summaryrefslogtreecommitdiff
path: root/scripts/lib/kdoc/kdoc_parser.py
diff options
context:
space:
mode:
authorDave Chinner <dchinner@redhat.com>2025-06-26 08:48:54 +1000
committerCarlos Maiolino <cem@kernel.org>2025-06-27 14:08:39 +0200
commit09234a632be42573d9743ac5ff6773622d233ad0 (patch)
tree581cc9bfe33a35d8515aa5c5ecfcca8a85a54a42 /scripts/lib/kdoc/kdoc_parser.py
parentdb44d088a5ab030b741a3adf2e7b181a8a6dcfbe (diff)
xfs: xfs_ifree_cluster vs xfs_iflush_shutdown_abort deadlock
Lock order of xfs_ifree_cluster() is cluster buffer -> try ILOCK -> IFLUSHING, except for the last inode in the cluster that is triggering the free. In that case, the lock order is ILOCK -> cluster buffer -> IFLUSHING. xfs_iflush_cluster() uses cluster buffer -> try ILOCK -> IFLUSHING, so this can safely run concurrently with xfs_ifree_cluster(). xfs_inode_item_precommit() uses ILOCK -> cluster buffer, but this cannot race with xfs_ifree_cluster() so being in a different order will not trigger a deadlock. xfs_reclaim_inode() during a filesystem shutdown uses ILOCK -> IFLUSHING -> cluster buffer via xfs_iflush_shutdown_abort(), and this deadlocks against xfs_ifree_cluster() like so: sysrq: Show Blocked State task:kworker/10:37 state:D stack:12560 pid:276182 tgid:276182 ppid:2 flags:0x00004000 Workqueue: xfs-inodegc/dm-3 xfs_inodegc_worker Call Trace: <TASK> __schedule+0x650/0xb10 schedule+0x6d/0xf0 schedule_timeout+0x8b/0x180 schedule_timeout_uninterruptible+0x1e/0x30 xfs_ifree+0x326/0x730 xfs_inactive_ifree+0xcb/0x230 xfs_inactive+0x2c8/0x380 xfs_inodegc_worker+0xaa/0x180 process_scheduled_works+0x1d4/0x400 worker_thread+0x234/0x2e0 kthread+0x147/0x170 ret_from_fork+0x3e/0x50 ret_from_fork_asm+0x1a/0x30 </TASK> task:fsync-tester state:D stack:12160 pid:2255943 tgid:2255943 ppid:3988702 flags:0x00004006 Call Trace: <TASK> __schedule+0x650/0xb10 schedule+0x6d/0xf0 schedule_timeout+0x31/0x180 __down_common+0xbe/0x1f0 __down+0x1d/0x30 down+0x48/0x50 xfs_buf_lock+0x3d/0xe0 xfs_iflush_shutdown_abort+0x51/0x1e0 xfs_icwalk_ag+0x386/0x690 xfs_reclaim_inodes_nr+0x114/0x160 xfs_fs_free_cached_objects+0x19/0x20 super_cache_scan+0x17b/0x1a0 do_shrink_slab+0x180/0x350 shrink_slab+0xf8/0x430 drop_slab+0x97/0xf0 drop_caches_sysctl_handler+0x59/0xc0 proc_sys_call_handler+0x189/0x280 proc_sys_write+0x13/0x20 vfs_write+0x33d/0x3f0 ksys_write+0x7c/0xf0 __x64_sys_write+0x1b/0x30 x64_sys_call+0x271d/0x2ee0 do_syscall_64+0x68/0x130 entry_SYSCALL_64_after_hwframe+0x76/0x7e We can't change the lock order of xfs_ifree_cluster() - XFS_ISTALE and XFS_IFLUSHING are serialised through to journal IO completion by the cluster buffer lock being held. There's quite a few asserts in the code that check that XFS_ISTALE does not occur out of sync with buffer locking (e.g. in xfs_iflush_cluster). There's also a dependency on the inode log item being removed from the buffer before XFS_IFLUSHING is cleared, also with asserts that trigger on this. Further, we don't have a requirement for the inode to be locked when completing or aborting inode flushing because all the inode state updates are serialised by holding the cluster buffer lock across the IO to completion. We can't check for XFS_IRECLAIM in xfs_ifree_mark_inode_stale() and skip the inode, because there is no guarantee that the inode will be reclaimed. Hence it *must* be marked XFS_ISTALE regardless of whether reclaim is preparing to free that inode. Similarly, we can't check for IFLUSHING before locking the inode because that would result in dirty inodes not being marked with ISTALE in the event of racing with XFS_IRECLAIM. Hence we have to address this issue from the xfs_reclaim_inode() side. It is clear that we cannot hold the inode locked here when calling xfs_iflush_shutdown_abort() because it is the inode->buffer lock order that causes the deadlock against xfs_ifree_cluster(). Hence we need to drop the ILOCK before aborting the inode in the shutdown case. Once we've aborted the inode, we can grab the ILOCK again and then immediately reclaim it as it is now guaranteed to be clean. Note that dropping the ILOCK in xfs_reclaim_inode() means that it can now be locked by xfs_ifree_mark_inode_stale() and seen whilst in this state. This is safe because we have left the XFS_IFLUSHING flag on the inode and so xfs_ifree_mark_inode_stale() will simply set XFS_ISTALE and move to the next inode. An ASSERT check in this path needs to be tweaked to take into account this new shutdown interaction. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com> Signed-off-by: Carlos Maiolino <cem@kernel.org>
Diffstat (limited to 'scripts/lib/kdoc/kdoc_parser.py')
0 files changed, 0 insertions, 0 deletions