summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
authorVlastimil Babka <vbabka@suse.cz>2025-09-26 14:51:17 +0200
committerVlastimil Babka <vbabka@suse.cz>2025-09-29 09:46:17 +0200
commitb9120619246d733a27e5e93c29e86f2e0401cfc5 (patch)
tree9c13b377eb5e64ae2f7bf8a43422f65255b3dda1 /lib
parentf7381b9116407ba2a429977c80ff8df953ea9354 (diff)
parent719a42e563bb087758500e43e67a57b27f303c4c (diff)
Merge series "SLUB percpu sheaves"
This series adds an opt-in percpu array-based caching layer to SLUB. It has evolved to a state where kmem caches with sheaves are compatible with all SLUB features (slub_debug, SLUB_TINY, NUMA locality considerations). The plan is therefore that it will be later enabled for all kmem caches and replace the complicated cpu (partial) slabs code. Note the name "sheaf" was invented by Matthew Wilcox so we don't call the arrays magazines like the original Bonwick paper. The per-NUMA-node cache of sheaves is thus called "barn". This caching may seem similar to the arrays we had in SLAB, but there are some important differences: - deals differently with NUMA locality of freed objects, thus there are no per-node "shared" arrays (with possible lock contention) and no "alien" arrays that would need periodical flushing - instead, freeing remote objects (which is rare) bypasses the sheaves - percpu sheaves thus contain only local objects (modulo rare races and local node exhaustion) - NUMA restricted allocations and strict_numa mode is still honoured - improves kfree_rcu() handling by reusing whole sheaves - there is an API for obtaining a preallocated sheaf that can be used for guaranteed and efficient allocations in a restricted context, when the upper bound for needed objects is known but rarely reached - opt-in, not used for every cache (for now) The motivation comes mainly from the ongoing work related to VMA locking scalability and the related maple tree operations. This is why VMA and maple nodes caches are sheaf-enabled in the patchset. A sheaf-enabled cache has the following expected advantages: - Cheaper fast paths. For allocations, instead of local double cmpxchg, thanks to local_trylock() it becomes a preempt_disable() and no atomic operations. Same for freeing, which is otherwise a local double cmpxchg only for short term allocations (so the same slab is still active on the same cpu when freeing the object) and a more costly locked double cmpxchg otherwise. - kfree_rcu() batching and recycling. kfree_rcu() will put objects to a separate percpu sheaf and only submit the whole sheaf to call_rcu() when full. After the grace period, the sheaf can be used for allocations, which is more efficient than freeing and reallocating individual slab objects (even with the batching done by kfree_rcu() implementation itself). In case only some cpus are allowed to handle rcu callbacks, the sheaf can still be made available to other cpus on the same node via the shared barn. The maple_node cache uses kfree_rcu() and thus can benefit from this. Note: this path is currently limited to !PREEMPT_RT - Preallocation support. A prefilled sheaf can be privately borrowed to perform a short term operation that is not allowed to block in the middle and may need to allocate some objects. If an upper bound (worst case) for the number of allocations is known, but only much fewer allocations actually needed on average, borrowing and returning a sheaf is much more efficient then a bulk allocation for the worst case followed by a bulk free of the many unused objects. Maple tree write operations should benefit from this. - Compatibility with slub_debug. When slub_debug is enabled for a cache, we simply don't create the percpu sheaves so that the debugging hooks (at the node partial list slowpaths) are reached as before. The same thing is done for CONFIG_SLUB_TINY. Sheaf preallocation still works by reusing the (ineffective) paths for requests exceeding the cache's sheaf_capacity. This is in line with the existing approach where debugging bypasses the fast paths and SLUB_TINY preferes memory savings over performance. The above is adapted from the cover letter [1], which contains also in-kernel microbenchmark results showing the lower overhead of sheaves. Results from Suren Baghdasaryan [2] using a mmap/munmap microbenchmark also show improvements. Results from Sudarsan Mahendran [3] using will-it-scale show both benefits and regressions, probably due to overall noisiness of those tests. Link: https://lore.kernel.org/all/20250910-slub-percpu-caches-v8-0-ca3099d8352c@suse.cz/ [1] Link: https://lore.kernel.org/all/CAJuCfpEQ%3DRUgcAvRzE5jRrhhFpkm8E2PpBK9e9GhK26ZaJQt%3DQ@mail.gmail.com/ [2] Link: https://lore.kernel.org/all/20250913000935.1021068-1-sudarsanm@google.com/ [3]
Diffstat (limited to 'lib')
-rw-r--r--lib/maple_tree.c667
-rw-r--r--lib/test_maple_tree.c137
