diff options
Diffstat (limited to 'Documentation/core-api/kho/concepts.rst')
-rw-r--r-- | Documentation/core-api/kho/concepts.rst | 74 |
1 files changed, 74 insertions, 0 deletions
diff --git a/Documentation/core-api/kho/concepts.rst b/Documentation/core-api/kho/concepts.rst new file mode 100644 index 000000000000..36d5c05cfb30 --- /dev/null +++ b/Documentation/core-api/kho/concepts.rst @@ -0,0 +1,74 @@ +.. SPDX-License-Identifier: GPL-2.0-or-later +.. _kho-concepts: + +======================= +Kexec Handover Concepts +======================= + +Kexec HandOver (KHO) is a mechanism that allows Linux to preserve memory +regions, which could contain serialized system states, across kexec. + +It introduces multiple concepts: + +KHO FDT +======= + +Every KHO kexec carries a KHO specific flattened device tree (FDT) blob +that describes preserved memory regions. These regions contain either +serialized subsystem states, or in-memory data that shall not be touched +across kexec. After KHO, subsystems can retrieve and restore preserved +memory regions from KHO FDT. + +KHO only uses the FDT container format and libfdt library, but does not +adhere to the same property semantics that normal device trees do: Properties +are passed in native endianness and standardized properties like ``regs`` and +``ranges`` do not exist, hence there are no ``#...-cells`` properties. + +KHO is still under development. The FDT schema is unstable and would change +in the future. + +Scratch Regions +=============== + +To boot into kexec, we need to have a physically contiguous memory range that +contains no handed over memory. Kexec then places the target kernel and initrd +into that region. The new kernel exclusively uses this region for memory +allocations before during boot up to the initialization of the page allocator. + +We guarantee that we always have such regions through the scratch regions: On +first boot KHO allocates several physically contiguous memory regions. Since +after kexec these regions will be used by early memory allocations, there is a +scratch region per NUMA node plus a scratch region to satisfy allocations +requests that do not require particular NUMA node assignment. +By default, size of the scratch region is calculated based on amount of memory +allocated during boot. The ``kho_scratch`` kernel command line option may be +used to explicitly define size of the scratch regions. +The scratch regions are declared as CMA when page allocator is initialized so +that their memory can be used during system lifetime. CMA gives us the +guarantee that no handover pages land in that region, because handover pages +must be at a static physical memory location and CMA enforces that only +movable pages can be located inside. + +After KHO kexec, we ignore the ``kho_scratch`` kernel command line option and +instead reuse the exact same region that was originally allocated. This allows +us to recursively execute any amount of KHO kexecs. Because we used this region +for boot memory allocations and as target memory for kexec blobs, some parts +of that memory region may be reserved. These reservations are irrelevant for +the next KHO, because kexec can overwrite even the original kernel. + +.. _kho-finalization-phase: + +KHO finalization phase +====================== + +To enable user space based kexec file loader, the kernel needs to be able to +provide the FDT that describes the current kernel's state before +performing the actual kexec. The process of generating that FDT is +called serialization. When the FDT is generated, some properties +of the system may become immutable because they are already written down +in the FDT. That state is called the KHO finalization phase. + +Public API +========== +.. kernel-doc:: kernel/kexec_handover.c + :export: |