diff options
Diffstat (limited to 'Documentation/networking/device_drivers')
4 files changed, 255 insertions, 0 deletions
diff --git a/Documentation/networking/device_drivers/ethernet/huawei/hinic3.rst b/Documentation/networking/device_drivers/ethernet/huawei/hinic3.rst new file mode 100644 index 000000000000..e3dfd083fa52 --- /dev/null +++ b/Documentation/networking/device_drivers/ethernet/huawei/hinic3.rst @@ -0,0 +1,137 @@ +.. SPDX-License-Identifier: GPL-2.0 + +===================================================================== +Linux kernel driver for Huawei Ethernet Device Driver (hinic3) family +===================================================================== + +Overview +======== + +The hinic3 is a network interface card (NIC) for Data Center. It supports +a range of link-speed devices (10GE, 25GE, 100GE, etc.). The hinic3 +devices can have multiple physical forms: LOM (Lan on Motherboard) NIC, +PCIe standard NIC, OCP (Open Compute Project) NIC, etc. + +The hinic3 driver supports the following features: +- IPv4/IPv6 TCP/UDP checksum offload +- TSO (TCP Segmentation Offload), LRO (Large Receive Offload) +- RSS (Receive Side Scaling) +- MSI-X interrupt aggregation configuration and interrupt adaptation. +- SR-IOV (Single Root I/O Virtualization). + +Content +======= + +- Supported PCI vendor ID/device IDs +- Source Code Structure of Hinic3 Driver +- Management Interface + +Supported PCI vendor ID/device IDs +================================== + +19e5:0222 - hinic3 PF/PPF +19e5:375F - hinic3 VF + +Prime Physical Function (PPF) is responsible for the management of the +whole NIC card. For example, clock synchronization between the NIC and +the host. Any PF may serve as a PPF. The PPF is selected dynamically. + +Source Code Structure of Hinic3 Driver +====================================== + +======================== ================================================ +hinic3_pci_id_tbl.h Supported device IDs +hinic3_hw_intf.h Interface between HW and driver +hinic3_queue_common.[ch] Common structures and methods for NIC queues +hinic3_common.[ch] Encapsulation of memory operations in Linux +hinic3_csr.h Register definitions in the BAR +hinic3_hwif.[ch] Interface for BAR +hinic3_eqs.[ch] Interface for AEQs and CEQs +hinic3_mbox.[ch] Interface for mailbox +hinic3_mgmt.[ch] Management interface based on mailbox and AEQ +hinic3_wq.[ch] Work queue data structures and interface +hinic3_cmdq.[ch] Command queue is used to post command to HW +hinic3_hwdev.[ch] HW structures and methods abstractions +hinic3_lld.[ch] Auxiliary driver adaptation layer +hinic3_hw_comm.[ch] Interface for common HW operations +hinic3_mgmt_interface.h Interface between firmware and driver +hinic3_hw_cfg.[ch] Interface for HW configuration +hinic3_irq.c Interrupt request +hinic3_netdev_ops.c Operations registered to Linux kernel stack +hinic3_nic_dev.h NIC structures and methods abstractions +hinic3_main.c Main Linux kernel driver +hinic3_nic_cfg.[ch] NIC service configuration +hinic3_nic_io.[ch] Management plane interface for TX and RX +hinic3_rss.[ch] Interface for Receive Side Scaling (RSS) +hinic3_rx.[ch] Interface for transmit +hinic3_tx.[ch] Interface for receive +hinic3_ethtool.c Interface for ethtool operations (ops) +hinic3_filter.c Interface for MAC address +======================== ================================================ + +Management Interface +==================== + +Asynchronous Event Queue (AEQ) +------------------------------ + +AEQ receives high priority events from the HW over a descriptor queue. +Every descriptor is a fixed size of 64 bytes. AEQ can receive solicited or +unsolicited events. Every device, VF or PF, can have up to 4 AEQs. +Every AEQ is associated to a dedicated IRQ. AEQ can receive multiple types +of events, but in practice the hinic3 driver ignores all events except for +2 mailbox related events. + +Mailbox +------- + +Mailbox is a communication mechanism between the hinic3 driver and the HW. +Each device has an independent mailbox. Driver can use the mailbox to send +requests to management. Driver receives mailbox messages, such as responses +to requests, over the AEQ (using event HINIC3_AEQ_FOR_MBOX). Due to the +limited size of mailbox data register, mailbox messages are sent +segment-by-segment. + +Every device can use its mailbox to post request to firmware. The mailbox +can also be used to post requests and responses between the PF and its VFs. + +Completion Event Queue (CEQ) +---------------------------- + +The implementation of CEQ is the same as AEQ. It receives completion events +from HW over a fixed size descriptor of 32 bits. Every device can have up +to 32 CEQs. Every