2 files changed, 115 insertions, 689 deletions
diff --git a/lib/maple_tree.c b/lib/maple_tree.c
index b4ee2d29d7a9..ab4c6c21a625 100644
--- a/lib/maple_tree.c
+++ b/lib/maple_tree.c
@@ -83,13 +83,9 @@
/*
* Maple state flags
- * * MA_STATE_BULK - Bulk insert mode
- * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
* * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
*/
-#define MA_STATE_BULK 1
-#define MA_STATE_REBALANCE 2
-#define MA_STATE_PREALLOC 4
+#define MA_STATE_PREALLOC 1
#define ma_parent_ptr(x) ((struct maple_pnode *)(x))
#define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT)
@@ -176,26 +172,25 @@ static inline struct maple_node *mt_alloc_one(gfp_t gfp)
return kmem_cache_alloc(maple_node_cache, gfp);
}
-static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
+static inline void mt_free_bulk(size_t size, void __rcu **nodes)
{
- return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
+ kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
}
-static inline void mt_free_one(struct maple_node *node)
+static void mt_return_sheaf(struct slab_sheaf *sheaf)
{
- kmem_cache_free(maple_node_cache, node);
+ kmem_cache_return_sheaf(maple_node_cache, GFP_NOWAIT, sheaf);
}
-static inline void mt_free_bulk(size_t size, void __rcu **nodes)
+static struct slab_sheaf *mt_get_sheaf(gfp_t gfp, int count)
{
- kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
+ return kmem_cache_prefill_sheaf(maple_node_cache, gfp, count);
}
-static void mt_free_rcu(struct rcu_head *head)
+static int mt_refill_sheaf(gfp_t gfp, struct slab_sheaf **sheaf,
+ unsigned int size)
{
- struct maple_node *node = container_of(head, struct maple_node, rcu);
-
- kmem_cache_free(maple_node_cache, node);
+ return kmem_cache_refill_sheaf(maple_node_cache, gfp, sheaf, size);
}
/*
@@ -208,7 +203,7 @@ static void mt_free_rcu(struct rcu_head *head)
static void ma_free_rcu(struct maple_node *node)
{
WARN_ON(node->parent != ma_parent_ptr(node));
- call_rcu(&node->rcu, mt_free_rcu);
+ kfree_rcu(node, rcu);
}
static void mt_set_height(struct maple_tree *mt, unsigned char height)
@@ -591,67 +586,6 @@ static __always_inline bool mte_dead_node(const struct maple_enode *enode)
}
/*
- * mas_allocated() - Get the number of nodes allocated in a maple state.
- * @mas: The maple state
- *
- * The ma_state alloc member is overloaded to hold a pointer to the first
- * allocated node or to the number of requested nodes to allocate. If bit 0 is
- * set, then the alloc contains the number of requested nodes. If there is an
- * allocated node, then the total allocated nodes is in that node.
- *
- * Return: The total number of nodes allocated
- */
-static inline unsigned long mas_allocated(const struct ma_state *mas)
-{
- if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
- return 0;
-
- return mas->alloc->total;
-}
-
-/*
- * mas_set_alloc_req() - Set the requested number of allocations.
- * @mas: the maple state
- * @count: the number of allocations.
- *
- * The requested number of allocations is either in the first allocated node,
- * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
- * no allocated node. Set the request either in the node or do the necessary
- * encoding to store in @mas->alloc directly.
- */
-static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
-{
- if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
- if (!count)
- mas->alloc = NULL;
- else
- mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
- return;
- }
-
- mas->alloc->request_count = count;
-}
-
-/*
- * mas_alloc_req() - get the requested number of allocations.
- * @mas: The maple state
- *
- * The alloc count is either stored directly in @mas, or in
- * @mas->alloc->request_count if there is at least one node allocated. Decode
- * the request count if it's stored directly in @mas->alloc.
- *
- * Return: The allocation request count.
- */
-static inline unsigned int mas_alloc_req(const struct ma_state *mas)
-{
- if ((unsigned long)mas->alloc & 0x1)
- return (unsigned long)(mas->alloc) >> 1;
- else if (mas->alloc)
- return mas->alloc->request_count;
- return 0;
-}
-
-/*
* ma_pivots() - Get a pointer to the maple node pivots.
* @node: the maple node
* @type: the node type
@@ -1032,24 +966,6 @@ static inline void mas_descend(struct ma_state *mas)
}
/*
- * mte_set_gap() - Set a maple node gap.
- * @mn: The encoded maple node
- * @gap: The offset of the gap to set
- * @val: The gap value
- */
-static inline void mte_set_gap(const struct maple_enode *mn,
- unsigned char gap, unsigned long val)
-{
- switch (mte_node_type(mn)) {
- default:
- break;
- case maple_arange_64:
- mte_to_node(mn)->ma64.gap[gap] = val;
- break;
- }
-}
-
-/*
* mas_ascend() - Walk up a level of the tree.
* @mas: The maple state
*
@@ -1152,79 +1068,24 @@ static int mas_ascend(struct ma_state *mas)
*
* Return: A pointer to a maple node.
