diff options
author | Tejun Heo <tj@kernel.org> | 2024-06-21 12:37:22 -1000 |
---|---|---|
committer | Tejun Heo <tj@kernel.org> | 2024-06-21 12:37:22 -1000 |
commit | d86adb4fc0655a0867da811d000df75d2a325ef6 (patch) | |
tree | f2024987668b3421ea8bd60ce71bd6b313b6ec53 /tools/sched_ext/scx_qmap.bpf.c | |
parent | 8988cad8d06eb6097667925d2eb0522850bb0aac (diff) |
sched_ext: Add cpuperf support
sched_ext currently does not integrate with schedutil. When schedutil is the
governor, frequencies are left unregulated and usually get stuck close to
the highest performance level from running RT tasks.
Add CPU performance monitoring and scaling support by integrating into
schedutil. The following kfuncs are added:
- scx_bpf_cpuperf_cap(): Query the relative performance capacity of
different CPUs in the system.
- scx_bpf_cpuperf_cur(): Query the current performance level of a CPU
relative to its max performance.
- scx_bpf_cpuperf_set(): Set the current target performance level of a CPU.
This gives direct control over CPU performance setting to the BPF scheduler.
The only changes on the schedutil side are accounting for the utilization
factor from sched_ext and disabling frequency holding heuristics as it may
not apply well to sched_ext schedulers which may have a lot weaker
connection between tasks and their current / last CPU.
With cpuperf support added, there is no reason to block uclamp. Enable while
at it.
A toy implementation of cpuperf is added to scx_qmap as a demonstration of
the feature.
v2: Ignore cpu_util_cfs_boost() when scx_switched_all() in sugov_get_util()
to avoid factoring in stale util metric. (Christian)
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: David Vernet <dvernet@meta.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Christian Loehle <christian.loehle@arm.com>
Diffstat (limited to 'tools/sched_ext/scx_qmap.bpf.c')
-rw-r--r-- | tools/sched_ext/scx_qmap.bpf.c | 142 |
1 files changed, 139 insertions, 3 deletions
diff --git a/tools/sched_ext/scx_qmap.bpf.c b/tools/sched_ext/scx_qmap.bpf.c index c75c70d6a8eb..b1d0b09c966e 100644 --- a/tools/sched_ext/scx_qmap.bpf.c +++ b/tools/sched_ext/scx_qmap.bpf.c @@ -69,6 +69,18 @@ struct { }; /* + * If enabled, CPU performance target is set according to the queue index + * according to the following table. + */ +static const u32 qidx_to_cpuperf_target[] = { + [0] = SCX_CPUPERF_ONE * 0 / 4, + [1] = SCX_CPUPERF_ONE * 1 / 4, + [2] = SCX_CPUPERF_ONE * 2 / 4, + [3] = SCX_CPUPERF_ONE * 3 / 4, + [4] = SCX_CPUPERF_ONE * 4 / 4, +}; + +/* * Per-queue sequence numbers to implement core-sched ordering. * * Tail seq is assigned to each queued task and incremented. Head seq tracks the @@ -95,6 +107,8 @@ struct { struct cpu_ctx { u64 dsp_idx; /* dispatch index */ u64 dsp_cnt; /* remaining count */ + u32 avg_weight; + u32 cpuperf_target; }; struct { @@ -107,6 +121,8 @@ struct { /* Statistics */ u64 nr_enqueued, nr_dispatched, nr_reenqueued, nr_dequeued; u64 nr_core_sched_execed; +u32 cpuperf_min, cpuperf_avg, cpuperf_max; +u32 cpuperf_target_min, cpuperf_target_avg, cpuperf_target_max; s32 BPF_STRUCT_OPS(qmap_select_cpu, struct task_struct *p, s32 prev_cpu, u64 wake_flags) @@ -313,6 +329,29 @@ void BPF_STRUCT_OPS(qmap_dispatch, s32 cpu, struct task_struct *prev) } } +void BPF_STRUCT_OPS(qmap_tick, struct task_struct *p) +{ + struct cpu_ctx *cpuc; + u32 zero = 0; + int idx; + + if (!