diff options
Diffstat (limited to 'arch/x86/lib')
54 files changed, 11009 insertions, 734 deletions
diff --git a/arch/x86/lib/Makefile b/arch/x86/lib/Makefile index 8a59c61624c2..4fa5c4e1ba8a 100644 --- a/arch/x86/lib/Makefile +++ b/arch/x86/lib/Makefile @@ -3,6 +3,8 @@ # Makefile for x86 specific library files. # +obj-y += crypto/ + # Produces uninteresting flaky coverage. KCOV_INSTRUMENT_delay.o := n @@ -39,11 +41,14 @@ lib-$(CONFIG_FUNCTION_ERROR_INJECTION) += error-inject.o lib-$(CONFIG_MITIGATION_RETPOLINE) += retpoline.o obj-$(CONFIG_CRC32_ARCH) += crc32-x86.o -crc32-x86-y := crc32-glue.o crc32-pclmul.o +crc32-x86-y := crc32.o crc32-pclmul.o crc32-x86-$(CONFIG_64BIT) += crc32c-3way.o +obj-$(CONFIG_CRC64_ARCH) += crc64-x86.o +crc64-x86-y := crc64.o crc64-pclmul.o + obj-$(CONFIG_CRC_T10DIF_ARCH) += crc-t10dif-x86.o -crc-t10dif-x86-y := crc-t10dif-glue.o crct10dif-pcl-asm_64.o +crc-t10dif-x86-y := crc-t10dif.o crc16-msb-pclmul.o obj-y += msr.o msr-reg.o msr-reg-export.o hweight.o obj-y += iomem.o @@ -56,7 +61,7 @@ ifeq ($(CONFIG_X86_32),y) lib-y += string_32.o lib-y += memmove_32.o lib-y += cmpxchg8b_emu.o -ifneq ($(CONFIG_X86_CMPXCHG64),y) +ifneq ($(CONFIG_X86_CX8),y) lib-y += atomic64_386_32.o endif else @@ -66,5 +71,6 @@ endif lib-y += clear_page_64.o copy_page_64.o lib-y += memmove_64.o memset_64.o lib-y += copy_user_64.o copy_user_uncached_64.o - lib-y += cmpxchg16b_emu.o + lib-y += cmpxchg16b_emu.o + lib-y += bhi.o endif diff --git a/arch/x86/lib/bhi.S b/arch/x86/lib/bhi.S new file mode 100644 index 000000000000..58891681261b --- /dev/null +++ b/arch/x86/lib/bhi.S @@ -0,0 +1,147 @@ +/* SPDX-License-Identifier: GPL-2.0 */ + +#include <linux/linkage.h> +#include <asm/unwind_hints.h> +#include <asm/nospec-branch.h> + +/* + * Notably, the FineIBT preamble calling these will have ZF set and r10 zero. + * + * The very last element is in fact larger than 32 bytes, but since its the + * last element, this does not matter, + * + * There are 2 #UD sites, located between 0,1-2,3 and 4,5-6,7 such that they + * can be reached using Jcc.d8, these elements (1 and 5) have sufficiently + * big alignment holes for this to not stagger the array. + */ + +.pushsection .noinstr.text, "ax" + + .align 32 +SYM_CODE_START(__bhi_args) + +#ifdef CONFIG_FINEIBT_BHI + + .align 32 +SYM_INNER_LABEL(__bhi_args_0, SYM_L_LOCAL) + ANNOTATE_NOENDBR + UNWIND_HINT_FUNC + jne .Lud_1 + ANNOTATE_UNRET_SAFE + ret + int3 + + .align 32 +SYM_INNER_LABEL(__bhi_args_1, SYM_L_LOCAL) + ANNOTATE_NOENDBR + UNWIND_HINT_FUNC + jne .Lud_1 + cmovne %r10, %rdi + ANNOTATE_UNRET_SAFE + ret + int3 + + .align 8 + ANNOTATE_REACHABLE +.Lud_1: ud2 + ANNOTATE_UNRET_SAFE + ret + int3 + + .align 32 +SYM_INNER_LABEL(__bhi_args_2, SYM_L_LOCAL) + ANNOTATE_NOENDBR + UNWIND_HINT_FUNC + jne .Lud_1 + cmovne %r10, %rdi + cmovne %r10, %rsi + ANNOTATE_UNRET_SAFE + ret + int3 + + .align 32 +SYM_INNER_LABEL(__bhi_args_3, SYM_L_LOCAL) + ANNOTATE_NOENDBR + UNWIND_HINT_FUNC + jne .Lud_1 + cmovne %r10, %rdi + cmovne %r10, %rsi + cmovne %r10, %rdx + ANNOTATE_UNRET_SAFE + ret + int3 + + .align 32 +SYM_INNER_LABEL(__bhi_args_4, SYM_L_LOCAL) + ANNOTATE_NOENDBR + UNWIND_HINT_FUNC + jne .Lud_2 + cmovne %r10, %rdi + cmovne %r10, %rsi + cmovne %r10, %rdx + cmovne %r10, %rcx + ANNOTATE_UNRET_SAFE + ret + int3 + + .align 32 +SYM_INNER_LABEL(__bhi_args_5, SYM_L_LOCAL) + ANNOTATE_NOENDBR + UNWIND_HINT_FUNC + jne .Lud_2 + cmovne %r10, %rdi + cmovne %r10, %rsi + cmovne %r10, %rdx + cmovne %r10, %rcx + cmovne %r10, %r8 + ANNOTATE_UNRET_SAFE + ret + int3 + + .align 8 + ANNOTATE_REACHABLE +.Lud_2: ud2 + ANNOTATE_UNRET_SAFE + ret + int3 + + .align 32 +SYM_INNER_LABEL(__bhi_args_6, SYM_L_LOCAL) + ANNOTATE_NOENDBR + UNWIND_HINT_FUNC + jne .Lud_2 + cmovne %r10, %rdi + cmovne %r10, %rsi + cmovne %r10, %rdx + cmovne %r10, %rcx + cmovne %r10, %r8 + cmovne %r10, %r9 + ANNOTATE_UNRET_SAFE + ret + int3 + + .align 32 +SYM_INNER_LABEL(__bhi_args_7, SYM_L_LOCAL) + ANNOTATE_NOENDBR + UNWIND_HINT_FUNC + jne .Lud_2 + cmovne %r10, %rdi + cmovne %r10, %rsi + cmovne %r10, %rdx + cmovne %r10, %rcx + cmovne %r10, %r8 + cmovne %r10, %r9 + cmovne %r10, %rsp + ANNOTATE_UNRET_SAFE + ret + int3 + +#endif /* CONFIG_FINEIBT_BHI */ + + .align 32 +SYM_INNER_LABEL(__bhi_args_end, SYM_L_GLOBAL) + ANNOTATE_NOENDBR + nop /* Work around toolchain+objtool quirk */ +SYM_CODE_END(__bhi_args) + +.popsection diff --git a/arch/x86/lib/clear_page_64.S b/arch/x86/lib/clear_page_64.S index 2760a15fbc00..a508e4a8c66a 100644 --- a/arch/x86/lib/clear_page_64.S +++ b/arch/x86/lib/clear_page_64.S @@ -1,6 +1,8 @@ /* SPDX-License-Identifier: GPL-2.0-only */ #include <linux/export.h> #include <linux/linkage.h> +#include <linux/cfi_types.h> +#include <linux/objtool.h> #include <asm/asm.h> /* @@ -14,7 +16,7 @@ * Zero a page. * %rdi - page */ -SYM_FUNC_START(clear_page_rep) +SYM_TYPED_FUNC_START(clear_page_rep) movl $4096/8,%ecx xorl %eax,%eax rep stosq @@ -22,7 +24,7 @@ SYM_FUNC_START(clear_page_rep) SYM_FUNC_END(clear_page_rep) EXPORT_SYMBOL_GPL(clear_page_rep) -SYM_FUNC_START(clear_page_orig) +SYM_TYPED_FUNC_START(clear_page_orig) xorl %eax,%eax movl $4096/64,%ecx .p2align 4 @@ -44,7 +46,7 @@ SYM_FUNC_START(clear_page_orig) SYM_FUNC_END(clear_page_orig) EXPORT_SYMBOL_GPL(clear_page_orig) -SYM_FUNC_START(clear_page_erms) +SYM_TYPED_FUNC_START(clear_page_erms) movl $4096,%ecx xorl %eax,%eax rep stosb @@ -63,6 +65,7 @@ EXPORT_SYMBOL_GPL(clear_page_erms) * rcx: uncleared bytes or 0 if successful. */ SYM_FUNC_START(rep_stos_alternative) + ANNOTATE_NOENDBR cmpq $64,%rcx jae .Lunrolled diff --git a/arch/x86/lib/cmpxchg8b_emu.S b/arch/x86/lib/cmpxchg8b_emu.S index 1c96be769adc..d4bb24347ff8 100644 --- a/arch/x86/lib/cmpxchg8b_emu.S +++ b/arch/x86/lib/cmpxchg8b_emu.S @@ -7,7 +7,7 @@ .text -#ifndef CONFIG_X86_CMPXCHG64 +#ifndef CONFIG_X86_CX8 /* * Emulate 'cmpxchg8b (%esi)' on UP diff --git a/arch/x86/lib/copy_page_64.S b/arch/x86/lib/copy_page_64.S index d6ae793d08fa..d8e87fedc20d 100644 --- a/arch/x86/lib/copy_page_64.S +++ b/arch/x86/lib/copy_page_64.S @@ -3,6 +3,7 @@ #include <linux/export.h> #include <linux/linkage.h> +#include <linux/cfi_types.h> #include <asm/cpufeatures.h> #include <asm/alternative.h> @@ -13,7 +14,7 @@ * prefetch distance based on SMP/UP. */ ALIGN -SYM_FUNC_START(copy_page) +SYM_TYPED_FUNC_START(copy_page) ALTERNATIVE "jmp copy_page_regs", "", X86_FEATURE_REP_GOOD movl $4096/8, %ecx rep movsq diff --git a/arch/x86/lib/copy_user_64.S b/arch/x86/lib/copy_user_64.S index fc9fb5d06174..06296eb69fd4 100644 --- a/arch/x86/lib/copy_user_64.S +++ b/arch/x86/lib/copy_user_64.S @@ -8,6 +8,8 @@ #include <linux/export.h> #include <linux/linkage.h> +#include <linux/cfi_types.h> +#include <linux/objtool.h> #include <asm/cpufeatures.h> #include <asm/alternative.h> #include <asm/asm.h> @@ -30,6 +32,7 @@ * it simpler for us, we can clobber rsi/rdi and rax freely. */ SYM_FUNC_START(rep_movs_alternative) + ANNOTATE_NOENDBR cmpq $64,%rcx jae .Llarge @@ -74,6 +77,24 @@ SYM_FUNC_START(rep_movs_alternative) _ASM_EXTABLE_UA( 0b, 1b) .Llarge_movsq: + /* Do the first possibly unaligned word */ +0: movq (%rsi),%rax +1: movq %rax,(%rdi) + + _ASM_EXTABLE_UA( 0b, .Lcopy_user_tail) + _ASM_EXTABLE_UA( 1b, .Lcopy_user_tail) + + /* What would be the offset to the aligned destination? */ + leaq 8(%rdi),%rax + andq $-8,%rax + subq %rdi,%rax + + /* .. and update pointers and count to match */ + addq %rax,%rdi + addq %rax,%rsi + subq %rax,%rcx + + /* make %rcx contain the number of words, %rax the remainder */ movq %rcx,%rax shrq $3,%rcx andl $7,%eax diff --git a/arch/x86/lib/copy_user_uncached_64.S b/arch/x86/lib/copy_user_uncached_64.S index 2918e36eece2..18350b343c2a 100644 --- a/arch/x86/lib/copy_user_uncached_64.S +++ b/arch/x86/lib/copy_user_uncached_64.S @@ -5,6 +5,7 @@ #include <linux/export.h> #include <linux/linkage.h> +#include <linux/objtool.h> #include <asm/asm.h> /* @@ -27,6 +28,7 @@ * rax uncopied bytes or 0 if successful. */ SYM_FUNC_START(__copy_user_nocache) + ANNOTATE_NOENDBR /* If destination is not 7-byte aligned, we'll have to align it */ testb $7,%dil jne .Lalign diff --git a/arch/x86/lib/crc-pclmul-consts.h b/arch/x86/lib/crc-pclmul-consts.h new file mode 100644 index 000000000000..fcc63c064333 --- /dev/null +++ b/arch/x86/lib/crc-pclmul-consts.h @@ -0,0 +1,195 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * CRC constants generated by: + * + * ./scripts/gen-crc-consts.py x86_pclmul crc16_msb_0x8bb7,crc32_lsb_0xedb88320,crc64_msb_0x42f0e1eba9ea3693,crc64_lsb_0x9a6c9329ac4bc9b5 + * + * Do not edit manually. + */ + +/* + * CRC folding constants generated for most-significant-bit-first CRC-16 using + * G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0 + */ +static const struct { + u8 bswap_mask[16]; + u64 fold_across_2048_bits_consts[2]; + u64 fold_across_1024_bits_consts[2]; + u64 fold_across_512_bits_consts[2]; + u64 fold_across_256_bits_consts[2]; + u64 fold_across_128_bits_consts[2]; + u8 shuf_table[48]; + u64 barrett_reduction_consts[2]; +} crc16_msb_0x8bb7_consts ____cacheline_aligned __maybe_unused = { + .bswap_mask = {15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}, + .fold_across_2048_bits_consts = { + 0xdccf000000000000, /* LO64_TERMS: (x^2000 mod G) * x^48 */ + 0x4b0b000000000000, /* HI64_TERMS: (x^2064 mod G) * x^48 */ + }, + .fold_across_1024_bits_consts = { + 0x9d9d000000000000, /* LO64_TERMS: (x^976 mod G) * x^48 */ + 0x7cf5000000000000, /* HI64_TERMS: (x^1040 mod G) * x^48 */ + }, + .fold_across_512_bits_consts = { + 0x044c000000000000, /* LO64_TERMS: (x^464 mod G) * x^48 */ + 0xe658000000000000, /* HI64_TERMS: (x^528 mod G) * x^48 */ + }, + .fold_across_256_bits_consts = { + 0x6ee3000000000000, /* LO64_TERMS: (x^208 mod G) * x^48 */ + 0xe7b5000000000000, /* HI64_TERMS: (x^272 mod G) * x^48 */ + }, + .fold_across_128_bits_consts = { + 0x2d56000000000000, /* LO64_TERMS: (x^80 mod G) * x^48 */ + 0x06df000000000000, /* HI64_TERMS: (x^144 mod G) * x^48 */ + }, + .shuf_table = { + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + }, + .barrett_reduction_consts = { + 0x8bb7000000000000, /* LO64_TERMS: (G - x^16) * x^48 */ + 0xf65a57f81d33a48a, /* HI64_TERMS: (floor(x^79 / G) * x) - x^64 */ + }, +}; + +/* + * CRC folding constants generated for least-significant-bit-first CRC-32 using + * G(x) = x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 + x^7 + + * x^5 + x^4 + x^2 + x^1 + x^0 + */ +static const struct { + u64 fold_across_2048_bits_consts[2]; + u64 fold_across_1024_bits_consts[2]; + u64 fold_across_512_bits_consts[2]; + u64 fold_across_256_bits_consts[2]; + u64 fold_across_128_bits_consts[2]; + u8 shuf_table[48]; + u64 barrett_reduction_consts[2]; +} crc32_lsb_0xedb88320_consts ____cacheline_aligned __maybe_unused = { + .fold_across_2048_bits_consts = { + 0x00000000ce3371cb, /* HI64_TERMS: (x^2079 mod G) * x^32 */ + 0x00000000e95c1271, /* LO64_TERMS: (x^2015 mod G) * x^32 */ + }, + .fold_across_1024_bits_consts = { + 0x0000000033fff533, /* HI64_TERMS: (x^1055 mod G) * x^32 */ + 0x00000000910eeec1, /* LO64_TERMS: (x^991 mod G) * x^32 */ + }, + .fold_across_512_bits_consts = { + 0x000000008f352d95, /* HI64_TERMS: (x^543 mod G) * x^32 */ + 0x000000001d9513d7, /* LO64_TERMS: (x^479 mod G) * x^32 */ + }, + .fold_across_256_bits_consts = { + 0x00000000f1da05aa, /* HI64_TERMS: (x^287 mod G) * x^32 */ + 0x0000000081256527, /* LO64_TERMS: (x^223 mod G) * x^32 */ + }, + .fold_across_128_bits_consts = { + 0x00000000ae689191, /* HI64_TERMS: (x^159 mod G) * x^32 */ + 0x00000000ccaa009e, /* LO64_TERMS: (x^95 mod G) * x^32 */ + }, + .shuf_table = { + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + }, + .barrett_reduction_consts = { + 0xb4e5b025f7011641, /* HI64_TERMS: floor(x^95 / G) */ + 0x00000001db710640, /* LO64_TERMS: (G - x^32) * x^31 */ + }, +}; + +/* + * CRC folding constants generated for most-significant-bit-first CRC-64 using + * G(x) = x^64 + x^62 + x^57 + x^55 + x^54 + x^53 + x^52 + x^47 + x^46 + x^45 + + * x^40 + x^39 + x^38 + x^37 + x^35 + x^33 + x^32 + x^31 + x^29 + x^27 + + * x^24 + x^23 + x^22 + x^21 + x^19 + x^17 + x^13 + x^12 + x^10 + x^9 + + * x^7 + x^4 + x^1 + x^0 + */ +static const struct { + u8 bswap_mask[16]; + u64 fold_across_2048_bits_consts[2]; + u64 fold_across_1024_bits_consts[2]; + u64 fold_across_512_bits_consts[2]; + u64 fold_across_256_bits_consts[2]; + u64 fold_across_128_bits_consts[2]; + u8 shuf_table[48]; + u64 barrett_reduction_consts[2]; +} crc64_msb_0x42f0e1eba9ea3693_consts ____cacheline_aligned __maybe_unused = { + .bswap_mask = {15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0}, + .fold_across_2048_bits_consts = { + 0x7f52691a60ddc70d, /* LO64_TERMS: (x^2048 mod G) * x^0 */ + 0x7036b0389f6a0c82, /* HI64_TERMS: (x^2112 mod G) * x^0 */ + }, + .fold_across_1024_bits_consts = { + 0x05cf79dea9ac37d6, /* LO64_TERMS: (x^1024 mod G) * x^0 */ + 0x001067e571d7d5c2, /* HI64_TERMS: (x^1088 mod G) * x^0 */ + }, + .fold_across_512_bits_consts = { + 0x5f6843ca540df020, /* LO64_TERMS: (x^512 mod G) * x^0 */ + 0xddf4b6981205b83f, /* HI64_TERMS: (x^576 mod G) * x^0 */ + }, + .fold_across_256_bits_consts = { + 0x571bee0a227ef92b, /* LO64_TERMS: (x^256 mod G) * x^0 */ + 0x44bef2a201b5200c, /* HI64_TERMS: (x^320 mod G) * x^0 */ + }, + .fold_across_128_bits_consts = { + 0x05f5c3c7eb52fab6, /* LO64_TERMS: (x^128 mod G) * x^0 */ + 0x4eb938a7d257740e, /* HI64_TERMS: (x^192 mod G) * x^0 */ + }, + .shuf_table = { + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + }, + .barrett_reduction_consts = { + 0x42f0e1eba9ea3693, /* LO64_TERMS: (G - x^64) * x^0 */ + 0x578d29d06cc4f872, /* HI64_TERMS: (floor(x^127 / G) * x) - x^64 */ + }, +}; + +/* + * CRC folding constants generated for least-significant-bit-first CRC-64 using + * G(x) = x^64 + x^63 + x^61 + x^59 + x^58 + x^56 + x^55 + x^52 + x^49 + x^48 + + * x^47 + x^46 + x^44 + x^41 + x^37 + x^36 + x^34 + x^32 + x^31 + x^28 + + * x^26 + x^23 + x^22 + x^19 + x^16 + x^13 + x^12 + x^10 + x^9 + x^6 + + * x^4 + x^3 + x^0 + */ +static const struct { + u64 fold_across_2048_bits_consts[2]; + u64 fold_across_1024_bits_consts[2]; + u64 fold_across_512_bits_consts[2]; + u64 fold_across_256_bits_consts[2]; + u64 fold_across_128_bits_consts[2]; + u8 shuf_table[48]; + u64 barrett_reduction_consts[2]; +} crc64_lsb_0x9a6c9329ac4bc9b5_consts ____cacheline_aligned __maybe_unused = { + .fold_across_2048_bits_consts = { + 0x37ccd3e14069cabc, /* HI64_TERMS: (x^2111 mod G) * x^0 */ + 0xa043808c0f782663, /* LO64_TERMS: (x^2047 mod G) * x^0 */ + }, + .fold_across_1024_bits_consts = { + 0xa1ca681e733f9c40, /* HI64_TERMS: (x^1087 mod G) * x^0 */ + 0x5f852fb61e8d92dc, /* LO64_TERMS: (x^1023 mod G) * x^0 */ + }, + .fold_across_512_bits_consts = { + 0x0c32cdb31e18a84a, /* HI64_TERMS: (x^575 mod G) * x^0 */ + 0x62242240ace5045a, /* LO64_TERMS: (x^511 mod G) * x^0 */ + }, + .fold_across_256_bits_consts = { + 0xb0bc2e589204f500, /* HI64_TERMS: (x^319 mod G) * x^0 */ + 0xe1e0bb9d45d7a44c, /* LO64_TERMS: (x^255 mod G) * x^0 */ + }, + .fold_across_128_bits_consts = { + 0xeadc41fd2ba3d420, /* HI64_TERMS: (x^191 mod G) * x^0 */ + 0x21e9761e252621ac, /* LO64_TERMS: (x^127 mod G) * x^0 */ + }, + .shuf_table = { + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, + -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, + }, + .barrett_reduction_consts = { + 0x27ecfa329aef9f77, /* HI64_TERMS: floor(x^127 / G) */ + 0x34d926535897936a, /* LO64_TERMS: (G - x^64 - x^0) / x */ + }, +}; diff --git a/arch/x86/lib/crc-pclmul-template.S b/arch/x86/lib/crc-pclmul-template.S new file mode 100644 index 000000000000..ae0b6144c503 --- /dev/null +++ b/arch/x86/lib/crc-pclmul-template.S @@ -0,0 +1,582 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +// +// Template to generate [V]PCLMULQDQ-based CRC functions for x86 +// +// Copyright 2025 Google LLC +// +// Author: Eric Biggers <ebiggers@google.com> + +#include <linux/linkage.h> +#include <linux/objtool.h> + +// Offsets within the generated constants table +.set OFFSETOF_BSWAP_MASK, -5*16 // msb-first CRCs only +.set OFFSETOF_FOLD_ACROSS_2048_BITS_CONSTS, -4*16 // must precede next +.set OFFSETOF_FOLD_ACROSS_1024_BITS_CONSTS, -3*16 // must precede next +.set OFFSETOF_FOLD_ACROSS_512_BITS_CONSTS, -2*16 // must precede next +.set OFFSETOF_FOLD_ACROSS_256_BITS_CONSTS, -1*16 // must precede next +.set OFFSETOF_FOLD_ACROSS_128_BITS_CONSTS, 0*16 // must be 0 +.set OFFSETOF_SHUF_TABLE, 1*16 +.set OFFSETOF_BARRETT_REDUCTION_CONSTS, 4*16 + +// Emit a VEX (or EVEX) coded instruction if allowed, or emulate it using the +// corresponding non-VEX instruction plus any needed moves. The supported +// instruction formats are: +// +// - Two-arg [src, dst], where the non-VEX format is the same. +// - Three-arg [src1, src2, dst] where the non-VEX format is +// [src1, src2_and_dst]. If src2 != dst, then src1 must != dst too. +// +// \insn gives the instruction without a "v" prefix and including any immediate +// argument if needed to make the instruction follow one of the above formats. +// If \unaligned_mem_tmp is given, then the emitted non-VEX code moves \arg1 to +// it first; this is needed when \arg1 is an unaligned mem operand. +.macro _cond_vex insn:req, arg1:req, arg2:req, arg3, unaligned_mem_tmp +.if AVX_LEVEL == 0 + // VEX not allowed. Emulate it. + .ifnb \arg3 // Three-arg [src1, src2, dst] + .ifc "\arg2", "\arg3" // src2 == dst? + .ifnb \unaligned_mem_tmp + movdqu \arg1, \unaligned_mem_tmp + \insn \unaligned_mem_tmp, \arg3 + .else + \insn \arg1, \arg3 + .endif + .else // src2 != dst + .ifc "\arg1", "\arg3" + .error "Can't have src1 == dst when src2 != dst" + .endif + .ifnb \unaligned_mem_tmp + movdqu \arg1, \unaligned_mem_tmp + movdqa \arg2, \arg3 + \insn \unaligned_mem_tmp, \arg3 + .else + movdqa \arg2, \arg3 + \insn \arg1, \arg3 + .endif + .endif + .else // Two-arg [src, dst] + .ifnb \unaligned_mem_tmp + movdqu \arg1, \unaligned_mem_tmp + \insn \unaligned_mem_tmp, \arg2 + .else + \insn \arg1, \arg2 + .endif + .endif +.else + // VEX is allowed. Emit the desired instruction directly. + .ifnb \arg3 + v\insn \arg1, \arg2, \arg3 + .else + v\insn \arg1, \arg2 + .endif +.endif +.endm + +// Broadcast an aligned 128-bit mem operand to all 128-bit lanes of a vector +// register of length VL. +.macro _vbroadcast src, dst +.if VL == 16 + _cond_vex movdqa, \src, \dst +.elseif VL == 32 + vbroadcasti128 \src, \dst +.else + vbroadcasti32x4 \src, \dst +.endif +.endm + +// Load \vl bytes from the unaligned mem operand \src into \dst, and if the CRC +// is msb-first use \bswap_mask to reflect the bytes within each 128-bit lane. +.macro _load_data vl, src, bswap_mask, dst +.if \vl < 64 + _cond_vex movdqu, "\src", \dst +.else + vmovdqu8 \src, \dst +.endif +.if !LSB_CRC + _cond_vex pshufb, \bswap_mask, \dst, \dst +.endif +.endm + +.macro _prepare_v0 vl, v0, v1, bswap_mask +.if LSB_CRC + .if \vl < 64 + _cond_vex pxor, (BUF), \v0, \v0, unaligned_mem_tmp=\v1 + .else + vpxorq (BUF), \v0, \v0 + .endif +.else + _load_data \vl, (BUF), \bswap_mask, \v1 + .if \vl < 64 + _cond_vex pxor, \v1, \v0, \v0 + .else + vpxorq \v1, \v0, \v0 + .endif +.endif +.endm + +// The x^0..x^63 terms, i.e. poly128 mod x^64, i.e. the physically low qword for +// msb-first order or the physically high qword for lsb-first order +#define LO64_TERMS 0 + +// The x^64..x^127 terms, i.e. floor(poly128 / x^64), i.e. the physically high +// qword for msb-first order or the physically low qword for lsb-first order +#define HI64_TERMS 1 + +// Multiply the given \src1_terms of each 128-bit lane of \src1 by the given +// \src2_terms of each 128-bit lane of \src2, and write the result(s) to \dst. +.macro _pclmulqdq src1, src1_terms, src2, src2_terms, dst + _cond_vex "pclmulqdq $((\src1_terms ^ LSB_CRC) << 4) ^ (\src2_terms ^ LSB_CRC),", \ + \src1, \src2, \dst +.endm + +// Fold \acc into \data and store the result back into \acc. \data can be an +// unaligned mem operand if using VEX is allowed and the CRC is lsb-first so no +// byte-reflection is needed; otherwise it must be a vector register. \consts +// is a vector register containing the needed fold constants, and \tmp is a +// temporary vector register. All arguments must be the same length. +.macro _fold_vec acc, data, consts, tmp + _pclmulqdq \consts, HI64_TERMS, \acc, HI64_TERMS, \tmp + _pclmulqdq \consts, LO64_TERMS, \acc, LO64_TERMS, \acc +.if