*/
-static inline struct maple_node *mas_pop_node(struct ma_state *mas)
+static __always_inline struct maple_node *mas_pop_node(struct ma_state *mas)
{
- struct maple_alloc *ret, *node = mas->alloc;
- unsigned long total = mas_allocated(mas);
- unsigned int req = mas_alloc_req(mas);
-
- /* nothing or a request pending. */
- if (WARN_ON(!total))
- return NULL;
+ struct maple_node *ret;
- if (total == 1) {
- /* single allocation in this ma_state */
+ if (mas->alloc) {
+ ret = mas->alloc;
mas->alloc = NULL;
- ret = node;
- goto single_node;
+ goto out;
}
- if (node->node_count == 1) {
- /* Single allocation in this node. */
- mas->alloc = node->slot[0];
- mas->alloc->total = node->total - 1;
- ret = node;
- goto new_head;
- }
- node->total--;
- ret = node->slot[--node->node_count];
- node->slot[node->node_count] = NULL;
+ if (WARN_ON_ONCE(!mas->sheaf))
+ return NULL;
-single_node:
-new_head:
- if (req) {
- req++;
- mas_set_alloc_req(mas, req);
- }
+ ret = kmem_cache_alloc_from_sheaf(maple_node_cache, GFP_NOWAIT, mas->sheaf);
+out:
memset(ret, 0, sizeof(*ret));
- return (struct maple_node *)ret;
-}
-
-/*
- * mas_push_node() - Push a node back on the maple state allocation.
- * @mas: The maple state
- * @used: The used maple node
- *
- * Stores the maple node back into @mas->alloc for reuse. Updates allocated and
- * requested node count as necessary.
- */
-static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
-{
- struct maple_alloc *reuse = (struct maple_alloc *)used;
- struct maple_alloc *head = mas->alloc;
- unsigned long count;
- unsigned int requested = mas_alloc_req(mas);
-
- count = mas_allocated(mas);
-
- reuse->request_count = 0;
- reuse->node_count = 0;
- if (count) {
- if (head->node_count < MAPLE_ALLOC_SLOTS) {
- head->slot[head->node_count++] = reuse;
- head->total++;
- goto done;
- }
- reuse->slot[0] = head;
- reuse->node_count = 1;
- }
-
- reuse->total = count + 1;
- mas->alloc = reuse;
-done:
- if (requested > 1)
- mas_set_alloc_req(mas, requested - 1);
+ return ret;
}
/*
@@ -1234,121 +1095,81 @@ done:
*/
static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
{
- struct maple_alloc *node;
- unsigned long allocated = mas_allocated(mas);
- unsigned int requested = mas_alloc_req(mas);
- unsigned int count;
- void **slots = NULL;
- unsigned int max_req = 0;
-
- if (!requested)
+ if (!mas->node_request)
return;
- mas_set_alloc_req(mas, 0);
- if (mas->mas_flags & MA_STATE_PREALLOC) {
- if (allocated)
+ if (mas->node_request == 1) {
+ if (mas->sheaf)
+ goto use_sheaf;
+
+ if (mas->alloc)
return;
- WARN_ON(!allocated);
- }
- if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
- node = (struct maple_alloc *)mt_alloc_one(gfp);
- if (!node)
- goto nomem_one;
+ mas->alloc = mt_alloc_one(gfp);
+ if (!mas->alloc)
+ goto error;
- if (allocated) {
- node->slot[0] = mas->alloc;
- node->node_count = 1;
- } else {
- node->node_count = 0;
- }
+ mas->node_request = 0;
+ return;
+ }
- mas->alloc = node;
- node->total = ++allocated;
- node->request_count = 0;
- requested--;
+use_sheaf:
+ if (unlikely(mas->alloc)) {
+ kfree(mas->alloc);
+ mas->alloc = NULL;
}
- node = mas->alloc;
- while (requested) {
- max_req = MAPLE_ALLOC_SLOTS - node->node_count;
- slots = (void **)&node->slot[node->node_count];
- max_req = min(requested, max_req);
- count = mt_alloc_bulk(gfp, max_req, slots);
- if (!count)
- goto nomem_bulk;
+ if (mas->sheaf) {
+ unsigned long refill;
- if (node->node_count == 0) {
- node->slot[0]->node_count = 0;
- node->slot[0]->request_count = 0;
+ refill = mas->node_request;
+ if (kmem_cache_sheaf_size(mas->sheaf) >= refill) {
+ mas->node_request = 0;
+ return;
}
- node->node_count += count;
- allocated += count;
- /* find a non-full node*/
- do {
- node = node->slot[0];
- } while (unlikely(node->node_count == MAPLE_ALLOC_SLOTS));
- requested -= count;
- }
- mas->alloc->total = allocated;
- return;
+ if (mt_refill_sheaf(gfp, &mas->sheaf, refill))
+ goto error;
-nomem_bulk:
- /* Clean up potential freed allocations on bulk failure */
- memset(slots, 0, max_req * sizeof(unsigned long));
- mas->alloc->total = allocated;
-nomem_one:
- mas_set_alloc_req(mas, requested);
- mas_set_err(mas, -ENOMEM);
-}
+ mas->node_request = 0;
+ return;
+ }
-/*
- * mas_free() - Free an encoded maple node
- * @mas: The maple state
- * @used: The encoded maple node to free.
- *
- * Uses rcu free if necessary, pushes @used back on the maple state allocations
- * otherwise.
