diff options
author | Miguel Ojeda <ojeda@kernel.org> | 2025-03-25 22:33:11 +0100 |
---|---|---|
committer | Miguel Ojeda <ojeda@kernel.org> | 2025-03-25 23:41:14 +0100 |
commit | e6ea10d5dbe082c54add289b44f08c9fcfe658af (patch) | |
tree | fbd2cf911102c177511d97d35c1238f53c97cd33 /rust | |
parent | 28bb48c4cb34f65a9aa602142e76e1426da31293 (diff) | |
parent | 142d93914b8575753f56f0c3571bd81f214b7418 (diff) |
Merge tag 'rust-hrtimer-for-v6.15-v3' of https://github.com/Rust-for-Linux/linux into rust-next
Pull rust-hrtimer updates from Andreas Hindborg:
"Introduce Rust support for the 'hrtimer' subsystem:
- Add a way to use the 'hrtimer' subsystem from Rust. Rust code can
now set up intrusive timers without allocating when starting the
timer.
- Add support for 'Pin<Box<_>>', 'Arc<_>', 'Pin<&_>' and
'Pin<&mut _>' as pointer types for use with timer callbacks.
- Add support for setting clock source and timer mode.
'kernel' crate:
- Add 'Arc::as_ptr' for converting an 'Arc' to a raw pointer. This is
a dependency for the 'hrtimer' API.
- Add 'Box::into_pin' for converting a 'Box<_>' into a 'Pin<Box<_>>'
to align with Rust 'alloc'. This is a dependency for the 'hrtimer'
API."
* tag 'rust-hrtimer-for-v6.15-v3' of https://github.com/Rust-for-Linux/linux:
rust: hrtimer: add maintainer entry
rust: hrtimer: add clocksource selection through `ClockId`
rust: hrtimer: add `HrTimerMode`
rust: hrtimer: implement `HrTimerPointer` for `Pin<Box<T>>`
rust: alloc: add `Box::into_pin`
rust: hrtimer: implement `UnsafeHrTimerPointer` for `Pin<&mut T>`
rust: hrtimer: implement `UnsafeHrTimerPointer` for `Pin<&T>`
rust: hrtimer: add `hrtimer::ScopedHrTimerPointer`
rust: hrtimer: add `UnsafeHrTimerPointer`
rust: hrtimer: allow timer restart from timer handler
rust: hrtimer: implement `HrTimerPointer` for `Arc`
rust: sync: add `Arc::as_ptr`
rust: hrtimer: introduce hrtimer support
Diffstat (limited to 'rust')
-rw-r--r-- | rust/kernel/alloc/kbox.rs | 6 | ||||
-rw-r--r-- | rust/kernel/sync/arc.rs | 13 | ||||
-rw-r--r-- | rust/kernel/time.rs | 68 | ||||
-rw-r--r-- | rust/kernel/time/hrtimer.rs | 520 | ||||
-rw-r--r-- | rust/kernel/time/hrtimer/arc.rs | 100 | ||||
-rw-r--r-- | rust/kernel/time/hrtimer/pin.rs | 104 | ||||
-rw-r--r-- | rust/kernel/time/hrtimer/pin_mut.rs | 108 | ||||
-rw-r--r-- | rust/kernel/time/hrtimer/tbox.rs | 120 |
8 files changed, 1037 insertions, 2 deletions
diff --git a/rust/kernel/alloc/kbox.rs b/rust/kernel/alloc/kbox.rs index e6200cd1d06d..14eb9c546683 100644 --- a/rust/kernel/alloc/kbox.rs +++ b/rust/kernel/alloc/kbox.rs @@ -252,6 +252,12 @@ where Ok(Self::new(x, flags)?.into()) } + /// Convert a [`Box<T,A>`] to a [`Pin<Box<T,A>>`]. If `T` does not implement + /// [`Unpin`], then `x` will be pinned in memory and can't be moved. + pub fn into_pin(this: Self) -> Pin<Self> { + this.into() + } + /// Forgets the contents (does not run the destructor), but keeps the allocation. fn forget_contents(this: Self) -> Box<MaybeUninit<T>, A> { let ptr = Self::into_raw(this); diff --git a/rust/kernel/sync/arc.rs b/rust/kernel/sync/arc.rs index c64eac8b4235..8484c814609a 100644 --- a/rust/kernel/sync/arc.rs +++ b/rust/kernel/sync/arc.rs @@ -266,6 +266,15 @@ impl<T: ?Sized> Arc<T> { unsafe { core::ptr::addr_of!((*ptr).data) } } + /// Return a raw pointer to the data in this arc. + pub fn as_ptr(this: &Self) -> *const T { + let ptr = this.ptr.as_ptr(); + + // SAFETY: As `ptr` points to a valid allocation of type `ArcInner`, + // field projection to `data`is within bounds of the allocation. + unsafe { core::ptr::addr_of!((*ptr).data) } + } + /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`]. /// /// # Safety @@ -559,11 +568,11 @@ impl<T: ?Sized> ArcBorrow<'_, T> { } /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with - /// [`Arc::into_raw`]. + /// [`Arc::into_raw`] or [`Arc::as_ptr`]. /// /// # Safety /// - /// * The provided pointer must originate from a call to [`Arc::into_raw`]. + /// * The provided pointer must originate from a call to [`Arc::into_raw`] or [`Arc::as_ptr`]. /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must /// not hit zero. /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a diff --git a/rust/kernel/time.rs b/rust/kernel/time.rs index 379c0f5772e5..f509cb0eb71e 100644 --- a/rust/kernel/time.rs +++ b/rust/kernel/time.rs @@ -8,6 +8,8 @@ //! C header: [`include/linux/jiffies.h`](srctree/include/linux/jiffies.h). //! C header: [`include/linux/ktime.h`](srctree/include/linux/ktime.h). +pub mod hrtimer; + /// The number of nanoseconds per millisecond. pub const NSEC_PER_MSEC: i64 = bindings::NSEC_PER_MSEC as i64; @@ -81,3 +83,69 @@ impl core::ops::Sub for Ktime { } } } + +/// An identifier for a clock. Used when specifying clock sources. +/// +/// +/// Selection of the clock depends on the use case. In some cases the usage of a +/// particular clock is mandatory, e.g. in network protocols, filesystems.In other +/// cases the user of the clock has to decide which clock is best suited for the +/// purpose. In most scenarios clock [`ClockId::Monotonic`] is the best