AVX_LEVEL <= 2 + _cond_vex pxor, \data, \tmp, \tmp + _cond_vex pxor, \tmp, \acc, \acc +.else + vpternlogq $0x96, \data, \tmp, \acc +.endif +.endm + +// Fold \acc into \data and store the result back into \acc. \data is an +// unaligned mem operand, \consts is a vector register containing the needed +// fold constants, \bswap_mask is a vector register containing the +// byte-reflection table if the CRC is msb-first, and \tmp1 and \tmp2 are +// temporary vector registers. All arguments must have length \vl. +.macro _fold_vec_mem vl, acc, data, consts, bswap_mask, tmp1, tmp2 +.if AVX_LEVEL == 0 || !LSB_CRC + _load_data \vl, \data, \bswap_mask, \tmp1 + _fold_vec \acc, \tmp1, \consts, \tmp2 +.else + _fold_vec \acc, \data, \consts, \tmp1 +.endif +.endm + +// Load the constants for folding across 2**i vectors of length VL at a time +// into all 128-bit lanes of the vector register CONSTS. +.macro _load_vec_folding_consts i + _vbroadcast OFFSETOF_FOLD_ACROSS_128_BITS_CONSTS+(4-LOG2_VL-\i)*16(CONSTS_PTR), \ + CONSTS +.endm + +// Given vector registers \v0 and \v1 of length \vl, fold \v0 into \v1 and store +// the result back into \v0. If the remaining length mod \vl is nonzero, also +// fold \vl data bytes from BUF. For both operations the fold distance is \vl. +// \consts must be a register of length \vl containing the fold constants. +.macro _fold_vec_final vl, v0, v1, consts, bswap_mask, tmp1, tmp2 + _fold_vec \v0, \v1, \consts, \tmp1 + test $\vl, LEN8 + jz .Lfold_vec_final_done\@ + _fold_vec_mem \vl, \v0, (BUF), \consts, \bswap_mask, \tmp1, \tmp2 + add $\vl, BUF +.Lfold_vec_final_done\@: +.endm + +// This macro generates the body of a CRC function with the following prototype: +// +// crc_t crc_func(crc_t crc, const u8 *buf, size_t len, const void *consts); +// +// |crc| is the initial CRC, and crc_t is a data type wide enough to hold it. +// |buf| is the data to checksum. |len| is the data length in bytes, which must +// be at least 16. |consts| is a pointer to the fold_across_128_bits_consts +// field of the constants struct that was generated for the chosen CRC variant. +// +// Moving onto the macro parameters, \n is the number of bits in the CRC, e.g. +// 32 for a CRC-32. Currently the supported values are 8, 16, 32, and 64. If +// the file is compiled in i386 mode, then the maximum supported value is 32. +// +// \lsb_crc is 1 if the CRC processes the least significant bit of each byte +// first, i.e. maps bit0 to x^7, bit1 to x^6, ..., bit7 to x^0. \lsb_crc is 0 +// if the CRC processes the most significant bit of each byte first, i.e. maps +// bit0 to x^0, bit1 to x^1, bit7 to x^7. +// +// \vl is the maximum length of vector register to use in bytes: 16, 32, or 64. +// +// \avx_level is the level of AVX support to use: 0 for SSE only, 2 for AVX2, or +// 512 for AVX512. +// +// If \vl == 16 && \avx_level == 0, the generated code requires: +// PCLMULQDQ && SSE4.1. (Note: all known CPUs with PCLMULQDQ also have SSE4.1.) +// +// If \vl == 32 && \avx_level == 2, the generated code requires: +// VPCLMULQDQ && AVX2. +// +// If \vl == 64 && \avx_level == 512, the generated code requires: +// VPCLMULQDQ && AVX512BW && AVX512VL. +// +// Other \vl and \avx_level combinations are either not supported or not useful. +.macro _crc_pclmul n, lsb_crc, vl, avx_level + .set LSB_CRC, \lsb_crc + .set VL, \vl + .set AVX_LEVEL, \avx_level + + // Define aliases for the xmm, ymm, or zmm registers according to VL. +.irp i, 0,1,2,3,4,5,6,7 + .if VL == 16 + .set V\i, %xmm\i + .set LOG2_VL, 4 + .elseif VL == 32 + .set V\i, %ymm\i + .set LOG2_VL, 5 + .elseif VL == 64 + .set V\i, %zmm\i + .set LOG2_VL, 6 + .else + .error "Unsupported vector length" + .endif +.endr + // Define aliases for the function parameters. + // Note: when crc_t is shorter than u32, zero-extension to 32 bits is + // guaranteed by the ABI. Zero-extension to 64 bits is *not* guaranteed + // when crc_t is shorter than u64. +#ifdef __x86_64__ +.if \n <= 32 + .set CRC, %edi +.else + .set CRC, %rdi +.endif + .set BUF, %rsi + .set LEN, %rdx + .set LEN32, %edx + .set LEN8, %dl + .set CONSTS_PTR, %rcx +#else + // 32-bit support, assuming -mregparm=3 and not including support for + // CRC-64 (which would use both eax and edx to pass the crc parameter). + .set CRC, %eax + .set BUF, %edx + .set LEN, %ecx + .set LEN32, %ecx + .set LEN8, %cl + .set CONSTS_PTR, %ebx // Passed on stack +#endif + + // Define aliases for some local variables. V0-V5 are used without + // aliases (for accumulators, data, temporary values, etc). Staying + // within the first 8 vector registers keeps the code 32-bit SSE + // compatible and reduces the size of 64-bit SSE code slightly. + .set BSWAP_MASK, V6 + .set BSWAP_MASK_YMM, %ymm6 + .set BSWAP_MASK_XMM, %xmm6 + .set CONSTS, V7 + .set CONSTS_YMM, %ymm7 + .set CONSTS_XMM, %xmm7 + + // Use ANNOTATE_NOENDBR to suppress an objtool warning, since the + // functions generated by this macro are called only by static_call. + ANNOTATE_NOENDBR + +#ifdef __i386__ + push CONSTS_PTR + mov 8(%esp), CONSTS_PTR +#endif + + // Create a 128-bit vector that contains the initial CRC in the end + // representing the high-order polynomial coefficients, and the rest 0. + // If the CRC is msb-first, also load the byte-reflection table. +.if \n <= 32 + _cond_vex movd, CRC, %xmm0 +.else + _cond_vex movq, CRC, %xmm0 +.endif +.if !LSB_CRC + _cond_vex pslldq, $(128-\n)/8, %xmm0, %xmm0 + _vbroadcast OFFSETOF_BSWAP_MASK(CONSTS_PTR), BSWAP_MASK +.endif + + // Load the first vector of data and XOR the initial CRC into the + // appropriate end of the first 128-bit lane of data. If LEN < VL, then + // use a short vector and jump ahead to the final reduction. (LEN >= 16 + // is guaranteed here but not necessarily LEN >= VL.) +.if VL >= 32 + cmp $VL, LEN + jae .Lat_least_1vec\@ + .if VL == 64 + cmp $32, LEN32 + jb .Lless_than_32bytes\@ + _prepare_v0 32, %ymm0, %ymm1, BSWAP_MASK_YMM + add $32, BUF + jmp .Lreduce_256bits_to_128bits\@ +.Lless_than_32bytes\@: + .endif + _prepare_v0 16, %xmm0, %xmm1, BSWAP_MASK_XMM + add $16, BUF + vmovdqa OFFSETOF_FOLD_ACROSS_128_BITS_CONSTS(CONSTS_PTR), CONSTS_XMM + jmp .Lcheck_for_partial_block\@ +.Lat_least_1vec\@: +.endif + _prepare_v0 VL, V0, V1, BSWAP_MASK + + // Handle VL <= LEN < 4*VL. + cmp $4*VL-1, LEN + ja .Lat_least_4vecs\@ + add $VL, BUF + // If VL <= LEN < 2*VL, then jump ahead to the reduction from 1 vector. + // If VL==16 then load fold_across_128_bits_consts first, as the final + // reduction depends on it and it won't be loaded anywhere else. + cmp $2*VL-1, LEN32 +.if VL == 16 + _cond_vex movdqa, OFFSETOF_FOLD_ACROSS_128_BITS_CONSTS(CONSTS_PTR), CONSTS_XMM +.endif + jbe .Lreduce_1vec_to_128bits\@ + // Otherwise 2*VL <= LEN < 4*VL. Load one more vector and jump ahead