- */
-static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
-{
- struct maple_node *tmp = mte_to_node(used);
+ mas->sheaf = mt_get_sheaf(gfp, mas->node_request);
+ if (likely(mas->sheaf)) {
+ mas->node_request = 0;
+ return;
+ }
- if (mt_in_rcu(mas->tree))
- ma_free_rcu(tmp);
- else
- mas_push_node(mas, tmp);
+error:
+ mas_set_err(mas, -ENOMEM);
}
-/*
- * mas_node_count_gfp() - Check if enough nodes are allocated and request more
- * if there is not enough nodes.
- * @mas: The maple state
- * @count: The number of nodes needed
- * @gfp: the gfp flags
- */
-static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
+static inline void mas_empty_nodes(struct ma_state *mas)
{
- unsigned long allocated = mas_allocated(mas);
+ mas->node_request = 0;
+ if (mas->sheaf) {
+ mt_return_sheaf(mas->sheaf);
+ mas->sheaf = NULL;
+ }
- if (allocated < count) {
- mas_set_alloc_req(mas, count - allocated);
- mas_alloc_nodes(mas, gfp);
+ if (mas->alloc) {
+ kfree(mas->alloc);
+ mas->alloc = NULL;
}
}
/*
- * mas_node_count() - Check if enough nodes are allocated and request more if
- * there is not enough nodes.
+ * mas_free() - Free an encoded maple node
* @mas: The maple state
- * @count: The number of nodes needed
+ * @used: The encoded maple node to free.
*
- * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
+ * Uses rcu free if necessary, pushes @used back on the maple state allocations
+ * otherwise.
*/
-static void mas_node_count(struct ma_state *mas, int count)
+static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
{
- return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
+ ma_free_rcu(mte_to_node(used));
}
/*
@@ -1878,21 +1699,7 @@ static inline int mab_calc_split(struct ma_state *mas,
* end on a NULL entry, with the exception of the left-most leaf. The
* limitation means that the split of a node must be checked for this condition
* and be able to put more data in one direction or the other.
- */
- if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
- *mid_split = 0;
- split = b_end - mt_min_slots[bn->type];
-
- if (!ma_is_leaf(bn->type))
- return split;
-
- mas->mas_flags |= MA_STATE_REBALANCE;
- if (!bn->slot[split])
- split--;
- return split;
- }
-
- /*
+ *
* Although extremely rare, it is possible to enter what is known as the 3-way
* split scenario. The 3-way split comes about by means of a store of a range
* that overwrites the end and beginning of two full nodes. The result is a set
@@ -2040,27 +1847,6 @@ static inline void mab_mas_cp(struct maple_big_node *b_node,
}
/*
- * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
- * @mas: The maple state
- * @end: The maple node end
- * @mt: The maple node type
- */
-static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
- enum maple_type mt)
-{
- if (!(mas->mas_flags & MA_STATE_BULK))
- return;
-
- if (mte_is_root(mas->node))
- return;
-
- if (end > mt_min_slots[mt]) {
- mas->mas_flags &= ~MA_STATE_REBALANCE;
- return;
- }
-}
-
-/*
* mas_store_b_node() - Store an @entry into the b_node while also copying the
* data from a maple encoded node.
* @wr_mas: the maple write state
@@ -2109,9 +1895,6 @@ static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
/* Handle new range ending before old range ends */
piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
if (piv > mas->last) {
- if (piv == ULONG_MAX)
- mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
-
if (offset_end != slot)
wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
offset_end);
@@ -2523,10 +2306,7 @@ static inline void mas_topiary_node(struct ma_state *mas,
enode = tmp_mas->node;
tmp = mte_to_node(enode);
mte_set_node_dead(enode);
- if (in_rcu)
- ma_free_rcu(tmp);
- else
- mas_push_node(mas, tmp);
+ ma_free_rcu(tmp);
}
/*
@@ -3012,126 +2792,6 @@ static inline void mas_rebalance(struct ma_state *mas,
}
/*
- * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
- * state.
- * @mas: The maple state
- * @end: The end of the left-most node.
- *
- * During a mass-insert event (such as forking), it may be necessary to
- * rebalance the left-most node when it is not sufficient.