choice as it +/// provides a accurate monotonic notion of time (leap second smearing ignored). +#[derive(Clone, Copy, PartialEq, Eq, Debug)] +#[repr(u32)] +pub enum ClockId { + /// A settable system-wide clock that measures real (i.e., wall-clock) time. + /// + /// Setting this clock requires appropriate privileges. This clock is + /// affected by discontinuous jumps in the system time (e.g., if the system + /// administrator manually changes the clock), and by frequency adjustments + /// performed by NTP and similar applications via adjtime(3), adjtimex(2), + /// clock_adjtime(2), and ntp_adjtime(3). This clock normally counts the + /// number of seconds since 1970-01-01 00:00:00 Coordinated Universal Time + /// (UTC) except that it ignores leap seconds; near a leap second it may be + /// adjusted by leap second smearing to stay roughly in sync with UTC. Leap + /// second smearing applies frequency adjustments to the clock to speed up + /// or slow down the clock to account for the leap second without + /// discontinuities in the clock. If leap second smearing is not applied, + /// the clock will experience discontinuity around leap second adjustment. + RealTime = bindings::CLOCK_REALTIME, + /// A monotonically increasing clock. + /// + /// A nonsettable system-wide clock that represents monotonic time since—as + /// described by POSIX—"some unspecified point in the past". On Linux, that + /// point corresponds to the number of seconds that the system has been + /// running since it was booted. + /// + /// The CLOCK_MONOTONIC clock is not affected by discontinuous jumps in the + /// CLOCK_REAL (e.g., if the system administrator manually changes the + /// clock), but is affected by frequency adjustments. This clock does not + /// count time that the system is suspended. + Monotonic = bindings::CLOCK_MONOTONIC, + /// A monotonic that ticks while system is suspended. + /// + /// A nonsettable system-wide clock that is identical to CLOCK_MONOTONIC, + /// except that it also includes any time that the system is suspended. This + /// allows applications to get a suspend-aware monotonic clock without + /// having to deal with the complications of CLOCK_REALTIME, which may have + /// discontinuities if the time is changed using settimeofday(2) or similar. + BootTime = bindings::CLOCK_BOOTTIME, + /// International Atomic Time. + /// + /// A system-wide clock derived from wall-clock time but counting leap seconds. + /// + /// This clock is coupled to CLOCK_REALTIME and will be set when CLOCK_REALTIME is + /// set, or when the offset to CLOCK_REALTIME is changed via adjtimex(2). This + /// usually happens during boot and **should** not happen during normal operations. + /// However, if NTP or another application adjusts CLOCK_REALTIME by leap second + /// smearing, this clock will not be precise during leap second smearing. + /// + /// The acronym TAI refers to International Atomic Time. + TAI = bindings::CLOCK_TAI, +} + +impl ClockId { + fn into_c(self) -> bindings::clockid_t { + self as bindings::clockid_t + } +} diff --git a/rust/kernel/time/hrtimer.rs b/rust/kernel/time/hrtimer.rs new file mode 100644 index 000000000000..ce53f8579d18 --- /dev/null +++ b/rust/kernel/time/hrtimer.rs @@ -0,0 +1,520 @@ +// SPDX-License-Identifier: GPL-2.0 + +//! Intrusive high resolution timers. +//! +//! Allows running timer callbacks without doing allocations at the time of +//! starting the timer. For now, only one timer per type is allowed. +//! +//! # Vocabulary +//! +//! States: +//! +//! - Stopped: initialized but not started, or cancelled, or not restarted. +//! - Started: initialized and started or restarted. +//! - Running: executing the callback. +//! +//! Operations: +//! +//! * Start +//! * Cancel +//! * Restart +//! +//! Events: +//! +//! * Expire +//! +//! ## State Diagram +//! +//! ```text +//! Return NoRestart +//! +---------------------------------------------------------------------+ +//! | | +//! | | +//! | | +//! | Return Restart | +//! | +------------------------+ | +//! | | | | +//! | | | | +//! v v | | +//! +-----------------+ Start +------------------+ +--------+-----+--+ +//! | +---------------->| | | | +//! Init | | | | Expire | | +//! --------->| Stopped | | Started +---------->| Running | +//! | | Cancel | | | | +//! | |<----------------+ | | | +//! +-----------------+ +---------------+--+ +-----------------+ +//! ^ | +//! | | +//! +---------+ +//! Restart +//! ``` +//! +//! +//! A timer is initialized in the **stopped** state. A stopped timer can be +//! **started** by the `start` operation, with an **expiry** time. After the +//! `start` operation, the timer is in the **started** state. When the timer +//! **expires**, the timer enters the **running** state and the handler is +//! executed. After the handler has returned, the timer may enter the +//! **started* or **stopped** state, depending on the return value of the +//! handler. A timer in the **started** or **running** state may be **canceled** +//! by the `cancel` operation. A timer that is cancelled enters the **stopped** +//! state. +//! +//! A `cancel` or `restart` operation on a timer in the **running** state takes +//! effect after the handler has returned and the timer has transitioned +//! out of the **running** state. +//! +//! A `restart` operation on a timer in the **stopped** state is equivalent to a +//! `start` operation. + +use super::ClockId; +use crate::{prelude::*, time::Ktime, types::Opaque}; +use core::marker::PhantomData; +use pin_init::PinInit; + +/// A timer backed by a C `struct hrtimer`. +/// +/// # Invariants +/// +/// * `self.timer` is initialized by `bindings::hrtimer_setup`. +#[pin_data] +#[repr(C)] +pub struct HrTimer<T> { + #[pin] + timer: Opaque<bindings::hrtimer>, + mode: HrTimerMode, + _t: PhantomData<T>, +} + +// SAFETY: Ownership of an `HrTimer` can be moved to other threads and +// used/dropped from there. +unsafe impl<T> Send for HrTimer<T> {} + +// SAFETY: Timer operations are locked on the C side, so it is safe to operate +// on a timer from multiple threads. +unsafe impl<T> Sync for HrTimer<T> {} + +impl<T> HrTimer<T> { + /// Return an initializer for a new timer instance. + pub fn new(mode: HrTimerMode, clock: ClockId) -> impl PinInit<Self> + where + T: HrTimerCallback, + { + pin_init!(Self { + // INVARIANT: We initialize `timer` with `hrtimer_setup` below. + timer <- Opaque::ffi_init(move |place: *mut bindings::hrtimer| { + // SAFETY: By design of `pin_init!`, `place` is a pointer to a + // live allocation. hrtimer_setup will initialize `place` and + // does not require `place` to be initialized prior to the call. + unsafe { + bindings::hrtimer_setup( + place, + Some(T::Pointer::run), + clock.into_c(), + mode.into_c(), + ); + } + }), + mode: mode, + _t: PhantomData, + }) + } + + /// Get a pointer to the contained `bindings::hrtimer`. + /// + /// This function is useful to get access to the value without creating + /// intermediate references. + /// + /// # Safety + /// + /// `this` must point to a live allocation of at least the size of `Self`. + unsafe fn raw_get(this: *const Self) -> *mut bindings::hrtimer { + // SAFETY: The field projection to `timer` does not go out of bounds, + // because the caller of this function promises that `this` points to an + // allocation of at least the size of `Self`. + unsafe { Opaque::raw_get(core::ptr::addr_of!((*this).timer)) } + } + + /// Cancel an initialized and potentially running timer. + /// + /// If the timer handler is running, this function will block until the + /// handler returns. + /// + /// Note that the timer might be started by a concurrent start operation. If + /// so, the timer might not be in the **stopped** state when this function + /// returns. + /// + /// Users of the `HrTimer` API would not usually call this method directly. + /// Instead they would use the safe [`HrTimerHandle::cancel`] on the handle + /// returned when the timer was started. + /// + /// This function is useful to get access to the value without creating + /// intermediate references. + /// + /// # Safety + /// + /// `this` must point to a valid `Self`. + pub(crate) unsafe fn raw_cancel(this: *const Self) -> bool { + // SAFETY: `this` points to an allocation of at least `HrTimer` size. + let c_timer_ptr = unsafe { HrTimer::raw_get(this) }; + + // If the handler is running, this will wait for the handler to return + // before returning. + // SAFETY: `c_timer_ptr` is initialized and valid. Synchronization is + // handled on the C side. + unsafe { bindings::hrtimer_cancel(c_timer_ptr) != 0 } + } +} + +/// Implemented by pointer types that point to structs that contain a [`HrTimer`]. +/// +/// `Self` must be [`Sync`] because it is passed to timer callbacks in another +/// thread of execution (hard or soft interrupt context). +/// +/// Starting a timer returns a [`HrTimerHandle`] that can be used to manipulate +/// the timer. Note that it is OK to call the start function repeatedly, and +/// that more than one [`HrTimerHandle`] associated with a [`HrTimerPointer`] may +/// exist. A timer can be manipulated through any of the handles, and a handle +/// may represent a cancelled timer. +pub trait HrTimerPointer: Sync + Sized { + /// A handle representing a started or restarted timer. + /// + /// If the timer is running or if the timer callback is executing when the + /// handle is dropped, the drop method of [`HrTimerHandle`] should not return + /// until the timer is stopped and the callback has completed. + /// + /// Note: When implementing this trait, consider that it is not unsafe to + /// leak the handle. + type TimerHandle: HrTimerHandle; + + /// Start the timer with expiry after `expires` time units. If the timer was + /// already running, it is restarted with the new expiry time. + fn start(self, expires: Ktime) -> Self::TimerHandle; +} + +/// Unsafe version of [`HrTimerPointer`] for situations where leaking the +/// [`HrTimerHandle`] returned by `start` would be unsound. This is the case for +/// stack allocated timers. +/// +/// Typical implementers are pinned references such as [`Pin<&T>`]. +/// +/// # Safety +/// +/// Implementers of this trait must ensure that instances of types implementing +/// [`UnsafeHrTimerPointer`] outlives any associated [`HrTimerPointer::TimerHandle`] +/// instances. +pub unsafe trait UnsafeHrTimerPointer: Sync + Sized { + /// A handle representing a running timer. + /// + /// # Safety + /// + /// If the timer is running, or if the timer callback is executing when the + /// handle is dropped, the drop method of [`Self::TimerHandle`] must not return + /// until the timer is stopped and the callback has completed. + type TimerHandle: HrTimerHandle; + + /// Start the timer after `expires` time units. If the timer was already + /// running, it is restarted at the new expiry time. + /// + /// # Safety + /// + /// Caller promises keep the timer structure alive until the timer is dead. + /// Caller can ensure this by not leaking the returned [`Self::TimerHandle`]. + unsafe fn start(self, expires: Ktime) -> Self::TimerHandle; +} + +/// A trait for stack allocated timers. +/// +/// # Safety +/// +/// Implementers must ensure that `start_scoped` does not return until the +/// timer is dead and the timer handler is not running. +pub unsafe trait ScopedHrTimerPointer { + /// Start the timer to run after `expires` time units and immediately + /// after call `f`. When `f` returns, the timer is cancelled. + fn start_scoped<T, F>(self, expires: Ktime, f: F) -> T + where + F: FnOnce() -> T; +} + +// SAFETY: By the safety requirement of [`UnsafeHrTimerPointer`], dropping the +// handle returned by [`UnsafeHrTimerPointer::start`] ensures that the timer is +// killed. +unsafe impl<T> ScopedHrTimerPointer for T +where + T: UnsafeHrTimerPointer, +{ + fn start_scoped<U, F>(self, expires: Ktime, f: F) -> U + where + F: FnOnce() -> U, + { + // SAFETY: We drop the timer handle below before returning. + let handle = unsafe { UnsafeHrTimerPointer::start(self, expires) }; + let t = f(); + drop(handle); + t + } +} + +/// Implemented by [`HrTimerPointer`] implementers to give the C timer callback a +/// function to call. +// This is split from `HrTimerPointer` to make it easier to specify trait bounds. +pub trait RawHrTimerCallback { + /// Type of the parameter passed to [`HrTimerCallback::run`]. It may be + /// [`Self`], or a pointer type derived from [`Self`]. + type CallbackTarget<'a>; + + /// Callback to be called from C when timer fires. + /// + /// # Safety + /// + /// Only to be called by C code in the `hrtimer` subsystem. `this` must point + /// to the `bindings::hrtimer` structure that was used to start the timer. + unsafe extern "C" fn run(this: *mut bindings::hrtimer) -> bindings::hrtimer_restart; +} + +/// Implemented by structs that can be the target of a timer callback. +pub trait HrTimerCallback { + /// The type whose [`RawHrTimerCallback::run`] method will be invoked when + /// the timer expires. + type Pointer<'a>: RawHrTimerCallback; + + /// Called by the timer logic when the timer fires. + fn run(this: <Self::Pointer<'_> as RawHrTimerCallback>::CallbackTarget<'_>) -> HrTimerRestart + where + Self: Sized; +} + +/// A handle representing a potentially running timer. +/// +/// More than one handle representing the same timer might exist. +/// +/// # Safety +/// +/// When dropped, the timer represented by this handle must be cancelled, if it +/// is running. If the timer handler is running when the handle is dropped, the +/// drop method must wait for the handler to return before returning. +/// +/// Note: One way to satisfy the safety requirement is to call `Self::cancel` in +/// the drop implementation for `Self.` +pub unsafe trait HrTimerHandle { + /// Cancel the timer. If the timer is in the running state, block till the + /// handler has returned. + /// + /// Note that the timer might be started by a concurrent start operation. If + /// so, the timer might not be in the **stopped** state when this function + /// returns. + fn cancel(&mut self) -> bool; +} + +/// Implemented by structs that contain timer nodes. +/// +/// Clients of the timer API would usually safely implement this trait by using +/// the [`crate::impl_has_hr_timer`] macro. +/// +/// # Safety +/// +/// Implementers of this trait must ensure that the implementer has a +/// [`HrTimer`] field and that all trait methods are implemented according to +/// their documentation. All the methods of this trait must operate on the same +/// field. +pub unsafe trait HasHrTimer<T> { + /// Return a pointer to the [`HrTimer`] within `Self`. + /// + /// This function is useful to get access to the value without creating + /// intermediate references. + /// + /// # Safety + /// + /// `this` must be a valid pointer. + unsafe fn raw_get_timer(this: *const Self) -> *const HrTimer<T>; + + /// Return a pointer to the struct that is containing the [`HrTimer`] pointed + /// to by `ptr`. + /// + /// This function is useful to get access to the value without creating + /// intermediate references. + /// + /// # Safety + /// + /// `ptr` must point to a [`HrTimer<T>`] field in a struct of type `Self`. + unsafe fn timer_container_of(ptr: *mut