to + // the reduction from 2 vectors. + _load_data VL, (BUF), BSWAP_MASK, V1 + add $VL, BUF + jmp .Lreduce_2vecs_to_1\@ + +.Lat_least_4vecs\@: + // Load 3 more vectors of data. + _load_data VL, 1*VL(BUF), BSWAP_MASK, V1 + _load_data VL, 2*VL(BUF), BSWAP_MASK, V2 + _load_data VL, 3*VL(BUF), BSWAP_MASK, V3 + sub $-4*VL, BUF // Shorter than 'add 4*VL' when VL=32 + add $-4*VL, LEN // Shorter than 'sub 4*VL' when VL=32 + + // Main loop: while LEN >= 4*VL, fold the 4 vectors V0-V3 into the next + // 4 vectors of data and write the result back to V0-V3. + cmp $4*VL-1, LEN // Shorter than 'cmp 4*VL' when VL=32 + jbe .Lreduce_4vecs_to_2\@ + _load_vec_folding_consts 2 +.Lfold_4vecs_loop\@: + _fold_vec_mem VL, V0, 0*VL(BUF), CONSTS, BSWAP_MASK, V4, V5 + _fold_vec_mem VL, V1, 1*VL(BUF), CONSTS, BSWAP_MASK, V4, V5 + _fold_vec_mem VL, V2, 2*VL(BUF), CONSTS, BSWAP_MASK, V4, V5 + _fold_vec_mem VL, V3, 3*VL(BUF), CONSTS, BSWAP_MASK, V4, V5 + sub $-4*VL, BUF + add $-4*VL, LEN + cmp $4*VL-1, LEN + ja .Lfold_4vecs_loop\@ + + // Fold V0,V1 into V2,V3 and write the result back to V0,V1. Then fold + // two more vectors of data from BUF, if at least that much remains. +.Lreduce_4vecs_to_2\@: + _load_vec_folding_consts 1 + _fold_vec V0, V2, CONSTS, V4 + _fold_vec V1, V3, CONSTS, V4 + test $2*VL, LEN8 + jz .Lreduce_2vecs_to_1\@ + _fold_vec_mem VL, V0, 0*VL(BUF), CONSTS, BSWAP_MASK, V4, V5 + _fold_vec_mem VL, V1, 1*VL(BUF), CONSTS, BSWAP_MASK, V4, V5 + sub $-2*VL, BUF + + // Fold V0 into V1 and write the result back to V0. Then fold one more + // vector of data from BUF, if at least that much remains. +.Lreduce_2vecs_to_1\@: + _load_vec_folding_consts 0 + _fold_vec_final VL, V0, V1, CONSTS, BSWAP_MASK, V4, V5 + +.Lreduce_1vec_to_128bits\@: +.if VL == 64 + // Reduce 512-bit %zmm0 to 256-bit %ymm0. Then fold 256 more bits of + // data from BUF, if at least that much remains. + vbroadcasti128 OFFSETOF_FOLD_ACROSS_256_BITS_CONSTS(CONSTS_PTR), CONSTS_YMM + vextracti64x4 $1, %zmm0, %ymm1 + _fold_vec_final 32, %ymm0, %ymm1, CONSTS_YMM, BSWAP_MASK_YMM, %ymm4, %ymm5 +.Lreduce_256bits_to_128bits\@: +.endif +.if VL >= 32 + // Reduce 256-bit %ymm0 to 128-bit %xmm0. Then fold 128 more bits of + // data from BUF, if at least that much remains. + vmovdqa OFFSETOF_FOLD_ACROSS_128_BITS_CONSTS(CONSTS_PTR), CONSTS_XMM + vextracti128 $1, %ymm0, %xmm1 + _fold_vec_final 16, %xmm0, %xmm1, CONSTS_XMM, BSWAP_MASK_XMM, %xmm4, %xmm5 +.Lcheck_for_partial_block\@: +.endif + and $15, LEN32 + jz .Lreduce_128bits_to_crc\@ + + // 1 <= LEN <= 15 data bytes remain in BUF. The polynomial is now + // A*(x^(8*LEN)) + B, where A is the 128-bit polynomial stored in %xmm0 + // and B is the polynomial of the remaining LEN data bytes. To reduce + // this to 128 bits without needing fold constants for each possible + // LEN, rearrange this expression into C1*(x^128) + C2, where + // C1 = floor(A / x^(128 - 8*LEN)) and C2 = A*x^(8*LEN) + B mod x^128. + // Then fold C1 into C2, which is just another fold across 128 bits. + +.if !LSB_CRC || AVX_LEVEL == 0 + // Load the last 16 data bytes. Note that originally LEN was >= 16. + _load_data 16, "-16(BUF,LEN)", BSWAP_MASK_XMM, %xmm2 +.endif // Else will use vpblendvb mem operand later. +.if !LSB_CRC + neg LEN // Needed for indexing shuf_table +.endif + + // tmp = A*x^(8*LEN) mod x^128 + // lsb: pshufb by [LEN, LEN+1, ..., 15, -1, -1, ..., -1] + // i.e. right-shift by LEN bytes. + // msb: pshufb by [-1, -1, ..., -1, 0, 1, ..., 15-LEN] + // i.e. left-shift by LEN bytes. + _cond_vex movdqu, "OFFSETOF_SHUF_TABLE+16(CONSTS_PTR,LEN)", %xmm3 + _cond_vex pshufb, %xmm3, %xmm0, %xmm1 + + // C1 = floor(A / x^(128 - 8*LEN)) + // lsb: pshufb by [-1, -1, ..., -1, 0, 1, ..., LEN-1] + // i.e. left-shift by 16-LEN bytes. + // msb: pshufb by [16-LEN, 16-LEN+1, ..., 15, -1, -1, ..., -1] + // i.e. right-shift by 16-LEN bytes. + _cond_vex pshufb, "OFFSETOF_SHUF_TABLE+32*!LSB_CRC(CONSTS_PTR,LEN)", \ + %xmm0, %xmm0, unaligned_mem_tmp=%xmm4 + + // C2 = tmp + B. This is just a blend of tmp with the last 16 data + // bytes (reflected if msb-first). The blend mask is the shuffle table + // that was used to create tmp. 0 selects tmp, and 1 last16databytes. +.if AVX_LEVEL == 0 + movdqa %xmm0, %xmm4 + movdqa %xmm3, %xmm0 + pblendvb %xmm2, %xmm1 // uses %xmm0 as implicit operand + movdqa %xmm4, %xmm0 +.elseif LSB_CRC + vpblendvb %xmm3, -16(BUF,LEN), %xmm1, %xmm1 +.else + vpblendvb %xmm3, %xmm2, %xmm1, %xmm1 +.endif + + // Fold C1 into C2 and store the 128-bit result in %xmm0. + _fold_vec %xmm0, %xmm1, CONSTS_XMM, %xmm4 + +.Lreduce_128bits_to_crc\@: + // Compute the CRC as %xmm0 * x^n mod G. Here %xmm0 means the 128-bit + // polynomial stored in %xmm0 (using either lsb-first or msb-first bit + // order according to LSB_CRC), and G is the CRC's generator polynomial. + + // First, multiply %xmm0 by x^n and reduce the result to 64+n bits: + // + // t0 := (x^(64+n) mod G) * floor(%xmm0 / x^64) + + // x^n * (%xmm0 mod x^64) + // + // Store t0 * x^(64-n) in %xmm0. I.e., actually do: + // + // %xmm0 := ((x^(64+n) mod G) * x^(64-n)) * floor(%xmm0 / x^64) + + // x^64 * (%xmm0 mod x^64) + // + // The extra unreduced factor of x^(64-n) makes floor(t0 / x^n) aligned + // to the HI64_TERMS of %xmm0 so that the next pclmulqdq can easily + // select it. The 64-bit constant (x^(64+n) mod G) * x^(64-n) in the + // msb-first case, or (x^(63+n) mod G) * x^(64-n) in the lsb-first case + // (considering the extra factor of x that gets implicitly introduced by + // each pclmulqdq when using lsb-first order), is identical to the + // constant that was used earlier for folding the LO64_TERMS across 128 + // bits. Thus it's already available in LO64_TERMS of CONSTS_XMM. + _pclmulqdq CONSTS_XMM, LO64_TERMS, %xmm0, HI64_TERMS, %xmm1 +.if LSB_CRC + _cond_vex psrldq, $8, %xmm0, %xmm0 // x^64 * (%xmm0 mod x^64) +.else + _cond_vex pslldq, $8, %xmm0, %xmm0 // x^64 * (%xmm0 mod x^64) +.endif + _cond_vex pxor, %xmm1, %xmm0, %xmm0 + // The HI64_TERMS of %xmm0 now contain floor(t0 / x^n). + // The LO64_TERMS of %xmm0 now contain (t0 mod x^n) * x^(64-n). + + // First step of Barrett reduction: Compute floor(t0 / G). This is the + // polynomial by which G needs to be multiplied to cancel out the x^n + // and higher terms of t0, i.e. to reduce t0 mod G. First do: + // + // t1 := floor(x^(63+n) / G) * x * floor(t0 / x^n) + // + // Then the desired value floor(t0 / G) is floor(t1 / x^64). The 63 in + // x^(63+n) is the maximum degree of floor(t0 / x^n) and thus the lowest + // value that makes enough precision be carried through the calculation. + // + // The '* x' makes it so the result is floor(t1 / x^64) rather than + // floor(t1 / x^63), making it qword-aligned in HI64_TERMS so that it + // can be extracted much more easily in the