- */
-static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
-{
- enum maple_type mt = mte_node_type(mas->node);
- struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
- struct maple_enode *eparent, *old_eparent;
- unsigned char offset, tmp, split = mt_slots[mt] / 2;
- void __rcu **l_slots, **slots;
- unsigned long *l_pivs, *pivs, gap;
- bool in_rcu = mt_in_rcu(mas->tree);
- unsigned char new_height = mas_mt_height(mas);
-
- MA_STATE(l_mas, mas->tree, mas->index, mas->last);
-
- l_mas = *mas;
- mas_prev_sibling(&l_mas);
-
- /* set up node. */
- if (in_rcu) {
- newnode = mas_pop_node(mas);
- } else {
- newnode = &reuse;
- }
-
- node = mas_mn(mas);
- newnode->parent = node->parent;
- slots = ma_slots(newnode, mt);
- pivs = ma_pivots(newnode, mt);
- left = mas_mn(&l_mas);
- l_slots = ma_slots(left, mt);
- l_pivs = ma_pivots(left, mt);
- if (!l_slots[split])
- split++;
- tmp = mas_data_end(&l_mas) - split;
-
- memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
- memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
- pivs[tmp] = l_mas.max;
- memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
- memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
-
- l_mas.max = l_pivs[split];
- mas->min = l_mas.max + 1;
- old_eparent = mt_mk_node(mte_parent(l_mas.node),
- mas_parent_type(&l_mas, l_mas.node));
- tmp += end;
- if (!in_rcu) {
- unsigned char max_p = mt_pivots[mt];
- unsigned char max_s = mt_slots[mt];
-
- if (tmp < max_p)
- memset(pivs + tmp, 0,
- sizeof(unsigned long) * (max_p - tmp));
-
- if (tmp < mt_slots[mt])
- memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
-
- memcpy(node, newnode, sizeof(struct maple_node));
- ma_set_meta(node, mt, 0, tmp - 1);
- mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node),
- l_pivs[split]);
-
- /* Remove data from l_pivs. */
- tmp = split + 1;
- memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
- memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
- ma_set_meta(left, mt, 0, split);
- eparent = old_eparent;
-
- goto done;
- }
-
- /* RCU requires replacing both l_mas, mas, and parent. */
- mas->node = mt_mk_node(newnode, mt);
- ma_set_meta(newnode, mt, 0, tmp);
-
- new_left = mas_pop_node(mas);
- new_left->parent = left->parent;
- mt = mte_node_type(l_mas.node);
- slots = ma_slots(new_left, mt);
- pivs = ma_pivots(new_left, mt);
- memcpy(slots, l_slots, sizeof(void *) * split);
- memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
- ma_set_meta(new_left, mt, 0, split);
- l_mas.node = mt_mk_node(new_left, mt);
-
- /* replace parent. */
- offset = mte_parent_slot(mas->node);
- mt = mas_parent_type(&l_mas, l_mas.node);
- parent = mas_pop_node(mas);
- slots = ma_slots(parent, mt);
- pivs = ma_pivots(parent, mt);
- memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node));
- rcu_assign_pointer(slots[offset], mas->node);
- rcu_assign_pointer(slots[offset - 1], l_mas.node);
- pivs[offset - 1] = l_mas.max;
- eparent = mt_mk_node(parent, mt);
-done:
- gap = mas_leaf_max_gap(mas);
- mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
- gap = mas_leaf_max_gap(&l_mas);
- mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
- mas_ascend(mas);
-
- if (in_rcu) {
- mas_replace_node(mas, old_eparent, new_height);
- mas_adopt_children(mas, mas->node);
- }
-
- mas_update_gap(mas);
-}
-
-/*
* mas_split_final_node() - Split the final node in a subtree operation.
* @mast: the maple subtree state
* @mas: The maple state
@@ -3837,8 +3497,6 @@ static inline void mas_wr_node_store(struct ma_wr_state *wr_mas,
if (mas->last == wr_mas->end_piv)
offset_end++; /* don't copy this offset */
- else if (unlikely(wr_mas->r_max == ULONG_MAX))
- mas_bulk_rebalance(mas, mas->end, wr_mas->type);
/* set up node. */
if (in_rcu) {
@@ -4174,7 +3832,7 @@ set_content:
*
* Return: Number of nodes required for preallocation.
*/
-static inline int mas_prealloc_calc(struct ma_wr_state *wr_mas, void *entry)
+static inline void mas_prealloc_calc(struct ma_wr_state *wr_mas, void *entry)
{
struct ma_state *mas = wr_mas->mas;
unsigned char height = mas_mt_height(mas);
@@ -4220,7 +3878,7 @@ static inline int mas_prealloc_calc(struct ma_wr_state *wr_mas, void *entry)
WARN_ON_ONCE(1);
}
- return ret;
+ mas->node_request = ret;
}
/*
@@ -4255,7 +3913,7 @@ static inline enum store_type mas_wr_store_type(struct ma_wr_state *wr_mas)
new_end = mas_wr_new_end(wr_mas);
/* Potential spanning rebalance collapsing a node */
if (new_end < mt_min_slots[wr_mas->type]) {
- if (!mte_is_root(mas->node) && !(mas->mas_flags & MA_STATE_BULK))
+ if (!mte_is_root(mas->node))
return wr_rebalance;
return wr_node_store;
}
@@ -4281,15 +3939,15 @@ static inline enum store_type mas_wr_store_type(struct ma_wr_state *wr_mas)