HrTimer<T>) -> *mut Self + where + Self: Sized; + + /// Get pointer to the contained `bindings::hrtimer` struct. + /// + /// This function is useful to get access to the value without creating + /// intermediate references. + /// + /// # Safety + /// + /// `this` must be a valid pointer. + unsafe fn c_timer_ptr(this: *const Self) -> *const bindings::hrtimer { + // SAFETY: `this` is a valid pointer to a `Self`. + let timer_ptr = unsafe { Self::raw_get_timer(this) }; + + // SAFETY: timer_ptr points to an allocation of at least `HrTimer` size. + unsafe { HrTimer::raw_get(timer_ptr) } + } + + /// Start the timer contained in the `Self` pointed to by `self_ptr`. If + /// it is already running it is removed and inserted. + /// + /// # Safety + /// + /// - `this` must point to a valid `Self`. + /// - Caller must ensure that the pointee of `this` lives until the timer + /// fires or is canceled. + unsafe fn start(this: *const Self, expires: Ktime) { + // SAFETY: By function safety requirement, `this` is a valid `Self`. + unsafe { + bindings::hrtimer_start_range_ns( + Self::c_timer_ptr(this).cast_mut(), + expires.to_ns(), + 0, + (*Self::raw_get_timer(this)).mode.into_c(), + ); + } + } +} + +/// Restart policy for timers. +#[derive(Copy, Clone, PartialEq, Eq, Debug)] +#[repr(u32)] +pub enum HrTimerRestart { + /// Timer should not be restarted. + #[allow(clippy::unnecessary_cast)] + NoRestart = bindings::hrtimer_restart_HRTIMER_NORESTART as u32, + /// Timer should be restarted. + #[allow(clippy::unnecessary_cast)] + Restart = bindings::hrtimer_restart_HRTIMER_RESTART as u32, +} + +impl HrTimerRestart { + fn into_c(self) -> bindings::hrtimer_restart { + self as bindings::hrtimer_restart + } +} + +/// Operational mode of [`HrTimer`]. +// NOTE: Some of these have the same encoding on the C side, so we keep +// `repr(Rust)` and convert elsewhere. +#[derive(Clone, Copy, PartialEq, Eq, Debug)] +pub enum HrTimerMode { + /// Timer expires at the given expiration time. + Absolute, + /// Timer expires after the given expiration time interpreted as a duration from now. + Relative, + /// Timer does not move between CPU cores. + Pinned, + /// Timer handler is executed in soft irq context. + Soft, + /// Timer handler is executed in hard irq context. + Hard, + /// Timer expires at the given expiration time. + /// Timer does not move between CPU cores. + AbsolutePinned, + /// Timer expires after the given expiration time interpreted as a duration from now. + /// Timer does not move between CPU cores. + RelativePinned, + /// Timer expires at the given expiration time. + /// Timer handler is executed in soft irq context. + AbsoluteSoft, + /// Timer expires after the given expiration time interpreted as a duration from now. + /// Timer handler is executed in soft irq context. + RelativeSoft, + /// Timer expires at the given expiration time. + /// Timer does not move between CPU cores. + /// Timer handler is executed in soft irq context. + AbsolutePinnedSoft, + /// Timer expires after the given expiration time interpreted as a duration from now. + /// Timer does not move between CPU cores. + /// Timer handler is executed in soft irq context. + RelativePinnedSoft, + /// Timer expires at the given expiration time. + /// Timer handler is executed in hard irq context. + AbsoluteHard, + /// Timer expires after the given expiration time interpreted as a duration from now. + /// Timer handler is executed in hard irq context. + RelativeHard, + /// Timer expires at the given expiration time. + /// Timer does not move between CPU cores. + /// Timer handler is executed in hard irq context. + AbsolutePinnedHard, + /// Timer expires after the given expiration time interpreted as a duration from now. + /// Timer does not move between CPU cores. + /// Timer handler is executed in hard irq context. + RelativePinnedHard, +} + +impl HrTimerMode { + fn into_c(self) -> bindings::hrtimer_mode { + use bindings::*; + match self { + HrTimerMode::Absolute => hrtimer_mode_HRTIMER_MODE_ABS, + HrTimerMode::Relative => hrtimer_mode_HRTIMER_MODE_REL, + HrTimerMode::Pinned => hrtimer_mode_HRTIMER_MODE_PINNED, + HrTimerMode::Soft => hrtimer_mode_HRTIMER_MODE_SOFT, + HrTimerMode::Hard => hrtimer_mode_HRTIMER_MODE_HARD, + HrTimerMode::AbsolutePinned => hrtimer_mode_HRTIMER_MODE_ABS_PINNED, + HrTimerMode::RelativePinned => hrtimer_mode_HRTIMER_MODE_REL_PINNED, + HrTimerMode::AbsoluteSoft => hrtimer_mode_HRTIMER_MODE_ABS_SOFT, + HrTimerMode::RelativeSoft => hrtimer_mode_HRTIMER_MODE_REL_SOFT, + HrTimerMode::AbsolutePinnedSoft => hrtimer_mode_HRTIMER_MODE_ABS_PINNED_SOFT, + HrTimerMode::RelativePinnedSoft => hrtimer_mode_HRTIMER_MODE_REL_PINNED_SOFT, + HrTimerMode::AbsoluteHard => hrtimer_mode_HRTIMER_MODE_ABS_HARD, + HrTimerMode::RelativeHard => hrtimer_mode_HRTIMER_MODE_REL_HARD, + HrTimerMode::AbsolutePinnedHard => hrtimer_mode_HRTIMER_MODE_ABS_PINNED_HARD, + HrTimerMode::RelativePinnedHard => hrtimer_mode_HRTIMER_MODE_REL_PINNED_HARD, + } + } +} + +/// Use to implement the [`HasHrTimer<T>`] trait. +/// +/// See [`module`] documentation for an example. +/// +/// [`module`]: crate::time::hrtimer +#[macro_export] +macro_rules! impl_has_hr_timer { + ( + impl$({$($generics:tt)*})? + HasHrTimer<$timer_type:ty> + for $self:ty + { self.