(cpuc = bpf_map_lookup_elem(&cpu_ctx_stor, &zero))) { + scx_bpf_error("failed to look up cpu_ctx"); + return; + } + + /* + * Use the running avg of weights to select the target cpuperf level. + * This is a demonstration of the cpuperf feature rather than a + * practical strategy to regulate CPU frequency. + */ + cpuc->avg_weight = cpuc->avg_weight * 3 / 4 + p->scx.weight / 4; + idx = weight_to_idx(cpuc->avg_weight); + cpuc->cpuperf_target = qidx_to_cpuperf_target[idx]; + + scx_bpf_cpuperf_set(scx_bpf_task_cpu(p), cpuc->cpuperf_target); +} + /* * The distance from the head of the queue scaled by the weight of the queue. * The lower the number, the older the task and the higher the priority. @@ -422,8 +461,9 @@ void BPF_STRUCT_OPS(qmap_dump_cpu, struct scx_dump_ctx *dctx, s32 cpu, bool idle if (!(cpuc = bpf_map_lookup_percpu_elem(&cpu_ctx_stor, &zero, cpu))) return; - scx_bpf_dump("QMAP: dsp_idx=%llu dsp_cnt=%llu", - cpuc->dsp_idx, cpuc->dsp_cnt); + scx_bpf_dump("QMAP: dsp_idx=%llu dsp_cnt=%llu avg_weight=%u cpuperf_target=%u", + cpuc->dsp_idx, cpuc->dsp_cnt, cpuc->avg_weight, + cpuc->cpuperf_target); } void BPF_STRUCT_OPS(qmap_dump_task, struct scx_dump_ctx *dctx, struct task_struct *p) @@ -492,11 +532,106 @@ void BPF_STRUCT_OPS(qmap_cpu_offline, s32 cpu) print_cpus(); } +struct monitor_timer { + struct bpf_timer timer; +}; + +struct { + __uint(type, BPF_MAP_TYPE_ARRAY); + __uint(max_entries, 1); + __type(key, u32); + __type(value, struct monitor_timer); +} monitor_timer SEC(".maps"); + +/* + * Print out the min, avg and max performance levels of CPUs every second to + * demonstrate the cpuperf interface. + */ +static void monitor_cpuperf(void) +{ + u32 zero = 0, nr_cpu_ids; + u64 cap_sum = 0, cur_sum = 0, cur_min = SCX_CPUPERF_ONE, cur_max = 0; + u64 target_sum = 0, target_min = SCX_CPUPERF_ONE, target_max = 0; + const struct cpumask *online; + int i, nr_online_cpus = 0; + + nr_cpu_ids = scx_bpf_nr_cpu_ids(); + online = scx_bpf_get_online_cpumask(); + + bpf_for(i, 0, nr_cpu_ids) { + struct cpu_ctx *cpuc; + u32 cap, cur; + + if (!bpf_cpumask_test_cpu(i, online)) + continue; + nr_online_cpus++; + + /* collect the capacity and current cpuperf */ + cap = scx_bpf_cpuperf_cap(i); + cur = scx_bpf_cpuperf_cur(i); + + cur_min = cur < cur_min ? cur : cur_min; + cur_max = cur > cur_max ? cur : cur_max; + + /* + * $cur is relative to $cap. Scale it down accordingly so that + * it's in the same scale as other CPUs and $cur_sum/$cap_sum + * makes sense. + */ + cur_sum += cur * cap / SCX_CPUPERF_ONE; + cap_sum += cap; + + if (!(cpuc = bpf_map_lookup_percpu_elem(&cpu_ctx_stor, &zero, i))) { + scx_bpf_error("failed to look up cpu_ctx"); + goto out; + } + + /* collect target */ + cur = cpuc->cpuperf_target; + target_sum += cur; + target_min = cur < target_min ? cur : target_min; + target_max = cur > target_max ? cur : target_max; + } + + cpuperf_min = cur_min; + cpuperf_avg = cur_sum * SCX_CPUPERF_ONE / cap_sum; + cpuperf_max = cur_max; + + cpuperf_target_min = target_min; + cpuperf_target_avg = target_sum / nr_online_cpus; + cpuperf_target_max = target_max; +out: + scx_bpf_put_cpumask(online); +} + +static int monitor_timerfn(void *map, int *key, struct bpf_timer *timer) +{ + monitor_cpuperf(); + + bpf_timer_start(timer, ONE_SEC_IN_NS, 0); + return 0; +} + s32 BPF_STRUCT_OPS_SLEEPABLE(qmap_init) { + u32 key = 0; + struct bpf_timer *timer; + s32 ret; + print_cpus(); - return scx_bpf_create_dsq(SHARED_DSQ, -1); + ret = scx_bpf_create_dsq(SHARED_DSQ, -1); + if (ret) + return ret; + + timer = bpf_map_lookup_elem(&monitor_timer, &key); + if (!timer) + return -ESRCH; + + bpf_timer_init(timer, &monitor_timer, CLOCK_MONOTONIC); + bpf_timer_set_callback(timer, monitor_timerfn); + + return bpf_timer_start(timer, ONE_SEC_IN_NS, 0); } void BPF_STRUCT_OPS(qmap_exit, struct scx_exit_info *ei) @@ -509,6 +644,7 @@ SCX_OPS_DEFINE(qmap_ops, .enqueue = (void *)qmap_enqueue, .dequeue = (void *)qmap_dequeue, .dispatch = (void *)qmap_dispatch, + .tick = (void *)qmap_tick, .core_sched_before = (void *)qmap_core_sched_before, .cpu_release = (void *)qmap_cpu_release, .init_task = (void *)qmap_init_task, |