*/
static inline void mas_wr_preallocate(struct ma_wr_state *wr_mas, void *entry)
{
- int request;
+ struct ma_state *mas = wr_mas->mas;
mas_wr_prealloc_setup(wr_mas);
- wr_mas->mas->store_type = mas_wr_store_type(wr_mas);
- request = mas_prealloc_calc(wr_mas, entry);
- if (!request)
+ mas->store_type = mas_wr_store_type(wr_mas);
+ mas_prealloc_calc(wr_mas, entry);
+ if (!mas->node_request)
return;
- mas_node_count(wr_mas->mas, request);
+ mas_alloc_nodes(mas, GFP_NOWAIT);
}
/**
@@ -5281,7 +4939,7 @@ static void mt_free_walk(struct rcu_head *head)
mt_free_bulk(node->slot_len, slots);
free_leaf:
- mt_free_rcu(&node->rcu);
+ kfree(node);
}
static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
@@ -5365,7 +5023,7 @@ next:
free_leaf:
if (free)
- mt_free_rcu(&node->rcu);
+ kfree(node);
else
mt_clear_meta(mt, node, node->type);
}
@@ -5402,7 +5060,6 @@ static inline void mte_destroy_walk(struct maple_enode *enode,
*/
void *mas_store(struct ma_state *mas, void *entry)
{
- int request;
MA_WR_STATE(wr_mas, mas, entry);
trace_ma_write(__func__, mas, 0, entry);
@@ -5432,11 +5089,11 @@ void *mas_store(struct ma_state *mas, void *entry)
return wr_mas.content;
}
- request = mas_prealloc_calc(&wr_mas, entry);
- if (!request)
+ mas_prealloc_calc(&wr_mas, entry);
+ if (!mas->node_request)
goto store;
- mas_node_count(mas, request);
+ mas_alloc_nodes(mas, GFP_NOWAIT);
if (mas_is_err(mas))
return NULL;
@@ -5524,20 +5181,19 @@ EXPORT_SYMBOL_GPL(mas_store_prealloc);
int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
{
MA_WR_STATE(wr_mas, mas, entry);
- int ret = 0;
- int request;
mas_wr_prealloc_setup(&wr_mas);
mas->store_type = mas_wr_store_type(&wr_mas);
- request = mas_prealloc_calc(&wr_mas, entry);
- if (!request)
+ mas_prealloc_calc(&wr_mas, entry);
+ if (!mas->node_request)
goto set_flag;
mas->mas_flags &= ~MA_STATE_PREALLOC;
- mas_node_count_gfp(mas, request, gfp);
+ mas_alloc_nodes(mas, gfp);
if (mas_is_err(mas)) {
- mas_set_alloc_req(mas, 0);
- ret = xa_err(mas->node);
+ int ret = xa_err(mas->node);
+
+ mas->node_request = 0;
mas_destroy(mas);
mas_reset(mas);
return ret;
@@ -5545,7 +5201,7 @@ int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
set_flag:
mas->mas_flags |= MA_STATE_PREALLOC;
- return ret;
+ return 0;
}
EXPORT_SYMBOL_GPL(mas_preallocate);
@@ -5559,109 +5215,11 @@ EXPORT_SYMBOL_GPL(mas_preallocate);
*/
void mas_destroy(struct ma_state *mas)
{
- struct maple_alloc *node;
- unsigned long total;
-
- /*
- * When using mas_for_each() to insert an expected number of elements,
- * it is possible that the number inserted is less than the expected
- * number. To fix an invalid final node, a check is performed here to
- * rebalance the previous node with the final node.
- */
- if (mas->mas_flags & MA_STATE_REBALANCE) {
- unsigned char end;
- if (mas_is_err(mas))
- mas_reset(mas);
- mas_start(mas);
- mtree_range_walk(mas);
- end = mas->end + 1;
- if (end < mt_min_slot_count(mas->node) - 1)
- mas_destroy_rebalance(mas, end);
-
- mas->mas_flags &= ~MA_STATE_REBALANCE;
- }
- mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
-
- total = mas_allocated(mas);
- while (total) {
- node = mas->alloc;
- mas->alloc = node->slot[0];
- if (node->node_count > 1) {
- size_t count = node->node_count - 1;
-
- mt_free_bulk(count, (void __rcu **)&node->slot[1]);
- total -= count;
- }
- mt_free_one(ma_mnode_ptr(node));
- total--;
- }
-
- mas->alloc = NULL;
+ mas->mas_flags &= ~MA_STATE_PREALLOC;
+ mas_empty_nodes(mas);
}
EXPORT_SYMBOL_GPL(mas_destroy);
-/*
- * mas_expected_entries() - Set the expected number of entries that will be inserted.
- * @mas: The maple state
- * @nr_entries: The number of expected entries.
- *
- * This will attempt to pre-allocate enough nodes to store the expected number
- * of entries. The allocations will occur using the bulk allocator interface
- * for speed. Please call mas_destroy() on the @mas after inserting the entries
- * to ensure any unused nodes are freed.
- *
- * Return: 0 on success, -ENOMEM if memory could not be allocated.
- */
-int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
-{
- int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
- struct maple_enode *enode = mas->node;
- int nr_nodes;
- int ret;
-
- /*
- * Sometimes it is necessary to duplicate a tree to a new tree, such as
- * forking a process and duplicating the VMAs from one tree to a new
- * tree. When such a situation arises, it is known that the new tree is
- * not going to be used until the entire tree is populated. For
- * performance reasons, it is best to use a bulk load with RCU disabled.
- * This allows for optimistic splitting that favours the left and reuse
- * of nodes during the operation.
