diff options
author | Pranav Tyagi <pranav.tyagi03@gmail.com> | 2025-09-15 23:51:54 +0530 |
---|---|---|
committer | Thomas Gleixner <tglx@linutronix.de> | 2025-09-20 17:54:01 +0200 |
commit | 6b54082c3ed4dc9821cdf0edb17302355cc5bb45 (patch) | |
tree | c22a110e455c6426f8ce578793893e7b1e19a37e /scripts/gdb/linux/timerlist.py | |
parent | ed323aeda5e09fa1ab95946673939c8c425c329c (diff) |
futex: Don't leak robust_list pointer on exec race
sys_get_robust_list() and compat_get_robust_list() use ptrace_may_access()
to check if the calling task is allowed to access another task's
robust_list pointer. This check is racy against a concurrent exec() in the
target process.
During exec(), a task may transition from a non-privileged binary to a
privileged one (e.g., setuid binary) and its credentials/memory mappings
may change. If get_robust_list() performs ptrace_may_access() before
this transition, it may erroneously allow access to sensitive information
after the target becomes privileged.
A racy access allows an attacker to exploit a window during which
ptrace_may_access() passes before a target process transitions to a
privileged state via exec().
For example, consider a non-privileged task T that is about to execute a
setuid-root binary. An attacker task A calls get_robust_list(T) while T
is still unprivileged. Since ptrace_may_access() checks permissions
based on current credentials, it succeeds. However, if T begins exec
immediately afterwards, it becomes privileged and may change its memory
mappings. Because get_robust_list() proceeds to access T->robust_list
without synchronizing with exec() it may read user-space pointers from a
now-privileged process.
This violates the intended post-exec access restrictions and could
expose sensitive memory addresses or be used as a primitive in a larger
exploit chain. Consequently, the race can lead to unauthorized
disclosure of information across privilege boundaries and poses a
potential security risk.
Take a read lock on signal->exec_update_lock prior to invoking
ptrace_may_access() and accessing the robust_list/compat_robust_list.
This ensures that the target task's exec state remains stable during the
check, allowing for consistent and synchronized validation of
credentials.
Suggested-by: Jann Horn <jann@thejh.net>
Signed-off-by: Pranav Tyagi <pranav.tyagi03@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/linux-fsdevel/1477863998-3298-5-git-send-email-jann@thejh.net/
Link: https://github.com/KSPP/linux/issues/119
Diffstat (limited to 'scripts/gdb/linux/timerlist.py')
0 files changed, 0 insertions, 0 deletions