summaryrefslogtreecommitdiff
path: root/arch/x86/crypto/aes-gcm-aesni-x86_64.S
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/crypto/aes-gcm-aesni-x86_64.S')
-rw-r--r--arch/x86/crypto/aes-gcm-aesni-x86_64.S12
1 files changed, 6 insertions, 6 deletions
diff --git a/arch/x86/crypto/aes-gcm-aesni-x86_64.S b/arch/x86/crypto/aes-gcm-aesni-x86_64.S
index 45940e2883a0..7c8a8a32bd3c 100644
--- a/arch/x86/crypto/aes-gcm-aesni-x86_64.S
+++ b/arch/x86/crypto/aes-gcm-aesni-x86_64.S
@@ -61,15 +61,15 @@
// for the *_aesni functions or AVX for the *_aesni_avx ones. (But it seems
// there are no CPUs that support AES-NI without also PCLMULQDQ and SSE4.1.)
//
-// The design generally follows that of aes-gcm-avx10-x86_64.S, and that file is
+// The design generally follows that of aes-gcm-vaes-avx512.S, and that file is
// more thoroughly commented. This file has the following notable changes:
//
// - The vector length is fixed at 128-bit, i.e. xmm registers. This means
// there is only one AES block (and GHASH block) per register.
//
-// - Without AVX512 / AVX10, only 16 SIMD registers are available instead of
-// 32. We work around this by being much more careful about using
-// registers, relying heavily on loads to load values as they are needed.
+// - Without AVX512, only 16 SIMD registers are available instead of 32. We
+// work around this by being much more careful about using registers,
+// relying heavily on loads to load values as they are needed.
//
// - Masking is not available either. We work around this by implementing
// partial block loads and stores using overlapping scalar loads and stores
@@ -90,8 +90,8 @@
// multiplication instead of schoolbook multiplication. This saves one
// pclmulqdq instruction per block, at the cost of one 64-bit load, one
// pshufd, and 0.25 pxors per block. (This is without the three-argument
-// XOR support that would be provided by AVX512 / AVX10, which would be
-// more beneficial to schoolbook than Karatsuba.)
+// XOR support that would be provided by AVX512, which would be more
+// beneficial to schoolbook than Karatsuba.)
//
// As a rough approximation, we can assume that Karatsuba multiplication is
// faster than schoolbook multiplication in this context if one pshufd and