- */
-
- /* Optimize splitting for bulk insert in-order */
- mas->mas_flags |= MA_STATE_BULK;
-
- /*
- * Avoid overflow, assume a gap between each entry and a trailing null.
- * If this is wrong, it just means allocation can happen during
- * insertion of entries.
- */
- nr_nodes = max(nr_entries, nr_entries * 2 + 1);
- if (!mt_is_alloc(mas->tree))
- nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
-
- /* Leaves; reduce slots to keep space for expansion */
- nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
- /* Internal nodes */
- nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
- /* Add working room for split (2 nodes) + new parents */
- mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL);
-
- /* Detect if allocations run out */
- mas->mas_flags |= MA_STATE_PREALLOC;
-
- if (!mas_is_err(mas))
- return 0;
-
- ret = xa_err(mas->node);
- mas->node = enode;
- mas_destroy(mas);
- return ret;
-
-}
-EXPORT_SYMBOL_GPL(mas_expected_entries);
-
static void mas_may_activate(struct ma_state *mas)
{
if (!mas->node) {
@@ -6293,7 +5851,7 @@ bool mas_nomem(struct ma_state *mas, gfp_t gfp)
mas_alloc_nodes(mas, gfp);
}
- if (!mas_allocated(mas))
+ if (!mas->sheaf && !mas->alloc)
return false;
mas->status = ma_start;
@@ -6302,9 +5860,14 @@ bool mas_nomem(struct ma_state *mas, gfp_t gfp)
void __init maple_tree_init(void)
{
+ struct kmem_cache_args args = {
+ .align = sizeof(struct maple_node),
+ .sheaf_capacity = 32,
+ };
+
maple_node_cache = kmem_cache_create("maple_node",
- sizeof(struct maple_node), sizeof(struct maple_node),
- SLAB_PANIC, NULL);
+ sizeof(struct maple_node), &args,
+ SLAB_PANIC);
}
/**
@@ -6637,7 +6200,7 @@ static void mas_dup_free(struct ma_state *mas)
}
node = mte_to_node(mas->node);
- mt_free_one(node);
+ kfree(node);
}
/*
@@ -6678,7 +6241,7 @@ static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas,
struct maple_node *node = mte_to_node(mas->node);
struct maple_node *new_node = mte_to_node(new_mas->node);
enum maple_type type;
- unsigned char request, count, i;
+ unsigned char count, i;
void __rcu **slots;
void __rcu **new_slots;
unsigned long val;
@@ -6686,20 +6249,17 @@ static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas,
/* Allocate memory for child nodes. */
type = mte_node_type(mas->node);
new_slots = ma_slots(new_node, type);
- request = mas_data_end(mas) + 1;
- count = mt_alloc_bulk(gfp, request, (void **)new_slots);
- if (unlikely(count < request)) {
- memset(new_slots, 0, request * sizeof(void *));
- mas_set_err(mas, -ENOMEM);
+ count = mas->node_request = mas_data_end(mas) + 1;
+ mas_alloc_nodes(mas, gfp);
+ if (unlikely(mas_is_err(mas)))
return;
- }
- /* Restore node type information in slots. */
slots = ma_slots(node, type);
for (i = 0; i < count; i++) {
val = (unsigned long)mt_slot_locked(mas->tree, slots, i);
val &= MAPLE_NODE_MASK;
- ((unsigned long *)new_slots)[i] |= val;
+ new_slots[i] = ma_mnode_ptr((unsigned long)mas_pop_node(mas) |
+ val);
}
}
@@ -6753,7 +6313,7 @@ static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas,
/* Only allocate child nodes for non-leaf nodes. */
mas_dup_alloc(mas, new_mas, gfp);
if (unlikely(mas_is_err(mas)))
- return;
+ goto empty_mas;
} else {
/*
* This is the last leaf node and duplication is
@@ -6786,6 +6346,8 @@ set_new_tree:
/* Make them the same height */
new_mas->tree->ma_flags = mas->tree->ma_flags;
rcu_assign_pointer(new_mas->tree->ma_root, root);
+empty_mas:
+ mas_empty_nodes(mas);
}
/**
@@ -7683,8 +7245,9 @@ void mas_dump(const struct ma_state *mas)
pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end,
mas->index, mas->last);
- pr_err(" min=%lx max=%lx alloc=" PTR_FMT ", depth=%u, flags=%x\n",
- mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
+ pr_err(" min=%lx max=%lx sheaf=" PTR_FMT ", request %lu depth=%u, flags=%x\n",
+ mas->min, mas->max, mas->sheaf, mas->node_request, mas->depth,
+ mas->mas_flags);
