diff options
author | Michael Ellerman <mpe@ellerman.id.au> | 2017-07-31 20:20:29 +1000 |
---|---|---|
committer | Michael Ellerman <mpe@ellerman.id.au> | 2017-07-31 20:20:29 +1000 |
commit | bb272221e9db79f13d454e1f3fb6b05013be985e (patch) | |
tree | 36f4acc50e3fabac71fadd34c720c0a6011db470 /mm/page_alloc.c | |
parent | 253fd51e2f533552ae35a0c661705da6c4842c1b (diff) | |
parent | 5771a8c08880cdca3bfb4a3fc6d309d6bba20877 (diff) |
Merge tag 'v4.13-rc1' into fixes
The fixes branch is based off a random pre-rc1 commit, because we had
some fixes that needed to go in before rc1 was released.
However we now need to fix some code that went in after that point, but
before rc1, so merge rc1 to get that code into fixes so we can fix it!
Diffstat (limited to 'mm/page_alloc.c')
-rw-r--r-- | mm/page_alloc.c | 80 |
1 files changed, 63 insertions, 17 deletions
diff --git a/mm/page_alloc.c b/mm/page_alloc.c index bd65b60939b6..6d30e914afb6 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -2206,19 +2206,26 @@ static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, * list of requested migratetype, possibly along with other pages from the same * block, depending on fragmentation avoidance heuristics. Returns true if * fallback was found so that __rmqueue_smallest() can grab it. + * + * The use of signed ints for order and current_order is a deliberate + * deviation from the rest of this file, to make the for loop + * condition simpler. */ static inline bool -__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) +__rmqueue_fallback(struct zone *zone, int order, int start_migratetype) { struct free_area *area; - unsigned int current_order; + int current_order; struct page *page; int fallback_mt; bool can_steal; - /* Find the largest possible block of pages in the other list */ - for (current_order = MAX_ORDER-1; - current_order >= order && current_order <= MAX_ORDER-1; + /* + * Find the largest available free page in the other list. This roughly + * approximates finding the pageblock with the most free pages, which + * would be too costly to do exactly. + */ + for (current_order = MAX_ORDER - 1; current_order >= order; --current_order) { area = &(zone->free_area[current_order]); fallback_mt = find_suitable_fallback(area, current_order, @@ -2226,19 +2233,50 @@ __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) if (fallback_mt == -1) continue; - page = list_first_entry(&area->free_list[fallback_mt], - struct page, lru); + /* + * We cannot steal all free pages from the pageblock and the + * requested migratetype is movable. In that case it's better to + * steal and split the smallest available page instead of the + * largest available page, because even if the next movable + * allocation falls back into a different pageblock than this + * one, it won't cause permanent fragmentation. + */ + if (!can_steal && start_migratetype == MIGRATE_MOVABLE + && current_order > order) + goto find_smallest; - steal_suitable_fallback(zone, page, start_migratetype, - can_steal); + goto do_steal; + } - trace_mm_page_alloc_extfrag(page, order, current_order, - start_migratetype, fallback_mt); + return false; - return true; +find_smallest: + for (current_order = order; current_order < MAX_ORDER; + current_order++) { + area = &(zone->free_area[current_order]); + fallback_mt = find_suitable_fallback(area, current_order, + start_migratetype, false, &can_steal); + if (fallback_mt != -1) + break; } - return false; + /* + * This should not happen - we already found a suitable fallback + * when looking for the largest page. + */ + VM_BUG_ON(current_order == MAX_ORDER); + +do_steal: + page = list_first_entry(&area->free_list[fallback_mt], + struct page, lru); + + steal_suitable_fallback(zone, page, start_migratetype, can_steal); + + trace_mm_page_alloc_extfrag(page, order, current_order, + start_migratetype, fallback_mt); + + return true; + } /* @@ -3246,6 +3284,14 @@ __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, /* The OOM killer will not help higher order allocs */ if (order > PAGE_ALLOC_COSTLY_ORDER) goto out; + /* + * We have already exhausted all our reclaim opportunities without any + * success so it is time to admit defeat. We will skip the OOM killer + * because it is very likely that the caller has a more reasonable + * fallback than shooting a random task. + */ + if (gfp_mask & __GFP_RETRY_MAYFAIL) + goto out; /* The OOM killer does not needlessly kill tasks for lowmem */ if (ac->high_zoneidx < ZONE_NORMAL) goto out; @@ -3375,7 +3421,7 @@ should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, } /* - * !costly requests are much more important than __GFP_REPEAT + * !costly requests are much more important than __GFP_RETRY_MAYFAIL * costly ones because they are de facto nofail and invoke OOM * killer to move on while costly can fail and users are ready * to cope with that. 1/4 retries is rather arbitrary but we @@ -3882,9 +3928,9 @@ retry: /* * Do not retry costly high order allocations unless they are - * __GFP_REPEAT + * __GFP_RETRY_MAYFAIL */ - if (costly_order && !(gfp_mask & __GFP_REPEAT)) + if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) goto nopage; if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, @@ -5240,7 +5286,7 @@ void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) #endif /* we have to stop all cpus to guarantee there is no user of zonelist */ - stop_machine(__build_all_zonelists, pgdat, NULL); + stop_machine_cpuslocked(__build_all_zonelists, pgdat, NULL); /* cpuset refresh routine should be here */ } vm_total_pages = nr_free_pagecache_pages(); |