$field:ident } + $($rest:tt)* + ) => { + // SAFETY: This implementation of `raw_get_timer` only compiles if the + // field has the right type. + unsafe impl$(<$($generics)*>)? $crate::time::hrtimer::HasHrTimer<$timer_type> for $self { + + #[inline] + unsafe fn raw_get_timer( + this: *const Self, + ) -> *const $crate::time::hrtimer::HrTimer<$timer_type> { + // SAFETY: The caller promises that the pointer is not dangling. + unsafe { ::core::ptr::addr_of!((*this).$field) } + } + + #[inline] + unsafe fn timer_container_of( + ptr: *mut $crate::time::hrtimer::HrTimer<$timer_type>, + ) -> *mut Self { + // SAFETY: As per the safety requirement of this function, `ptr` + // is pointing inside a `$timer_type`. + unsafe { ::kernel::container_of!(ptr, $timer_type, $field).cast_mut() } + } + } + } +} + +mod arc; +pub use arc::ArcHrTimerHandle; +mod pin; +pub use pin::PinHrTimerHandle; +mod pin_mut; +pub use pin_mut::PinMutHrTimerHandle; +// `box` is a reserved keyword, so prefix with `t` for timer +mod tbox; +pub use tbox::BoxHrTimerHandle; diff --git a/rust/kernel/time/hrtimer/arc.rs b/rust/kernel/time/hrtimer/arc.rs new file mode 100644 index 000000000000..4a984d85b4a1 --- /dev/null +++ b/rust/kernel/time/hrtimer/arc.rs @@ -0,0 +1,100 @@ +// SPDX-License-Identifier: GPL-2.0 + +use super::HasHrTimer; +use super::HrTimer; +use super::HrTimerCallback; +use super::HrTimerHandle; +use super::HrTimerPointer; +use super::RawHrTimerCallback; +use crate::sync::Arc; +use crate::sync::ArcBorrow; +use crate::time::Ktime; + +/// A handle for an `Arc<HasHrTimer<T>>` returned by a call to +/// [`HrTimerPointer::start`]. +pub struct ArcHrTimerHandle<T> +where + T: HasHrTimer<T>, +{ + pub(crate) inner: Arc<T>, +} + +// SAFETY: We implement drop below, and we cancel the timer in the drop +// implementation. +unsafe impl<T> HrTimerHandle for ArcHrTimerHandle<T> +where + T: HasHrTimer<T>, +{ + fn cancel(&mut self) -> bool { + let self_ptr = Arc::as_ptr(&self.inner); + + // SAFETY: As we obtained `self_ptr` from a valid reference above, it + // must point to a valid `T`. + let timer_ptr = unsafe { <T as HasHrTimer<T>>::raw_get_timer(self_ptr) }; + + // SAFETY: As `timer_ptr` points into `T` and `T` is valid, `timer_ptr` + // must point to a valid `HrTimer` instance. + unsafe { HrTimer::<T>::raw_cancel(timer_ptr) } + } +} + +impl<T> Drop for ArcHrTimerHandle<T> +where + T: HasHrTimer<T>, +{ + fn drop(&mut self) { + self.cancel(); + } +} + +impl<T> HrTimerPointer for Arc<T> +where + T: 'static, + T: Send + Sync, + T: HasHrTimer<T>, + T: for<'a> HrTimerCallback<Pointer<'a> = Self>, +{ + type TimerHandle = ArcHrTimerHandle<T>; + + fn start(self, expires: Ktime) -> ArcHrTimerHandle<T> { + // SAFETY: + // - We keep `self` alive by wrapping it in a handle below. + // - Since we generate the pointer passed to `start` from a valid + // reference, it is a valid pointer. + unsafe { T::start(Arc::as_ptr(&self), expires) }; + ArcHrTimerHandle { inner: self } + } +} + +impl<T> RawHrTimerCallback for Arc<T> +where + T: 'static, + T: HasHrTimer<T>, + T: for<'a> HrTimerCallback<Pointer<'a> = Self>, +{ + type CallbackTarget<'a> = ArcBorrow<'a, T>; + + unsafe extern "C" fn run(ptr: *mut bindings::hrtimer) -> bindings::hrtimer_restart { + // `HrTimer` is `repr(C)` + let timer_ptr = ptr.cast::<super::HrTimer<T>>(); + + // SAFETY: By C API contract `ptr` is the pointer we passed when + // queuing the timer, so it is a `HrTimer<T>` embedded in a `T`. + let data_ptr = unsafe { T::timer_container_of(timer_ptr) }; + + // SAFETY: + // - `data_ptr` is derived form the pointer to the `T` that was used to + // queue the timer. + // - As per the safety requirements of the trait `HrTimerHandle`, the + // `ArcHrTimerHandle` associated with this timer is guaranteed to + // be alive until this method returns. That handle borrows the `T` + // behind `data_ptr` thus guaranteeing the validity of + // the `ArcBorrow` created below. + // - We own one refcount in the `ArcTimerHandle` associated with this + // timer, so it is not possible to get a `UniqueArc` to this + // allocation from other `Arc` clones. + let receiver = unsafe { ArcBorrow::from_raw(data_ptr) }; + + T::run(receiver).into_c() + } +} diff --git a/rust/kernel/time/hrtimer/pin.rs b/rust/kernel/time/hrtimer/pin.rs new file mode 100644 index 000000000000..f760db265c7b --- /dev/null +++ b/rust/kernel/time/hrtimer/pin.rs @@ -0,0 +1,104 @@ +// SPDX-License-Identifier: GPL-2.0 + +use super::HasHrTimer; +use super::HrTimer; +use super::HrTimerCallback; +use super::HrTimerHandle; +use super::RawHrTimerCallback; +use super::UnsafeHrTimerPointer; +use crate::time::Ktime; +use core::pin::Pin; + +/// A handle for a `Pin<&HasHrTimer>`. When the handle exists, the timer might be +/// running. +pub struct PinHrTimerHandle<'a, T> +where + T: HasHrTimer<T>, +{ + pub(crate) inner: Pin<&'a T>, +} + +// SAFETY: We