if (mas->index > mas->last)
pr_err("Check index & last\n");
}
diff --git a/lib/test_maple_tree.c b/lib/test_maple_tree.c
index cb3936595b0d..14fbbee32046 100644
--- a/lib/test_maple_tree.c
+++ b/lib/test_maple_tree.c
@@ -2746,139 +2746,6 @@ static noinline void __init check_fuzzer(struct maple_tree *mt)
mtree_test_erase(mt, ULONG_MAX - 10);
}
-/* duplicate the tree with a specific gap */
-static noinline void __init check_dup_gaps(struct maple_tree *mt,
- unsigned long nr_entries, bool zero_start,
- unsigned long gap)
-{
- unsigned long i = 0;
- struct maple_tree newmt;
- int ret;
- void *tmp;
- MA_STATE(mas, mt, 0, 0);
- MA_STATE(newmas, &newmt, 0, 0);
- struct rw_semaphore newmt_lock;
-
- init_rwsem(&newmt_lock);
- mt_set_external_lock(&newmt, &newmt_lock);
-
- if (!zero_start)
- i = 1;
-
- mt_zero_nr_tallocated();
- for (; i <= nr_entries; i++)
- mtree_store_range(mt, i*10, (i+1)*10 - gap,
- xa_mk_value(i), GFP_KERNEL);
-
- mt_init_flags(&newmt, MT_FLAGS_ALLOC_RANGE | MT_FLAGS_LOCK_EXTERN);
- mt_set_non_kernel(99999);
- down_write(&newmt_lock);
- ret = mas_expected_entries(&newmas, nr_entries);
- mt_set_non_kernel(0);
- MT_BUG_ON(mt, ret != 0);
-
- rcu_read_lock();
- mas_for_each(&mas, tmp, ULONG_MAX) {
- newmas.index = mas.index;
- newmas.last = mas.last;
- mas_store(&newmas, tmp);
- }
- rcu_read_unlock();
- mas_destroy(&newmas);
-
- __mt_destroy(&newmt);
- up_write(&newmt_lock);
-}
-
-/* Duplicate many sizes of trees. Mainly to test expected entry values */
-static noinline void __init check_dup(struct maple_tree *mt)
-{
- int i;
- int big_start = 100010;
-
- /* Check with a value at zero */
- for (i = 10; i < 1000; i++) {
- mt_init_flags(mt, MT_FLAGS_ALLOC_RANGE);
- check_dup_gaps(mt, i, true, 5);
- mtree_destroy(mt);
- rcu_barrier();
- }
-
- cond_resched();
- mt_cache_shrink();
- /* Check with a value at zero, no gap */
- for (i = 1000; i < 2000; i++) {
- mt_init_flags(mt, MT_FLAGS_ALLOC_RANGE);
- check_dup_gaps(mt, i, true, 0);
- mtree_destroy(mt);
- rcu_barrier();
- }
-
- cond_resched();
- mt_cache_shrink();
- /* Check with a value at zero and unreasonably large */
- for (i = big_start; i < big_start + 10; i++) {
- mt_init_flags(mt, MT_FLAGS_ALLOC_RANGE);
- check_dup_gaps(mt, i, true, 5);
- mtree_destroy(mt);
- rcu_barrier();
- }
-
- cond_resched();
- mt_cache_shrink();
- /* Small to medium size not starting at zero*/
- for (i = 200; i < 1000; i++) {
- mt_init_flags(mt, MT_FLAGS_ALLOC_RANGE);
- check_dup_gaps(mt, i, false, 5);
- mtree_destroy(mt);
- rcu_barrier();
- }
-
- cond_resched();
- mt_cache_shrink();
- /* Unreasonably large not starting at zero*/
- for (i = big_start; i < big_start + 10; i++) {
- mt_init_flags(mt, MT_FLAGS_ALLOC_RANGE);
- check_dup_gaps(mt, i, false, 5);
- mtree_destroy(mt);
- rcu_barrier();
- cond_resched();
- mt_cache_shrink();
- }
-
- /* Check non-allocation tree not starting at zero */
- for (i = 1500; i < 3000; i++) {
- mt_init_flags(mt, 0);
- check_dup_gaps(mt, i, false, 5);
- mtree_destroy(mt);
- rcu_barrier();
- cond_resched();
- if (i % 2 == 0)
- mt_cache_shrink();
- }
-
- mt_cache_shrink();
- /* Check non-allocation tree starting at zero */
- for (i = 200; i < 1000; i++) {
- mt_init_flags(mt, 0);
- check_dup_gaps(mt, i, true, 5);
- mtree_destroy(mt);
- rcu_barrier();
- cond_resched();
- }
-
- mt_cache_shrink();
- /* Unreasonably large */
- for (i = big_start + 5; i < big_start + 10; i++) {
- mt_init_flags(mt, 0);
- check_dup_gaps(mt, i, true, 5);
- mtree_destroy(mt);
- rcu_barrier();
- mt_cache_shrink();
- cond_resched();
- }
-}
-
static noinline void __init check_bnode_min_spanning(struct maple_tree *mt)
{
int i = 50;
@@ -4078,10 +3945,6 @@ static int __init maple_tree_seed(void)
mtree_destroy(&tree);
mt_init_flags(&tree, MT_FLAGS_ALLOC_RANGE);
- check_dup(&tree);
- mtree_destroy(&tree);
-
- mt_init_flags(&tree, MT_FLAGS_ALLOC_RANGE);
check_bnode_min_spanning(&tree);
mtree_destroy(&tree);