CEQ has a dedicated IRQ. CEQ only receives solicited +events that are responses to requests from the driver. CEQ can receive +multiple types of events, but in practice the hinic3 driver ignores all +events except for HINIC3_CMDQ that represents completion of previously +posted commands on a cmdq. + +Command Queue (cmdq) +-------------------- + +Every cmdq has a dedicated work queue on which commands are posted. +Commands on the work queue are fixed size descriptor of size 64 bytes. +Completion of a command will be indicated using ctrl bits in the +descriptor that carried the command. Notification of command completions +will also be provided via event on CEQ. Every device has 4 command queues +that are initialized as a set (called cmdqs), each with its own type. +Hinic3 driver only uses type HINIC3_CMDQ_SYNC. + +Work Queues(WQ) +--------------- + +Work queues are logical arrays of fixed size WQEs. The array may be spread +over multiple non-contiguous pages using indirection table. Work queues are +used by I/O queues and command queues. + +Global function ID +------------------ + +Every function, PF or VF, has a unique ordinal identification within the device. +Many management commands (mbox or cmdq) contain this ID so HW can apply the +command effect to the right function. + +PF is allowed to post management commands to a subordinate VF by specifying the +VFs ID. A VF must provide its own ID. Anti-spoofing in the HW will cause +command from a VF to fail if it contains the wrong ID. + diff --git a/Documentation/networking/device_drivers/ethernet/index.rst b/Documentation/networking/device_drivers/ethernet/index.rst index 05d822b904b4..139b4c75a191 100644 --- a/Documentation/networking/device_drivers/ethernet/index.rst +++ b/Documentation/networking/device_drivers/ethernet/index.rst @@ -28,6 +28,7 @@ Contents: freescale/gianfar google/gve huawei/hinic + huawei/hinic3 intel/e100 intel/e1000 intel/e1000e @@ -55,6 +56,7 @@ Contents: ti/cpsw_switchdev ti/am65_nuss_cpsw_switchdev ti/tlan + ti/icssg_prueth wangxun/txgbe wangxun/ngbe diff --git a/Documentation/networking/device_drivers/ethernet/meta/fbnic.rst b/Documentation/networking/device_drivers/ethernet/meta/fbnic.rst index 04e0595bb0a7..f8592dec8851 100644 --- a/Documentation/networking/device_drivers/ethernet/meta/fbnic.rst +++ b/Documentation/networking/device_drivers/ethernet/meta/fbnic.rst @@ -28,9 +28,60 @@ devlink dev info provides version information for all three components. In addition to the version the hg commit hash of the build is included as a separate entry. +Upgrading Firmware +------------------ + +fbnic supports updating firmware using signed PLDM images with devlink dev +flash. PLDM images are written into the flash. Flashing does not interrupt +the operation of the device. + +On host boot the latest UEFI driver is always used, no explicit activation +is required. Firmware activation is required to run new control firmware. cmrt +firmware can only be activated by power cycling the NIC. + Statistics ---------- +TX MAC Interface +~~~~~~~~~~~~~~~~ + + - ``ptp_illegal_req``: packets sent to the NIC with PTP request bit set but routed to BMC/FW + - ``ptp_good_ts``: packets successfully routed to MAC with PTP request bit set + - ``ptp_bad_ts``: packets destined for MAC with PTP request bit set but aborted because of some error (e.g., DMA read error) + +TX Extension (TEI) Interface (TTI) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + - ``tti_cm_drop``: control messages dropped at the TX Extension (TEI) Interface because of credit starvation + - ``tti_frame_drop``: packets dropped at the TX Extension (TEI) Interface because of credit starvation + - ``tti_tbi_drop``: packets dropped at the TX BMC Interface (TBI) because of credit starvation + +RXB (RX Buffer) Enqueue +~~~~~~~~~~~~~~~~~~~~~~~ + + - ``rxb_integrity_err[i]``: frames enqueued with integrity errors (e.g., multi-bit ECC errors) on RXB input i + - ``rxb_mac_err[i]``: frames enqueued with MAC end-of-frame errors (e.g., bad FCS) on RXB input i + - ``rxb_parser_err[i]``: frames experienced RPC parser errors + - ``rxb_frm_err[i]``: frames experienced signaling errors (e.g., missing end-of-packet/start-of-packet) on RXB input i + - ``rxb_drbo[i]_frames``: frames received at RXB input i + - ``rxb_drbo[i]_bytes``: bytes received at RXB input i + +RXB (RX Buffer) FIFO +~~~~~~~~~~~~~~~~~~~~ + + - ``rxb_fifo[i]_drop``: transitions into the drop state on RXB pool i + - ``rxb_fifo[i]_dropped_frames``: frames dropped on RXB pool i + - ``rxb_fifo[i]_ecn``: transitions into the ECN mark state on RXB pool i + - ``rxb_fifo[i]_level``: current occupancy of RXB pool i + +RXB (RX Buffer) Dequeue +~~~~~~~~~~~~~~~~~~~~~~~ + + - ``rxb_intf[i]_frames``: frames sent to the output i + - ``rxb_intf[i]_bytes``: bytes sent to the output i + - ``rxb_pbuf[i]_frames``: frames sent to output i from the perspective of internal packet buffer + - ``rxb_pbuf[i]_bytes``: bytes sent to output i from the perspective of internal packet buffer + RPC (Rx parser) ~~~~~~~~~~~~~~~ @@ -44,6 +95,15 @@ RPC (Rx parser) - ``rpc_out_of_hdr_err``: frames where header was larger than parsable region - ``ovr_size_err``: oversized frames +Hardware Queues +~~~~~~~~~~~~~~~ + +1. RX DMA Engine: + + - ``rde_[i]_pkt_err``: packets with MAC EOP, RPC parser, RXB truncation, or RDE frame truncation errors. These error are flagged in the packet metadata because of cut-through support but the actual drop happens once PCIE/RDE is reached. + - ``rde_[i]_pkt_cq_drop``: packets dropped because RCQ is full + - ``rde_[i]_pkt_bdq_drop``: packets dropped because HPQ or PPQ ran out of host buffer + PCIe ~~~~ diff --git a/Documentation/networking/device_drivers/ethernet/ti/icssg_prueth.rst b/Documentation/networking/device_drivers/ethernet/ti/icssg_prueth.rst new file mode 100644 index 000000000000..da21ddf431bb --- /dev/null +++ b/Documentation/networking/device_drivers/ethernet/ti/icssg_prueth.rst @@ -0,0 +1,56 @@ +.. SPDX-License-Identifier: GPL-2.0 + +============================================== +Texas Instruments ICSSG PRUETH ethernet driver +============================================== + +:Version: 1.0 + +ICSSG Firmware +============== + +Every ICSSG core has two Programmable Real-Time Unit(PRUs), two auxiliary +Real-Time Transfer Unit (RTUs), and two Transmit Real-Time Transfer Units +(TX_PRUs). Each one of these runs its own firmware. The firmwares combnined are +referred as ICSSG Firmware. + +Firmware Statistics +=================== + +The ICSSG firmware maintains certain statistics which are dumped by the driver +via ``ethtool -S <interface>`` + +These statistics are as follows, + + - ``FW_RTU_PKT_DROP``: Diagnostic error counter which increments when RTU drops a locally injected packet due to port being disabled or rule violation. + - ``FW_Q0_OVERFLOW``: TX overflow counter for queue0 + - ``FW_Q1_OVERFLOW``: TX overflow counter for queue1 + - ``FW_Q2_OVERFLOW``: TX overflow counter for queue2 + - ``FW_Q3_OVERFLOW``: TX overflow counter for queue3 + - ``FW_Q4_OVERFLOW``: TX overflow counter for queue4 + - ``FW_Q5_OVERFLOW``: TX overflow counter for queue5 + - ``FW_Q6_OVERFLOW``: TX overflow counter for queue6 + - ``FW_Q7_OVERFLOW``: TX overflow counter for queue7 + - ``FW_DROPPED_PKT``: This counter is incremented when a packet is dropped at PRU because of rule violation. + - ``FW_RX_ERROR``: Incremented if there was a CRC error or Min/Max frame error at PRU + - ``FW_RX_DS_INVALID``: Incremented when RTU detects Data Status invalid condition + - ``FW_TX_DROPPED_PACKET``: Counter for packets dropped via TX Port + - ``FW_TX_TS_DROPPED_PACKET``: Counter for packets with TS flag dropped via TX Port + - ``FW_INF_PORT_DISABLED``: Incremented when RX frame is dropped due to port being disabled + - ``FW_INF_SAV``: Incremented when RX frame is dropped due to Source Address violation + - ``FW_INF_SA_DL``: Incremented when RX frame is dropped due to Source Address being in the denylist + - ``FW_INF_PORT_BLOCKED``: Incremented when RX frame is dropped due to port being blocked and frame being a special frame + - ``FW_INF_DROP_TAGGED`` : Incremented when RX frame is dropped for being tagged + - ``FW_INF_DROP_PRIOTAGGED``: Incremented when RX frame is dropped for being priority tagged + - ``FW_INF_DROP_NOTAG``: Incremented when RX frame is dropped for being untagged + - ``FW_INF_DROP_NOTMEMBER``: Incremented when RX frame is dropped for port not being member of VLAN + - ``FW_RX_EOF_SHORT_FRMERR``: Incremented if End Of Frame (EOF) task is scheduled without seeing RX_B1 + - ``FW_RX_B0_DROP_EARLY_EOF``: Incremented when frame is dropped due to Early EOF + - ``FW_TX_JUMBO_FRM_CUTOFF``: Incremented when frame is cut off to prevent packet size > 2000 Bytes + - ``FW_RX_EXP_FRAG_Q_DROP``: Incremented when express frame is received in the same queue as the previous fragment + - ``FW_RX_FIFO_OVERRUN``: RX fifo overrun counter + - ``FW_CUT_THR_PKT``: Incremented when a packet is forwarded using Cut-Through forwarding method + - ``FW_HOST_RX_PKT_CNT``: Number of valid packets sent by Rx PRU to Host on PSI + - ``FW_HOST_TX_PKT_CNT``: Number of valid packets copied by RTU0 to Tx queues + - ``FW_HOST_EGRESS_Q_PRE_OVERFLOW``: Host Egress Q (Pre-emptible) Overflow Counter + - ``FW_HOST_EGRESS_Q_EXP_OVERFLOW``: Host Egress Q (Pre-emptible) Overflow Counter |