summaryrefslogtreecommitdiff
path: root/mm/vmalloc.c
diff options
context:
space:
mode:
authorPaolo Bonzini <pbonzini@redhat.com>2023-04-26 15:46:52 -0400
committerPaolo Bonzini <pbonzini@redhat.com>2023-04-26 15:46:52 -0400
commit4f382a79a66b1a926e30f6d89295fc8fe2c4a86e (patch)
tree0580196e599bdee587bc92fc913853528bb69bc5 /mm/vmalloc.c
parentb3c129e33e91fa3dc3171f45b90edb35e60dbc33 (diff)
parent36fe1b29b3cae48f781011abd5a0b9e938f5b35f (diff)
Merge tag 'kvmarm-6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for 6.4 - Numerous fixes for the pathological lock inversion issue that plagued KVM/arm64 since... forever. - New framework allowing SMCCC-compliant hypercalls to be forwarded to userspace, hopefully paving the way for some more features being moved to VMMs rather than be implemented in the kernel. - Large rework of the timer code to allow a VM-wide offset to be applied to both virtual and physical counters as well as a per-timer, per-vcpu offset that complements the global one. This last part allows the NV timer code to be implemented on top. - A small set of fixes to make sure that we don't change anything affecting the EL1&0 translation regime just after having having taken an exception to EL2 until we have executed a DSB. This ensures that speculative walks started in EL1&0 have completed. - The usual selftest fixes and improvements.
Diffstat (limited to 'mm/vmalloc.c')
-rw-r--r--mm/vmalloc.c28
1 files changed, 23 insertions, 5 deletions
diff --git a/mm/vmalloc.c b/mm/vmalloc.c
index ef910bf349e1..bef6cf2b4d46 100644
--- a/mm/vmalloc.c
+++ b/mm/vmalloc.c
@@ -2883,6 +2883,8 @@ vm_area_alloc_pages(gfp_t gfp, int nid,
unsigned int order, unsigned int nr_pages, struct page **pages)
{
unsigned int nr_allocated = 0;
+ gfp_t alloc_gfp = gfp;
+ bool nofail = false;
struct page *page;
int i;
@@ -2893,6 +2895,7 @@ vm_area_alloc_pages(gfp_t gfp, int nid,
* more permissive.
*/
if (!order) {
+ /* bulk allocator doesn't support nofail req. officially */
gfp_t bulk_gfp = gfp & ~__GFP_NOFAIL;
while (nr_allocated < nr_pages) {
@@ -2931,20 +2934,35 @@ vm_area_alloc_pages(gfp_t gfp, int nid,
if (nr != nr_pages_request)
break;
}
+ } else if (gfp & __GFP_NOFAIL) {
+ /*
+ * Higher order nofail allocations are really expensive and
+ * potentially dangerous (pre-mature OOM, disruptive reclaim
+ * and compaction etc.
+ */
+ alloc_gfp &= ~__GFP_NOFAIL;
+ nofail = true;
}
/* High-order pages or fallback path if "bulk" fails. */
-
while (nr_allocated < nr_pages) {
if (fatal_signal_pending(current))
break;
if (nid == NUMA_NO_NODE)
- page = alloc_pages(gfp, order);
+ page = alloc_pages(alloc_gfp, order);
else
- page = alloc_pages_node(nid, gfp, order);
- if (unlikely(!page))
- break;
+ page = alloc_pages_node(nid, alloc_gfp, order);
+ if (unlikely(!page)) {
+ if (!nofail)
+ break;
+
+ /* fall back to the zero order allocations */
+ alloc_gfp |= __GFP_NOFAIL;
+ order = 0;
+ continue;
+ }
+
/*
* Higher order allocations must be able to be treated as
* indepdenent small pages by callers (as they can with