappings, pool shrinker optitimization, Remove ttm_tt_destroy_common, Fix for unbinding on multiple drivers Driver Changes: - bochs: New PCI IDs - msm: Fence ordering impromevemnts - stm: Add layer alpha support, zpos - v3d: Fix for a Vulkan CTS failure - vc4: Conversion to the new bridge helpers - vgem: Use shmem helpers - virtio: Support mapping exported vram - zte: Remove obsolete driver - bridge: Probe improvements for it66121, enable DSI EOTP for anx7625, errors propagation improvements for anx7625 - panels: 60fps mode for otm8009a, New driver for Samsung S6D27A1 Signed-off-by: Dave Airlie <airlied@redhat.com> # gpg: Signature made Thu 16 Sep 2021 17:30:50 AEST # gpg: using EDDSA key 5C1337A45ECA9AEB89060E9EE3EF0D6F671851C5 # gpg: Can't check signature: No public key From: Maxime Ripard <maxime@cerno.tech> Link: https://patchwork.freedesktop.org/patch/msgid/20210916073132.ptbbmjetm7v3ufq3@gilmour
Diffstat (limited to 'include/linux')
-rw-r--r--include/linux/dma-buf.h7
-rw-r--r--include/linux/dma-fence.h32
-rw-r--r--include/linux/dma-resv.h104
-rw-r--r--include/linux/seqno-fence.h109
-rw-r--r--include/linux/shrinker.h1
5 files changed, 110 insertions, 143 deletions
diff --git a/include/linux/dma-buf.h b/include/linux/dma-buf.h
index 8b32b4bdd590..66470c37e471 100644
--- a/include/linux/dma-buf.h
+++ b/include/linux/dma-buf.h
@@ -420,6 +420,13 @@ struct dma_buf {
* - Dynamic importers should set fences for any access that they can't
* disable immediately from their &dma_buf_attach_ops.move_notify
* callback.
+ *
+ * IMPORTANT:
+ *
+ * All drivers must obey the struct dma_resv rules, specifically the
+ * rules for updating fences, see &dma_resv.fence_excl and
+ * &dma_resv.fence. If these dependency rules are broken access tracking
+ * can be lost resulting in use after free issues.
*/
struct dma_resv *resv;
diff --git a/include/linux/dma-fence.h b/include/linux/dma-fence.h
index 6ffb4b2c6371..a706b7bf51d7 100644
--- a/include/linux/dma-fence.h
+++ b/include/linux/dma-fence.h
@@ -214,19 +214,15 @@ struct dma_fence_ops {
* Custom wait implementation, defaults to dma_fence_default_wait() if
* not set.
*
- * The dma_fence_default_wait implementation should work for any fence, as long
- * as @enable_signaling works correctly. This hook allows drivers to
- * have an optimized version for the case where a process context is
- * already available, e.g. if @enable_signaling for the general case
- * needs to set up a worker thread.
+ * Deprecated and should not be used by new implementations. Only used
+ * by existing implementations which need special handling for their
+ * hardware reset procedure.
*
* Must return -ERESTARTSYS if the wait is intr = true and the wait was
* interrupted, and remaining jiffies if fence has signaled, or 0 if wait
* timed out. Can also return other error values on custom implementations,
* which should be treated as if the fence is signaled. For example a hardware
* lockup could be reported like that.
- *
- * This callback is optional.
