diff options
author | Krishna Kumar <krikku@gmail.com> | 2025-05-20 22:36:56 +0530 |
---|---|---|
committer | Tony Nguyen <anthony.l.nguyen@intel.com> | 2025-06-17 10:09:18 -0700 |
commit | 5d3bc9e5e725aa36cca9b794e340057feb6880b4 (patch) | |
tree | 6cef530db88e3d79cb6a2cbbcfbb62b9ee264318 /net/lapb/lapb_timer.c | |
parent | 7b4ac12cc929e281cf7edc22203e0533790ebc2b (diff) |
net: ice: Perform accurate aRFS flow match
This patch fixes an issue seen in a large-scale deployment under heavy
incoming pkts where the aRFS flow wrongly matches a flow and reprograms the
NIC with wrong settings. That mis-steering causes RX-path latency spikes
and noisy neighbor effects when many connections collide on the same
hash (some of our production servers have 20-30K connections).
set_rps_cpu() calls ndo_rx_flow_steer() with flow_id that is calculated by
hashing the skb sized by the per rx-queue table size. This results in
multiple connections (even across different rx-queues) getting the same
hash value. The driver steer function modifies the wrong flow to use this
rx-queue, e.g.: Flow#1 is first added:
Flow#1: <ip1, port1, ip2, port2>, Hash 'h', q#10
Later when a new flow needs to be added:
Flow#2: <ip3, port3, ip4, port4>, Hash 'h', q#20
The driver finds the hash 'h' from Flow#1 and updates it to use q#20. This
results in both flows getting un-optimized - packets for Flow#1 goes to
q#20, and then reprogrammed back to q#10 later and so on; and Flow #2
programming is never done as Flow#1 is matched first for all misses. Many
flows may wrongly share the same hash and reprogram rules of the original
flow each with their own q#.
Tested on two 144-core servers with 16K netperf sessions for 180s. Netperf
clients are pinned to cores 0-71 sequentially (so that wrong packets on q#s
72-143 can be measured). IRQs are set 1:1 for queues -> CPUs, enable XPS,
enable aRFS (global value is 144 * rps_flow_cnt).
Test notes about results from ice_rx_flow_steer():
---------------------------------------------------
1. "Skip:" counter increments here:
if (fltr_info->q_index == rxq_idx ||
arfs_entry->fltr_state != ICE_ARFS_ACTIVE)
goto out;
2. "Add:" counter increments here:
ret = arfs_entry->fltr_info.fltr_id;
INIT_HLIST_NODE(&arfs_entry->list_entry);
3. "Update:" counter increments here:
/* update the queue to forward to on an already existing flow */
Runtime comparison: original code vs with the patch for different
rps_flow_cnt values.
+-------------------------------+--------------+--------------+
| rps_flow_cnt | 512 | 2048 |
+-------------------------------+--------------+--------------+
| Ratio of Pkts on Good:Bad q's | 214 vs 822K | 1.1M vs 980K |
| Avoid wrong aRFS programming | 0 vs 310K | 0 vs 30K |
| CPU User | 216 vs 183 | 216 vs 206 |
| CPU System | 1441 vs 1171 | 1447 vs 1320 |
| CPU Softirq | 1245 vs 920 | 1238 vs 961 |
| CPU Total | 29 vs 22.7 | 29 vs 24.9 |
| aRFS Update | 533K vs 59 | 521K vs 32 |
| aRFS Skip | 82M vs 77M | 7.2M vs 4.5M |
+-------------------------------+--------------+--------------+
A separate TCP_STREAM and TCP_RR with 1,4,8,16,64,128,256,512 connections
showed no performance degradation.
Some points on the patch/aRFS behavior:
1. Enabling full tuple matching ensures flows are always correctly matched,
even with smaller hash sizes.
2. 5-6% drop in CPU utilization as the packets arrive at the correct CPUs
and fewer calls to driver for programming on misses.
3. Larger hash tables reduces mis-steering due to more unique flow hashes,
but still has clashes. However, with larger per-device rps_flow_cnt, old
flows take more time to expire and new aRFS flows cannot be added if h/w
limits are reached (rps_may_expire_flow() succeeds when 10*rps_flow_cnt
pkts have been processed by this cpu that are not part of the flow).
Fixes: 28bf26724fdb0 ("ice: Implement aRFS")
Signed-off-by: Krishna Kumar <krikku@gmail.com>
Reviewed-by: Simon Horman <horms@kernel.org>
Tested-by: Rinitha S <sx.rinitha@intel.com> (A Contingent worker at Intel)
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
Diffstat (limited to 'net/lapb/lapb_timer.c')
0 files changed, 0 insertions, 0 deletions