summaryrefslogtreecommitdiff
path: root/rust/kernel/task.rs
diff options
context:
space:
mode:
authorIngo Molnar <mingo@kernel.org>2024-03-12 09:49:52 +0100
committerIngo Molnar <mingo@kernel.org>2024-03-12 09:55:57 +0100
commit2e2bc42c8381d2c0e9604b59e49264821da29368 (patch)
treec158510b5e7942b3a0d6eb6807cbeacf96035798 /rust/kernel/task.rs
parent428080c9b19bfda37c478cd626dbd3851db1aff9 (diff)
parent855684c7d938c2442f07eabc154e7532b4c1fbf9 (diff)
Merge branch 'linus' into x86/boot, to resolve conflict
There's a new conflict with Linus's upstream tree, because in the following merge conflict resolution in <asm/coco.h>: 38b334fc767e Merge tag 'x86_sev_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Linus has resolved the conflicting placement of 'cc_mask' better than the original commit: 1c811d403afd x86/sev: Fix position dependent variable references in startup code ... which was also done by an internal merge resolution: 2e5fc4786b7a Merge branch 'x86/sev' into x86/boot, to resolve conflicts and to pick up dependent tree But Linus is right in 38b334fc767e, the 'cc_mask' declaration is sufficient within the #ifdef CONFIG_ARCH_HAS_CC_PLATFORM block. So instead of forcing Linus to do the same resolution again, merge in Linus's tree and follow his conflict resolution. Conflicts: arch/x86/include/asm/coco.h Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'rust/kernel/task.rs')
-rw-r--r--rust/kernel/task.rs24
1 files changed, 20 insertions, 4 deletions
diff --git a/rust/kernel/task.rs b/rust/kernel/task.rs
index 9451932d5d86..ca6e7e31d71c 100644
--- a/rust/kernel/task.rs
+++ b/rust/kernel/task.rs
@@ -5,7 +5,23 @@
//! C header: [`include/linux/sched.h`](srctree/include/linux/sched.h).
use crate::{bindings, types::Opaque};
-use core::{marker::PhantomData, ops::Deref, ptr};
+use core::{
+ ffi::{c_int, c_long, c_uint},
+ marker::PhantomData,
+ ops::Deref,
+ ptr,
+};
+
+/// A sentinel value used for infinite timeouts.
+pub const MAX_SCHEDULE_TIMEOUT: c_long = c_long::MAX;
+
+/// Bitmask for tasks that are sleeping in an interruptible state.
+pub const TASK_INTERRUPTIBLE: c_int = bindings::TASK_INTERRUPTIBLE as c_int;
+/// Bitmask for tasks that are sleeping in an uninterruptible state.
+pub const TASK_UNINTERRUPTIBLE: c_int = bindings::TASK_UNINTERRUPTIBLE as c_int;
+/// Convenience constant for waking up tasks regardless of whether they are in interruptible or
+/// uninterruptible sleep.
+pub const TASK_NORMAL: c_uint = bindings::TASK_NORMAL as c_uint;
/// Returns the currently running task.
#[macro_export]
@@ -23,7 +39,7 @@ macro_rules! current {
///
/// All instances are valid tasks created by the C portion of the kernel.
///
-/// Instances of this type are always ref-counted, that is, a call to `get_task_struct` ensures
+/// Instances of this type are always refcounted, that is, a call to `get_task_struct` ensures
/// that the allocation remains valid at least until the matching call to `put_task_struct`.
///
/// # Examples
@@ -116,7 +132,7 @@ impl Task {
/// Returns the group leader of the given task.
pub fn group_leader(&self) -> &Task {
// SAFETY: By the type invariant, we know that `self.0` is a valid task. Valid tasks always
- // have a valid group_leader.
+ // have a valid `group_leader`.
let ptr = unsafe { *ptr::addr_of!((*self.0.get()).group_leader) };
// SAFETY: The lifetime of the returned task reference is tied to the lifetime of `self`,
@@ -147,7 +163,7 @@ impl Task {
}
}
-// SAFETY: The type invariants guarantee that `Task` is always ref-counted.
+// SAFETY: The type invariants guarantee that `Task` is always refcounted.
unsafe impl crate::types::AlwaysRefCounted for Task {
fn inc_ref(&self) {
// SAFETY: The existence of a shared reference means that the refcount is nonzero.