cancel the timer when the handle is dropped. The implementation of +// the `cancel` method will block if the timer handler is running. +unsafe impl<'a, T> HrTimerHandle for PinHrTimerHandle<'a, T> +where + T: HasHrTimer<T>, +{ + fn cancel(&mut self) -> bool { + let self_ptr: *const T = self.inner.get_ref(); + + // SAFETY: As we got `self_ptr` from a reference above, it must point to + // a valid `T`. + let timer_ptr = unsafe { <T as HasHrTimer<T>>::raw_get_timer(self_ptr) }; + + // SAFETY: As `timer_ptr` is derived from a reference, it must point to + // a valid and initialized `HrTimer`. + unsafe { HrTimer::<T>::raw_cancel(timer_ptr) } + } +} + +impl<'a, T> Drop for PinHrTimerHandle<'a, T> +where + T: HasHrTimer<T>, +{ + fn drop(&mut self) { + self.cancel(); + } +} + +// SAFETY: We capture the lifetime of `Self` when we create a `PinHrTimerHandle`, +// so `Self` will outlive the handle. +unsafe impl<'a, T> UnsafeHrTimerPointer for Pin<&'a T> +where + T: Send + Sync, + T: HasHrTimer<T>, + T: HrTimerCallback<Pointer<'a> = Self>, +{ + type TimerHandle = PinHrTimerHandle<'a, T>; + + unsafe fn start(self, expires: Ktime) -> Self::TimerHandle { + // Cast to pointer + let self_ptr: *const T = self.get_ref(); + + // SAFETY: + // - As we derive `self_ptr` from a reference above, it must point to a + // valid `T`. + // - We keep `self` alive by wrapping it in a handle below. + unsafe { T::start(self_ptr, expires) }; + + PinHrTimerHandle { inner: self } + } +} + +impl<'a, T> RawHrTimerCallback for Pin<&'a T> +where + T: HasHrTimer<T>, + T: HrTimerCallback<Pointer<'a> = Self>, +{ + type CallbackTarget<'b> = Self; + + unsafe extern "C" fn run(ptr: *mut bindings::hrtimer) -> bindings::hrtimer_restart { + // `HrTimer` is `repr(C)` + let timer_ptr = ptr as *mut HrTimer<T>; + + // SAFETY: By the safety requirement of this function, `timer_ptr` + // points to a `HrTimer<T>` contained in an `T`. + let receiver_ptr = unsafe { T::timer_container_of(timer_ptr) }; + + // SAFETY: + // - By the safety requirement of this function, `timer_ptr` + // points to a `HrTimer<T>` contained in an `T`. + // - As per the safety requirements of the trait `HrTimerHandle`, the + // `PinHrTimerHandle` associated with this timer is guaranteed to + // be alive until this method returns. That handle borrows the `T` + // behind `receiver_ptr`, thus guaranteeing the validity of + // the reference created below. + let receiver_ref = unsafe { &*receiver_ptr }; + + // SAFETY: `receiver_ref` only exists as pinned, so it is safe to pin it + // here. + let receiver_pin = unsafe { Pin::new_unchecked(receiver_ref) }; + + T::run(receiver_pin).into_c() + } +} diff --git a/rust/kernel/time/hrtimer/pin_mut.rs b/rust/kernel/time/hrtimer/pin_mut.rs new file mode 100644 index 000000000000..90c0351d62e4 --- /dev/null +++ b/rust/kernel/time/hrtimer/pin_mut.rs @@ -0,0 +1,108 @@ +// SPDX-License-Identifier: GPL-2.0 + +use super::{ + HasHrTimer, HrTimer, HrTimerCallback, HrTimerHandle, RawHrTimerCallback, UnsafeHrTimerPointer, +}; +use crate::time::Ktime; +use core::{marker::PhantomData, pin::Pin, ptr::NonNull}; + +/// A handle for a `Pin<&mut HasHrTimer>`. When the handle exists, the timer might +/// be running. +pub struct PinMutHrTimerHandle<'a, T> +where + T: HasHrTimer<T>, +{ + pub(crate) inner: NonNull<T>, + _p: PhantomData<&'a mut T>, +} + +// SAFETY: We cancel the timer when the handle is dropped. The implementation of +// the `cancel` method will block if the timer handler is running. +unsafe impl<'a, T> HrTimerHandle for PinMutHrTimerHandle<'a, T> +where + T: HasHrTimer<T>, +{ + fn cancel(&mut self) -> bool { + let self_ptr = self.inner.as_ptr(); + + // SAFETY: As we got `self_ptr` from a reference above, it must point to + // a valid `T`. + let timer_ptr = unsafe { <T as HasHrTimer<T>>::raw_get_timer(self_ptr) }; + + // SAFETY: As `timer_ptr` is derived from a reference, it must point to + // a valid and initialized `HrTimer`. + unsafe { HrTimer::<T>::raw_cancel(timer_ptr) } + } +} + +impl<'a, T> Drop for PinMutHrTimerHandle<'a, T> +where + T: HasHrTimer<T>, +{ + fn drop(&mut self) { + self.cancel(); + } +} + +// SAFETY: We capture the lifetime of `Self` when we create a +// `PinMutHrTimerHandle`, so `Self` will outlive the handle. +unsafe impl<'a, T> UnsafeHrTimerPointer for Pin<&'a mut T> +where + T: Send + Sync, + T: HasHrTimer<T>, + T: HrTimerCallback<Pointer<'a> = Self>, +{ + type TimerHandle = PinMutHrTimerHandle<'a, T>; + + unsafe fn start(mut self, expires: Ktime) -> Self::TimerHandle { + // SAFETY: + // - We promise not to move out of `self`. We only pass `self` + // back to the caller as a `Pin<&mut self>`. + // - The return value of `get_unchecked_mut` is guaranteed not to be null. + let self_ptr = unsafe { NonNull::new_unchecked(self.as_mut().get_unchecked_mut()) }; + + // SAFETY: + // - As we derive `self_ptr` from a reference above, it must point to a + // valid `T`. + // - We keep `self` alive by wrapping it in a handle below. + unsafe { T::start(self_ptr.as_ptr(), expires) }; + + PinMutHrTimerHandle { + inner: self_ptr, + _p: PhantomData, + } + } +} + +impl<'a, T> RawHrTimerCallback for Pin<&'a mut T> +where + T: HasHrTimer<T>, + T: HrTimerCallback<Pointer<'a> = Self>, +{ + type CallbackTarget<'b> = Self; + + unsafe extern "C" fn run(ptr: *mut bindings::hrtimer) -> bindings::hrtimer_restart { + // `HrTimer` is `repr(C)` + let timer_ptr = ptr as *mut HrTimer<T>; + + // SAFETY: By the safety requirement of this function, `timer_ptr` + // points to a `HrTimer<T>` contained in an `T`. + let receiver_ptr = unsafe { T::timer_container_of(timer_ptr) }; + + // SAFETY: + // - By the safety requirement of this function, `timer_ptr` + // points to a `HrTimer<T>` contained in an `T`. + // - As per the safety requirements of the trait `HrTimerHandle`, the + // `PinMutHrTimerHandle` associated with this timer is guaranteed to + // be alive until this method returns. That handle borrows the `T` + // behind `receiver_ptr` mutably thus guaranteeing the validity of + // the reference created below. + let receiver_ref = unsafe { &mut *receiver_ptr }; + + // SAFETY: `receiver_ref` only exists as pinned, so it is safe to pin it + // here. + let receiver_pin = unsafe { Pin::new_unchecked(receiver_ref) }; + + T::run(receiver_pin).into_c() + } +} diff --git a/rust/kernel/time/hrtimer/tbox.rs b/rust/kernel/time/hrtimer/tbox.rs new file mode 100644 index 000000000000..2071cae07234 --- /dev/null +++ b/rust/kernel/time/hrtimer/tbox.rs @@ -0,0 +1,120 @@ +// SPDX-License-Identifier: GPL-2.0 + +use super::HasHrTimer; +use super::HrTimer; +use super::HrTimerCallback; +use super::HrTimerHandle; +use super::HrTimerPointer; +use super::RawHrTimerCallback; +use crate::prelude::*; +use crate::time::Ktime; +use core::ptr::NonNull; + +/// A handle for a [`Box<HasHrTimer<T>>`] returned by a call to +/// [`HrTimerPointer::start`]. +/// +/// # Invariants +/// +/// - `self.inner` comes from a `Box::into_raw` call. +pub struct BoxHrTimerHandle<T, A> +where + T: HasHrTimer<T>, + A: crate::alloc::Allocator, +{ + pub(crate) inner: NonNull<T>, + _p: core::marker::PhantomData<A>, +} + +// SAFETY: We implement drop below, and we cancel the timer in the drop +// implementation. +unsafe impl<T, A> HrTimerHandle for BoxHrTimerHandle<T, A> +where + T: HasHrTimer<T>, + A: crate::alloc::Allocator, +{ + fn cancel(&mut self) -> bool { + // SAFETY: As we obtained `self.inner` from a valid reference when we + // created `self`, it must point to a valid `T`. + let timer_ptr = unsafe { <T as HasHrTimer<T>>::raw_get_timer(self.inner.as_ptr()) }; + + // SAFETY: As `timer_ptr` points into `T` and `T` is valid, `timer_ptr` + // must point to a valid `HrTimer` instance. + unsafe { HrTimer::<T>::raw_cancel(timer_ptr) } + } +} + +impl<T, A> Drop for BoxHrTimerHandle<T, A> +where + T: HasHrTimer<T>, + A: crate::alloc::Allocator, +{ + fn drop(&mut self) { + self.cancel(); + // SAFETY: By type invariant, `self.inner` came from a `Box::into_raw` + // call. + drop(unsafe { Box::<T, A>::from_raw(self.inner.as_ptr()) }) + } +} + +impl<T, A> HrTimerPointer for Pin<Box<T, A>> +where + T: 'static, + T: Send + Sync, + T: HasHrTimer<T>, + T: for<'a> HrTimerCallback<Pointer<'a> = Pin<Box<T, A>>>, + A: crate::alloc::Allocator, +{ + type TimerHandle = BoxHrTimerHandle<T, A>; + + fn start(self, expires: Ktime) -> Self::TimerHandle { + // SAFETY: + // - We will not move out of this box during timer callback (we pass an + // immutable reference to the callback). + // - `Box::into_raw` is guaranteed to return a valid pointer. + let inner = + unsafe { NonNull::new_unchecked(Box::into_raw(Pin::into_inner_unchecked(self))) }; + + // SAFETY: + // - We keep `self` alive by wrapping it in a handle below. + // - Since we generate the pointer passed to `start` from a valid + // reference, it is a valid pointer. + unsafe { T::start(inner.as_ptr(), expires) }; + + // INVARIANT: `inner` came from `Box::into_raw` above. + BoxHrTimerHandle { + inner, + _p: core::marker::PhantomData, + } + } +} + +impl<T, A> RawHrTimerCallback for Pin<Box<T, A>> +where + T: 'static, + T: HasHrTimer<T>, + T: for<'a> HrTimerCallback<Pointer<'a> = Pin<Box<T, A>>>, + A: crate::alloc::Allocator, +{ + type CallbackTarget<'a> = Pin<&'a mut T>; + + unsafe extern "C" fn run(ptr: *mut bindings::hrtimer) -> bindings::hrtimer_restart { + // `HrTimer` is `repr(C)` + let timer_ptr = ptr.cast::<super::HrTimer<T>>(); + + // SAFETY: By C API contract `ptr` is the pointer we passed when + // queuing the timer, so it is a `HrTimer<T>` embedded in a `T`. + let data_ptr = unsafe { T::timer_container_of(timer_ptr) }; + + // SAFETY: + // - As per the safety requirements of the trait `HrTimerHandle`, the + // `BoxHrTimerHandle` associated with this timer is guaranteed to + // be alive until this method returns. That handle owns the `T` + // behind `data_ptr` thus guaranteeing the validity of + // the reference created below. + // - As `data_ptr` comes from a `Pin<Box<T>>`, only pinned references to + // `data_ptr` exist. + let data_mut_ref = unsafe { Pin::new_unchecked(&mut *data_ptr) }; + + T::run(data_mut_ref).into_c() + } +} |