*/
signed long (*wait)(struct dma_fence *fence,
bool intr, signed long timeout);
@@ -590,26 +586,4 @@ struct dma_fence *dma_fence_get_stub(void);
struct dma_fence *dma_fence_allocate_private_stub(void);
u64 dma_fence_context_alloc(unsigned num);
-#define DMA_FENCE_TRACE(f, fmt, args...) \
- do { \
- struct dma_fence *__ff = (f); \
- if (IS_ENABLED(CONFIG_DMA_FENCE_TRACE)) \
- pr_info("f %llu#%llu: " fmt, \
- __ff->context, __ff->seqno, ##args); \
- } while (0)
-
-#define DMA_FENCE_WARN(f, fmt, args...) \
- do { \
- struct dma_fence *__ff = (f); \
- pr_warn("f %llu#%llu: " fmt, __ff->context, __ff->seqno,\
- ##args); \
- } while (0)
-
-#define DMA_FENCE_ERR(f, fmt, args...) \
- do { \
- struct dma_fence *__ff = (f); \
- pr_err("f %llu#%llu: " fmt, __ff->context, __ff->seqno, \
- ##args); \
- } while (0)
-
#endif /* __LINUX_DMA_FENCE_H */
diff --git a/include/linux/dma-resv.h b/include/linux/dma-resv.h
index e1ca2080a1ff..9100dd3dc21f 100644
--- a/include/linux/dma-resv.h
+++ b/include/linux/dma-resv.h
@@ -62,16 +62,90 @@ struct dma_resv_list {
/**
* struct dma_resv - a reservation object manages fences for a buffer
- * @lock: update side lock
- * @seq: sequence count for managing RCU read-side synchronization
- * @fence_excl: the exclusive fence, if there is one currently
- * @fence: list of current shared fences
+ *
+ * There are multiple uses for this, with sometimes slightly different rules in
+ * how the fence slots are used.
+ *
+ * One use is to synchronize cross-driver access to a struct dma_buf, either for
+ * dynamic buffer management or just to handle implicit synchronization between
+ * different users of the buffer in userspace. See &dma_buf.resv for a more
+ * in-depth discussion.
+ *
+ * The other major use is to manage access and locking within a driver in a
+ * buffer based memory manager. struct ttm_buffer_object is the canonical
+ * example here, since this is where reservation objects originated from. But
+ * use in drivers is spreading and some drivers also manage struct
+ * drm_gem_object with the same scheme.
*/
struct dma_resv {
+ /**
+ * @lock:
+ *
+ * Update side lock. Don't use directly, instead use the wrapper
+ * functions like dma_resv_lock() and dma_resv_unlock().
+ *
+ * Drivers which use the reservation object to manage memory dynamically
+ * also use this lock to protect buffer object state like placement,
+ * allocation policies or throughout command submission.
+ */
struct ww_mutex lock;
+
+ /**
+ * @seq:
+ *
+ * Sequence count for managing RCU read-side synchronization, allows
+ * read-only access to @fence_excl and @fence while ensuring we take a
+ * consistent snapshot.
+ */
seqcount_ww_mutex_t seq;
+ /**
+ * @fence_excl:
+ *
+ * The exclusive fence, if there is one currently.
+ *
+ * There are two ways to update this fence:
+ *
+ * - First by calling dma_resv_add_excl_fence(), which replaces all
+ * fences attached to the reservation object. To guarantee that no
+ * fences are lost, this new fence must signal only after all previous
+ * fences, both shared and exclusive, have signalled. In some cases it
+ * is convenient to achieve that by attaching a struct dma_fence_array
+ * with all the new and old fences.
+ *
+ * - Alternatively the fence can be set directly, which leaves the
+ * shared fences unchanged. To guarantee that no fences are lost, this
+ * new fence must signal only after the previous exclusive fence has
+ * signalled. Since the shared fences are staying intact, it is not
+ * necessary to maintain any ordering against those. If semantically
+ * only a new access is added without actually treating the previous
+ * one as a dependency the exclusive fences can be strung together
+ * using struct dma_fence_chain.
+ *
+ * Note that actual semantics of what an exclusive or shared fence mean
+ * is defined by the user, for reservation objects shared across drivers
+ * see &dma_buf.resv.
+ */
struct dma_fence __rcu *fence_excl;
+
+ /**
+ * @fence:
+ *
+ * List of current shared fences.
+ *
+ * There are no ordering constraints of shared fences against the
+ * exclusive fence slot. If a waiter needs to wait for all access, it
+ * has to wait for both sets of fences to signal.
+ *
+ * A new fence is added by calling dma_resv_add_shared_fence(). Since
+ * this often needs to be done past the point of no return in command
+ * submission it cannot fail, and therefore sufficient slots need to be
+ * reserved by calling dma_resv_reserve_shared().
+ *
+ * Note that actual semantics of what an exclusive or shared fence mean
+ * is defined by the user, for reservation objects shared across drivers
+ * see &dma_buf.resv.
+ */
struct dma_resv_list __rcu *fence;
};
@@ -98,6 +172,13 @@ static inline void dma_resv_reset_shared_max(struct dma_resv *obj) {}
* undefined order, a #ww_acquire_ctx is passed to unwind if a cycle
* is detected. See ww_mutex_lock() and ww_acquire_init(). A reservation
* object may be locked by itself by passing NULL as @ctx.
+ *
+ * When a die situation is indicated by returning -EDEADLK all locks held by
+ * @ctx must be unlocked and then dma_resv_lock_slow() called on @obj.
+ *
+ * Unlocked by calling dma_resv_unlock().
+ *
+ * See also dma_resv_lock_interruptible() for the interruptible variant.
*/
static inline int dma_resv_lock(struct dma_resv *obj,
struct ww_acquire_ctx *ctx)
@@ -119,6 +200,12 @@ static inline int dma_resv_lock(struct dma_resv *obj,
* undefined order, a #ww_acquire_ctx is passed to unwind if a cycle
* is detected. See ww_mutex_lock() and ww_acquire_init(). A reservation
* object may be locked by itself by passing NULL as @ctx.
+ *
+ * When a die situation is indicated by returning -EDEADLK all locks held by
+ * @ctx must be unlocked and then dma_resv_lock_slow_interruptible() called on
+ * @obj.
+ *
+ * Unlocked by calling dma_resv_unlock().
*/
static inline int dma_resv_lock_interruptible(struct dma_resv *obj,
struct ww_acquire_ctx *ctx)
@@ -134,6 +221,8 @@ static inline int dma_resv_lock_interruptible(struct dma_resv *obj,
* Acquires the reservation object after a die case. This function
* will sleep until the lock becomes available. See dma_resv_lock() as
* well.
+ *
+ * See also dma_resv_lock_slow_interruptible() for the interruptible variant.
*/
static inline void dma_resv_lock_slow(struct dma_resv *obj,
struct ww_acquire_ctx *ctx)
@@ -167,7 +256,7 @@ static inline int dma_resv_lock_slow_interruptible(struct dma_resv *obj,
* if they overlap with a writer.
*
* Also note that since no context is provided, no deadlock protection is
- * possible.
+ * possible, which is also not needed for a trylock.
*
* Returns true if the lock was acquired, false otherwise.
*/
@@ -193,6 +282,11 @@ static inline bool dma_resv_is_locked(struct dma_resv *obj)
*
* Returns the context used to lock a reservation object or NULL if no context
* was used or the object is not locked at all.
+ *
+ * WARNING: This interface is pretty horrible, but TTM needs it because it
+ * doesn't pass the struct ww_acquire_ctx around in some very long callchains.
+ * Everyone else just uses it to check whether they're holding a reservation or
+ * not.
*/
static inline struct ww_acquire_ctx *dma_resv_locking_ctx(struct dma_resv *obj)
{
diff --git a/include/linux/seqno-fence.h b/include/linux/seqno-fence.h
deleted file mode 100644
index 3cca2b8fac43..000000000000
--- a/include/linux/seqno-fence.h
+++ /dev/null
@@ -1,109 +0,0 @@
-/* SPDX-License-Identifier: GPL-2.0-only */
-/*
- * seqno-fence, using a dma-buf to synchronize fencing
- *
- * Copyright (C) 2012 Texas Instruments
- * Copyright (C) 2012 Canonical Ltd
- * Authors:
- * Rob Clark <robdclark@gmail.com>
- * Maarten Lankhorst <maarten.lankhorst@canonical.com>
- */
-
-#ifndef __LINUX_SEQNO_FENCE_H
-#define __LINUX_SEQNO_FENCE_H
-
-#include <linux/dma-fence.h>
-#include <linux/dma-buf.h>
-
-enum seqno_fence_condition {
- SEQNO_FENCE_WAIT_GEQUAL,
- SEQNO_FENCE_WAIT_NONZERO
-};
-
-struct seqno_fence {
- struct dma_fence base;
-
- const struct dma_fence_ops *ops;
- struct dma_buf *sync_buf;
- uint32_t seqno_ofs;
- enum seqno_fence_condition condition;
-};
-
-extern const struct dma_fence_ops seqno_fence_ops;
-
-/**
- * to_seqno_fence - cast a fence to a seqno_fence
- * @fence: fence to cast to a seqno_fence
- *
- * Returns NULL if the fence is not a seqno_fence,
- * or the seqno_fence otherwise.
- */
-static inline struct seqno_fence *
-to_seqno_fence(struct dma_fence *fence)
-{
- if (fence->ops != &seqno_fence_ops)
- return NULL;
- return container_of(fence, struct seqno_fence, base);
-}
-
-/**
- * seqno_fence_init - initialize a seqno fence
- * @fence: seqno_fence to initialize
- * @lock: pointer to spinlock to use for fence
- * @sync_buf: buffer containing the memory location to signal on
- * @context: the execution context this fence is a part of
- * @seqno_ofs: the offset within @sync_buf
- * @seqno: the sequence # to signal on
- * @cond: fence wait condition
- * @ops: the fence_ops for operations on this seqno fence
- *
- * This function initializes a struct seqno_fence with passed parameters,
- * and takes a reference on sync_buf which is released on fence destruction.
- *
- * A seqno_fence is a dma_fence which can complete in software when
- * enable_signaling is called, but it also completes when
- * (s32)((sync_buf)[seqno_ofs] - seqno) >= 0 is true
- *
- * The seqno_fence will take a refcount on the sync_buf until it's
- * destroyed, but actual lifetime of sync_buf may be longer if one of the
- * callers take a reference to it.
- *
- * Certain hardware have instructions to insert this type of wait condition
- * in the command stream, so no intervention from software would be needed.
- * This type of fence can be destroyed before completed, however a reference
- * on the sync_buf dma-buf can be taken. It is encouraged to re-use the same
- * dma-buf for sync_buf, since mapping or unmapping the sync_buf to the
- * device's vm can be expensive.
- *
- * It is recommended for creators of seqno_fence to call dma_fence_signal()
- * before destruction. This will prevent possible issues from wraparound at
- * time of issue vs time of check, since users can check dma_fence_is_signaled()
- * before submitting instructions for the hardware to wait on the fence.
- * However, when ops.enable_signaling is not called, it doesn't have to be
- * done as soon as possible, just before there's any real danger of seqno
- * wraparound.
- */
-static inline void
-seqno_fence_init(struct seqno_fence *fence, spinlock_t *lock,
- struct dma_buf *sync_buf, uint32_t context,
- uint32_t seqno_ofs, uint32_t seqno,
- enum seqno_fence_condition cond,
- const struct dma_fence_ops *ops)
-{
- BUG_ON(!fence || !sync_buf || !ops);
- BUG_ON(!ops->wait || !ops->enable_signaling ||
- !ops->get_driver_name || !ops->get_timeline_name);
-
- /*
- * ops is used in dma_fence_init for get_driver_name, so needs to be
- * initialized first
- */
- fence->ops = ops;
- dma_fence_init(&fence->base, &seqno_fence_ops, lock, context, seqno);
- get_dma_buf(sync_buf);
- fence->sync_buf = sync_buf;
- fence->seqno_ofs = seqno_ofs;
- fence->condition = cond;
-}
-
-#endif /* __LINUX_SEQNO_FENCE_H */
diff --git a/include/linux/shrinker.h b/include/linux/shrinker.h
index 9814fff58a69..76fbf92b04d9 100644
--- a/include/linux/shrinker.h
+++ b/include/linux/shrinker.h
@@ -93,4 +93,5 @@ extern void register_shrinker_prepared(struct shrinker *shrinker);
extern int register_shrinker(struct shrinker *shrinker);
extern void unregister_shrinker(struct shrinker *shrinker);
extern void free_prealloced_shrinker(struct shrinker *shrinker);
+extern void synchronize_shrinkers(void);
#endif