next step. In the lsb-first + // case the '* x' happens implicitly. In the msb-first case it must be + // done explicitly; floor(x^(63+n) / G) * x is a 65-bit constant, so the + // constant passed to pclmulqdq is (floor(x^(63+n) / G) * x) - x^64, and + // the multiplication by the x^64 term is handled using a pxor. The + // pxor causes the low 64 terms of t1 to be wrong, but they are unused. + _cond_vex movdqa, OFFSETOF_BARRETT_REDUCTION_CONSTS(CONSTS_PTR), CONSTS_XMM + _pclmulqdq CONSTS_XMM, HI64_TERMS, %xmm0, HI64_TERMS, %xmm1 +.if !LSB_CRC + _cond_vex pxor, %xmm0, %xmm1, %xmm1 // += x^64 * floor(t0 / x^n) +.endif + // The HI64_TERMS of %xmm1 now contain floor(t1 / x^64) = floor(t0 / G). + + // Second step of Barrett reduction: Cancel out the x^n and higher terms + // of t0 by subtracting the needed multiple of G. This gives the CRC: + // + // crc := t0 - (G * floor(t0 / G)) + // + // But %xmm0 contains t0 * x^(64-n), so it's more convenient to do: + // + // crc := ((t0 * x^(64-n)) - ((G * x^(64-n)) * floor(t0 / G))) / x^(64-n) + // + // Furthermore, since the resulting CRC is n-bit, if mod x^n is + // explicitly applied to it then the x^n term of G makes no difference + // in the result and can be omitted. This helps keep the constant + // multiplier in 64 bits in most cases. This gives the following: + // + // %xmm0 := %xmm0 - (((G - x^n) * x^(64-n)) * floor(t0 / G)) + // crc := (%xmm0 / x^(64-n)) mod x^n + // + // In the lsb-first case, each pclmulqdq implicitly introduces + // an extra factor of x, so in that case the constant that needs to be + // passed to pclmulqdq is actually '(G - x^n) * x^(63-n)' when n <= 63. + // For lsb-first CRCs where n=64, the extra factor of x cannot be as + // easily avoided. In that case, instead pass '(G - x^n - x^0) / x' to + // pclmulqdq and handle the x^0 term (i.e. 1) separately. (All CRC + // polynomials have nonzero x^n and x^0 terms.) It works out as: the + // CRC has be XORed with the physically low qword of %xmm1, representing + // floor(t0 / G). The most efficient way to do that is to move it to + // the physically high qword and use a ternlog to combine the two XORs. +.if LSB_CRC && \n == 64 + _cond_vex punpcklqdq, %xmm1, %xmm2, %xmm2 + _pclmulqdq CONSTS_XMM, LO64_TERMS, %xmm1, HI64_TERMS, %xmm1 + .if AVX_LEVEL <= 2 + _cond_vex pxor, %xmm2, %xmm0, %xmm0 + _cond_vex pxor, %xmm1, %xmm0, %xmm0 + .else + vpternlogq $0x96, %xmm2, %xmm1, %xmm0 + .endif + _cond_vex "pextrq $1,", %xmm0, %rax // (%xmm0 / x^0) mod x^64 +.else + _pclmulqdq CONSTS_XMM, LO64_TERMS, %xmm1, HI64_TERMS, %xmm1 + _cond_vex pxor, %xmm1, %xmm0, %xmm0 + .if \n == 8 + _cond_vex "pextrb $7 + LSB_CRC,", %xmm0, %eax // (%xmm0 / x^56) mod x^8 + .elseif \n == 16 + _cond_vex "pextrw $3 + LSB_CRC,", %xmm0, %eax // (%xmm0 / x^48) mod x^16 + .elseif \n == 32 + _cond_vex "pextrd $1 + LSB_CRC,", %xmm0, %eax // (%xmm0 / x^32) mod x^32 + .else // \n == 64 && !LSB_CRC + _cond_vex movq, %xmm0, %rax // (%xmm0 / x^0) mod x^64 + .endif +.endif + +.if VL > 16 + vzeroupper // Needed when ymm or zmm registers may have been used. +.endif +#ifdef __i386__ + pop CONSTS_PTR +#endif + RET +.endm + +#ifdef CONFIG_AS_VPCLMULQDQ +#define DEFINE_CRC_PCLMUL_FUNCS(prefix, bits, lsb) \ +SYM_FUNC_START(prefix##_pclmul_sse); \ + _crc_pclmul n=bits, lsb_crc=lsb, vl=16, avx_level=0; \ +SYM_FUNC_END(prefix##_pclmul_sse); \ + \ +SYM_FUNC_START(prefix##_vpclmul_avx2); \ + _crc_pclmul n=bits, lsb_crc=lsb, vl=32, avx_level=2; \ +SYM_FUNC_END(prefix##_vpclmul_avx2); \ + \ +SYM_FUNC_START(prefix##_vpclmul_avx512); \ + _crc_pclmul n=bits, lsb_crc=lsb, vl=64, avx_level=512; \ +SYM_FUNC_END(prefix##_vpclmul_avx512); +#else +#define DEFINE_CRC_PCLMUL_FUNCS(prefix, bits, lsb) \ +SYM_FUNC_START(prefix##_pclmul_sse); \ + _crc_pclmul n=bits, lsb_crc=lsb, vl=16, avx_level=0; \ +SYM_FUNC_END(prefix##_pclmul_sse); +#endif // !CONFIG_AS_VPCLMULQDQ diff --git a/arch/x86/lib/crc-pclmul-template.h b/arch/x86/lib/crc-pclmul-template.h new file mode 100644 index 000000000000..c5b3bfe11d8d --- /dev/null +++ b/arch/x86/lib/crc-pclmul-template.h @@ -0,0 +1,76 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * Macros for accessing the [V]PCLMULQDQ-based CRC functions that are + * instantiated by crc-pclmul-template.S + * + * Copyright 2025 Google LLC + * + * Author: Eric Biggers <ebiggers@google.com> + */ +#ifndef _CRC_PCLMUL_TEMPLATE_H +#define _CRC_PCLMUL_TEMPLATE_H + +#include <asm/cpufeatures.h> +#include <asm/simd.h> +#include <crypto/internal/simd.h> +#include <linux/static_call.h> +#include "crc-pclmul-consts.h" + +#define DECLARE_CRC_PCLMUL_FUNCS(prefix, crc_t) \ +crc_t prefix##_pclmul_sse(crc_t crc, const u8 *p, size_t len, \ + const void *consts_ptr); \ +crc_t prefix##_vpclmul_avx2(crc_t crc, const u8 *p, size_t len, \ + const void *consts_ptr); \ +crc_t prefix##_vpclmul_avx512(crc_t crc, const u8 *p, size_t len, \ + const void *consts_ptr); \ +DEFINE_STATIC_CALL(prefix##_pclmul, prefix##_pclmul_sse) + +#define INIT_CRC_PCLMUL(prefix) \ +do { \ + if (IS_ENABLED(CONFIG_AS_VPCLMULQDQ) && \ + boot_cpu_has(X86_FEATURE_VPCLMULQDQ) && \ + boot_cpu_has(X86_FEATURE_AVX2) && \ + cpu_has_xfeatures(XFEATURE_MASK_YMM, NULL)) { \ + if (boot_cpu_has(X86_FEATURE_AVX512BW) && \ + boot_cpu_has(X86_FEATURE_AVX512VL) && \ + !boot_cpu_has(X86_FEATURE_PREFER_YMM) && \ + cpu_has_xfeatures(XFEATURE_MASK_AVX512, NULL)) { \ + static_call_update(prefix##_pclmul, \ + prefix##_vpclmul_avx512); \ + } else { \ + static_call_update(prefix##_pclmul, \ + prefix##_vpclmul_avx2); \ + } \ + } \ +} while (0) + +/* + * Call a [V]PCLMULQDQ optimized CRC function if the data length is at least 16 + * bytes, the CPU has PCLMULQDQ support, and the current context may use SIMD. + * + * 16 bytes is the minimum length supported by the [V]PCLMULQDQ functions. + * There is overhead associated with kernel_fpu_begin() and kernel_fpu_end(), + * varying by CPU and factors such as which parts of the "FPU" state userspace + * has touched, which could result in a larger cutoff being better. Indeed, a + * larger cutoff is usually better for a *single* message. However, the + * overhead of the FPU section gets amortized if multiple FPU sections get + * executed before returning to userspace, since the XSAVE and XRSTOR occur only + * once. Considering that and the fact that the [V]PCLMULQDQ code is lighter on + * the dcache than the table-based code is, a 16-byte cutoff seems to work well. + */ +#define CRC_PCLMUL(crc, p, len, prefix, consts, have_pclmulqdq) \ +do { \ + if ((len) >= 16 && static_branch_likely(&(have_pclmulqdq)) && \ + crypto_simd_usable()) { \ + const void *consts_ptr; \ + \ + consts_ptr = (consts).fold_across_128_bits_consts; \ + kernel_fpu_begin(); \ + crc = static_call(prefix##_pclmul)((crc), (p), (len), \ + consts_ptr); \ + kernel_fpu_end(); \ + return crc; \ + } \ +} while (0) + +#endif /* _CRC_PCLMUL_TEMPLATE_H */ diff --git a/arch/x86/lib/crc-t10dif-glue.c b/arch/x86/lib/crc-t10dif-glue.c deleted file mode 100644 index 13f07ddc9122..000000000000 --- a/arch/x86/lib/crc-t10dif-glue.c +++ /dev/null @@ -1,51 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0-or-later -/* - * CRC-T10DIF using PCLMULQDQ instructions - * - * Copyright 2024 Google LLC - */ - -#include <asm/cpufeatures.h> -#include <asm/simd.h> -#include <crypto/internal/simd.h> -#include <linux/crc-t10dif.h> -#include <linux/module.h> - -static DEFINE_STATIC_KEY_FALSE(have_pclmulqdq); - -asmlinkage u16 crc_t10dif_pcl(u16 init_crc, const u8 *buf, size_t len); - -u16 crc_t10dif_arch(u16 crc, const u8 *p, size_t len) -{ - if (len >= 16 && - static_key_enabled(&have_pclmulqdq) && crypto_simd_usable()) { - kernel_fpu_begin(); - crc = crc_t10dif_pcl(crc, p, len); - kernel_fpu_end(); - return crc; - } - return crc_t10dif_generic(crc, p, len); -} -EXPORT_SYMBOL(crc_t10dif_arch); - -static int __init crc_t10dif_x86_init(void) -{ - if (boot_cpu_has(X86_FEATURE_PCLMULQDQ)) - static_branch_enable(&have_pclmulqdq); - return 0; -} -arch_initcall(crc_t10dif_x86_init); - -static void __exit crc_t10dif_x86_exit(void) -{ -} -module_exit(crc_t10dif_x86_exit); - -bool crc_t10dif_is_optimized(void) -{ - return static_key_enabled(&have_pclmulqdq); -} -EXPORT_SYMBOL(crc_t10dif_is_optimized); - -MODULE_DESCRIPTION("CRC-T10DIF using PCLMULQDQ instructions"); -MODULE_LICENSE("GPL"); diff --git a/arch/x86/lib/crc-t10dif.c b/arch/x86/lib/crc-t10dif.c new file mode 100644 index 000000000000..db7ce59c31ac --- /dev/null +++ b/arch/x86/lib/crc-t10dif.c @@ -0,0 +1,40 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * CRC-T10DIF using [V]PCLMULQDQ instructions + * + * Copyright 2024 Google LLC + */ + +#include <linux/crc-t10dif.h> +#include <linux/module.h> +#include "crc-pclmul-template.h" + +static __ro_after_init DEFINE_STATIC_KEY_FALSE(have_pclmulqdq); + +DECLARE_CRC_PCLMUL_FUNCS(crc16_msb, u16); + +u16 crc_t10dif_arch(u16 crc, const u8 *p, size_t len) +{ + CRC_PCLMUL(crc, p, len, crc16_msb, crc16_msb_0x8bb7_consts, + have_pclmulqdq); + return crc_t10dif_generic(crc, p, len); +} +EXPORT_SYMBOL(crc_t10dif_arch); + +static int __init crc_t10dif_x86_init(void) +{ + if (boot_cpu_has(X86_FEATURE_PCLMULQDQ)) { + static_branch_enable(&have_pclmulqdq); + INIT_CRC_PCLMUL(crc16_msb); + } + return 0; +} +subsys_initcall(crc_t10dif_x86_init); + +static void __exit crc_t10dif_x86_exit(void) +{ +} +module_exit(crc_t10dif_x86_exit); + +MODULE_DESCRIPTION("CRC-T10DIF using [V]PCLMULQDQ instructions"); +MODULE_LICENSE("GPL"); diff --git a/arch/x86/lib/crc16-msb-pclmul.S b/arch/x86/lib/crc16-msb-pclmul.S new file mode 100644 index 000000000000..e9fe248093a8 --- /dev/null +++ b/arch/x86/lib/crc16-msb-pclmul.S @@ -0,0 +1,6 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +// Copyright 2025 Google LLC + +#include "crc-pclmul-template.S" + +DEFINE_CRC_PCLMUL_FUNCS(crc16_msb, /* bits= */ 16, /* lsb= */ 0) diff --git a/arch/x86/lib/crc32-pclmul.S b/arch/x86/lib/crc32-pclmul.S index f9637789cac1..f20f40fb0172 100644 --- a/arch/x86/lib/crc32-pclmul.S +++ b/arch/x86/lib/crc32-pclmul.S @@ -1,217 +1,6 @@ -/* SPDX-License-Identifier: GPL-2.0-only */ -/* - * Copyright 2012 Xyratex Technology Limited - * - * Using hardware provided PCLMULQDQ instruction to accelerate the CRC32 - * calculation. - * CRC32 polynomial:0x04c11db7(BE)/0xEDB88320(LE) - * PCLMULQDQ is a new instruction in Intel SSE4.2, the reference can be found - * at: - * http://www.intel.com/products/processor/manuals/ - * Intel(R) 64 and IA-32 Architectures Software Developer's Manual - * Volume 2B: Instruction Set Reference, N-Z - * - * Authors: Gregory Prestas <Gregory_Prestas@us.xyratex.com> - * Alexander Boyko <Alexander_Boyko@xyratex.com> - */ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +// Copyright 2025 Google LLC -#include <linux/linkage.h> +#include "crc-pclmul-template.S" - -.section .rodata -.align 16 -/* - * [x4*128+32 mod P(x) << 32)]' << 1 = 0x154442bd4 - * #define CONSTANT_R1 0x154442bd4LL - * - * [(x4*128-32 mod P(x) << 32)]' << 1 = 0x1c6e41596 - * #define CONSTANT_R2 0x1c6e41596LL - */ -.Lconstant_R2R1: - .octa 0x00000001c6e415960000000154442bd4 -/* - * [(x128+32 mod P(x) << 32)]' << 1 = 0x1751997d0 - * #define CONSTANT_R3 0x1751997d0LL - * - * [(x128-32 mod P(x) << 32)]' << 1 = 0x0ccaa009e - * #define CONSTANT_R4 0x0ccaa009eLL - */ -.Lconstant_R4R3: - .octa 0x00000000ccaa009e00000001751997d0 -/* - * [(x64 mod P(x) << 32)]' << 1 = 0x163cd6124 - * #define CONSTANT_R5 0x163cd6124LL - */ -.Lconstant_R5: - .octa 0x00000000000000000000000163cd6124 -.Lconstant_mask32: - .octa 0x000000000000000000000000FFFFFFFF -/* - * #define CRCPOLY_TRUE_LE_FULL 0x1DB710641LL - * - * Barrett Reduction constant (u64`) = u` = (x**64 / P(x))` = 0x1F7011641LL - * #define CONSTANT_RU 0x1F7011641LL - */ -.Lconstant_RUpoly: - .octa 0x00000001F701164100000001DB710641 - -#define CONSTANT %xmm0 - -#ifdef __x86_64__ -#define CRC %edi -#define BUF %rsi -#define LEN %rdx -#else -#define CRC %eax -#define BUF %edx -#define LEN %ecx -#endif - - - -.text -/** - * Calculate crc32 - * CRC - initial crc32 - * BUF - buffer (16 bytes aligned) - * LEN - sizeof buffer (16 bytes aligned), LEN should be greater than 63 - * return %eax crc32 - * u32 crc32_pclmul_le_16(u32 crc, const u8 *buffer, size_t len); - */ - -SYM_FUNC_START(crc32_pclmul_le_16) /* buffer and buffer size are 16 bytes aligned */ - movdqa (BUF), %xmm1 - movdqa 0x10(BUF), %xmm2 - movdqa 0x20(BUF), %xmm3 - movdqa 0x30(BUF), %xmm4 - movd CRC, CONSTANT - pxor CONSTANT, %xmm1 - sub $0x40, LEN - add $0x40, BUF - cmp $0x40, LEN - jb .Lless_64 - -#ifdef __x86_64__ - movdqa .Lconstant_R2R1(%rip), CONSTANT -#else - movdqa .Lconstant_R2R1, CONSTANT -#endif - -.Lloop_64:/* 64 bytes Full cache line folding */ - prefetchnta 0x40(BUF) - movdqa %xmm1, %xmm5 - movdqa %xmm2, %xmm6 - movdqa %xmm3, %xmm7 -#ifdef __x86_64__ - movdqa %xmm4, %xmm8 -#endif - pclmulqdq $0x00, CONSTANT, %xmm1 - pclmulqdq $0x00, CONSTANT, %xmm2 - pclmulqdq $0x00, CONSTANT, %xmm3 -#ifdef __x86_64__ - pclmulqdq $0x00, CONSTANT, %xmm4 -#endif - pclmulqdq $0x11, CONSTANT, %xmm5 - pclmulqdq $0x11, CONSTANT, %xmm6 - pclmulqdq $0x11, CONSTANT, %xmm7 -#ifdef __x86_64__ - pclmulqdq $0x11, CONSTANT, %xmm8 -#endif - pxor %xmm5, %xmm1 - pxor %xmm6, %xmm2 - pxor %xmm7, %xmm3 -#ifdef __x86_64__ - pxor %xmm8, %xmm4 -#else - /* xmm8 unsupported for x32 */ - movdqa %xmm4, %xmm5 - pclmulqdq $0x00, CONSTANT, %xmm4 - pclmulqdq $0x11, CONSTANT, %xmm5 - pxor %xmm5, %xmm4 -#endif - - pxor (BUF), %xmm1 - pxor 0x10(BUF), %xmm2 - pxor 0x20(BUF), %xmm3 - pxor 0x30(BUF), %xmm4 - - sub $0x40, LEN - add $0x40, BUF - cmp $0x40, LEN - jge .Lloop_64 -.Lless_64:/* Folding cache line into 128bit */ -#ifdef __x86_64__ - movdqa .Lconstant_R4R3(%rip), CONSTANT -#else - movdqa .Lconstant_R4R3, CONSTANT -#endif - prefetchnta (BUF) - - movdqa %xmm1, %xmm5 - pclmulqdq $0x00, CONSTANT, %xmm1 - pclmulqdq $0x11, CONSTANT, %xmm5 - pxor %xmm5, %xmm1 - pxor %xmm2, %xmm1 - - movdqa %xmm1, %xmm5 - pclmulqdq $0x00, CONSTANT, %xmm1 - pclmulqdq $0x11, CONSTANT, %xmm5 - pxor %xmm5, %xmm1 - pxor %xmm3, %xmm1 - - movdqa %xmm1, %xmm5 - pclmulqdq $0x00, CONSTANT, %xmm1 - pclmulqdq $0x11, CONSTANT, %xmm5 - pxor %xmm5, %xmm1 - pxor %xmm4, %xmm1 - - cmp $0x10, LEN - jb .Lfold_64 -.Lloop_16:/* Folding rest buffer into 128bit */ - movdqa %xmm1, %xmm5 - pclmulqdq $0x00, CONSTANT, %xmm1 - pclmulqdq $0x11, CONSTANT, %xmm5 - pxor %xmm5, %xmm1 - pxor (BUF), %xmm1 - sub $0x10, LEN - add $0x10, BUF - cmp $0x10, LEN - jge .Lloop_16 - -.Lfold_64: - /* perform the last 64 bit fold, also adds 32 zeroes - * to the input stream */ - pclmulqdq $0x01, %xmm1, CONSTANT /* R4 * xmm1.low */ - psrldq $0x08, %xmm1 - pxor CONSTANT, %xmm1 - - /* final 32-bit fold */ - movdqa %xmm1, %xmm2 -#ifdef __x86_64__ - movdqa .Lconstant_R5(%rip), CONSTANT - movdqa .Lconstant_mask32(%rip), %xmm3 -#else - movdqa .Lconstant_R5, CONSTANT - movdqa .Lconstant_mask32, %xmm3 -#endif - psrldq $0x04, %xmm2 - pand %xmm3, %xmm1 - pclmulqdq $0x00, CONSTANT, %xmm1 - pxor %xmm2, %xmm1 - - /* Finish up with the bit-reversed barrett reduction 64 ==> 32 bits */ -#ifdef __x86_64__ - movdqa .Lconstant_RUpoly(%rip), CONSTANT -#else - movdqa .Lconstant_RUpoly, CONSTANT -#endif - movdqa %xmm1, %xmm2 - pand %xmm3, %xmm1 - pclmulqdq $0x10, CONSTANT, %xmm1 - pand %xmm3, %xmm1 - pclmulqdq $0x00, CONSTANT, %xmm1 - pxor %xmm2, %xmm1 - pextrd $0x01, %xmm1, %eax - - RET -SYM_FUNC_END(crc32_pclmul_le_16) +DEFINE_CRC_PCLMUL_FUNCS(crc32_lsb, /* bits= */ 32, /* lsb= */ 1) diff --git a/arch/x86/lib/crc32-glue.c b/arch/x86/lib/crc32.c index 2dd18a886ded..d09343e2cea9 100644 --- a/arch/x86/lib/crc32-glue.c +++ b/arch/x86/lib/crc32.c @@ -7,43 +7,20 @@ * Copyright 2024 Google LLC */ -#include <asm/cpufeatures.h> -#include <asm/simd.h> -#include <crypto/internal/simd.h> #include <linux/crc32.h> -#include <linux/linkage.h> #include <linux/module.h> +#include "crc-pclmul-template.h" -/* minimum size of buffer for crc32_pclmul_le_16 */ -#define CRC32_PCLMUL_MIN_LEN 64 +static __ro_after_init DEFINE_STATIC_KEY_FALSE(have_crc32); +static __ro_after_init DEFINE_STATIC_KEY_FALSE(have_pclmulqdq); -static DEFINE_STATIC_KEY_FALSE(have_crc32); -static DEFINE_STATIC_KEY_FALSE(have_pclmulqdq); - -u32 crc32_pclmul_le_16(u32 crc, const u8 *buffer, size_t len); +DECLARE_CRC_PCLMUL_FUNCS(crc32_lsb, u32); u32 crc32_le_arch(u32 crc, const u8 *p, size_t len) { - if (len >= CRC32_PCLMUL_MIN_LEN + 15 && - static_branch_likely(&have_pclmulqdq) && crypto_simd_usable()) { - size_t n = -(uintptr_t)p & 15; - - /* align p to 16-byte boundary */ - if (n) { - crc = crc32_le_base(crc, p, n); - p += n; - len -= n; - } - n = round_down(len, 16); - kernel_fpu_begin(); - crc = crc32_pclmul_le_16(crc, p, n); - kernel_fpu_end(); - p += n; - len -= n; - } - if (len) - crc = crc32_le_base(crc, p, len); - return crc; + CRC_PCLMUL(crc, p, len, crc32_lsb, crc32_lsb_0xedb88320_consts, + have_pclmulqdq); + return crc32_le_base(crc, p, len); } EXPORT_SYMBOL(crc32_le_arch); @@ -61,12 +38,12 @@ EXPORT_SYMBOL(crc32_le_arch); asmlinkage u32 crc32c_x86_3way(u32 crc, const u8 *buffer, size_t len); -u32 crc32c_le_arch(u32 crc, const u8 *p, size_t len) +u32 crc32c_arch(u32 crc, const u8 *p, size_t len) { size_t num_longs; if (!static_branch_likely(&have_crc32)) - return crc32c_le_base(crc, p, len); + return crc32c_base(crc, p, len); if (IS_ENABLED(CONFIG_X86_64) && len >= CRC32C_PCLMUL_BREAKEVEN && static_branch_likely(&have_pclmulqdq) && crypto_simd_usable()) { @@ -78,14 +55,22 @@ u32 crc32c_le_arch(u32 crc, const u8 *p, size_t len) for (num_longs = len / sizeof(unsigned long); num_longs != 0; num_longs--, p += sizeof(unsigned long)) - asm(CRC32_INST : "+r" (crc) : "rm" (*(unsigned long *)p)); + asm(CRC32_INST : "+r" (crc) : ASM_INPUT_RM (*(unsigned long *)p)); - for (len %= sizeof(unsigned long); len; len--, p++) - asm("crc32b %1, %0" : "+r" (crc) : "rm" (*p)); + if (sizeof(unsigned long) > 4 && (len & 4)) { + asm("crc32l %1, %0" : "+r" (crc) : ASM_INPUT_RM (*(u32 *)p)); + p += 4; + } + if (len & 2) { + asm("crc32w %1, %0" : "+r" (crc) : ASM_INPUT_RM (*(u16 *)p)); + p += 2; + } + if (len & 1) + asm("crc32b %1, %0" : "+r" (crc) : ASM_INPUT_RM (*p)); return crc; } -EXPORT_SYMBOL(crc32c_le_arch); +EXPORT_SYMBOL(crc32c_arch); u32 crc32_be_arch(u32 crc, const u8 *p, size_t len) { @@ -97,11 +82,13 @@ static int __init crc32_x86_init(void) { if (boot_cpu_has(X86_FEATURE_XMM4_2)) static_branch_enable(&have_crc32); - if (boot_cpu_has(X86_FEATURE_PCLMULQDQ)) + if (boot_cpu_has(X86_FEATURE_PCLMULQDQ)) { static_branch_enable(&have_pclmulqdq); + INIT_CRC_PCLMUL(crc32_lsb); + } return 0; } -arch_initcall(crc32_x86_init); +subsys_initcall(crc32_x86_init); static void __exit crc32_x86_exit(void) { diff --git a/arch/x86/lib/crc64-pclmul.S b/arch/x86/lib/crc64-pclmul.S new file mode 100644 index 000000000000..4173051b5197 --- /dev/null +++ b/arch/x86/lib/crc64-pclmul.S @@ -0,0 +1,7 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +// Copyright 2025 Google LLC + +#include "crc-pclmul-template.S" + +DEFINE_CRC_PCLMUL_FUNCS(crc64_msb, /* bits= */ 64, /* lsb= */ 0) +DEFINE_CRC_PCLMUL_FUNCS(crc64_lsb, /* bits= */ 64, /* lsb= */ 1) diff --git a/arch/x86/lib/crc64.c b/arch/x86/lib/crc64.c new file mode 100644 index 000000000000..351a09f5813e --- /dev/null +++ b/arch/x86/lib/crc64.c @@ -0,0 +1,50 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * CRC64 using [V]PCLMULQDQ instructions + * + * Copyright 2025 Google LLC + */ + +#include <linux/crc64.h> +#include <linux/module.h> +#include "crc-pclmul-template.h" + +static __ro_after_init DEFINE_STATIC_KEY_FALSE(have_pclmulqdq); + +DECLARE_CRC_PCLMUL_FUNCS(crc64_msb, u64); +DECLARE_CRC_PCLMUL_FUNCS(crc64_lsb, u64); + +u64 crc64_be_arch(u64 crc, const u8 *p, size_t len) +{ + CRC_PCLMUL(crc, p, len, crc64_msb, crc64_msb_0x42f0e1eba9ea3693_consts, + have_pclmulqdq); + return crc64_be_generic(crc, p, len); +} +EXPORT_SYMBOL_GPL(crc64_be_arch); + +u64 crc64_nvme_arch(u64 crc, const u8 *p, size_t len) +{ + CRC_PCLMUL(crc, p, len, crc64_lsb, crc64_lsb_0x9a6c9329ac4bc9b5_consts, + have_pclmulqdq); + return crc64_nvme_generic(crc, p, len); +} +EXPORT_SYMBOL_GPL(crc64_nvme_arch); + +static int __init crc64_x86_init(void) +{ + if (boot_cpu_has(X86_FEATURE_PCLMULQDQ)) { + static_branch_enable(&have_pclmulqdq); + INIT_CRC_PCLMUL(crc64_msb); + INIT_CRC_PCLMUL(crc64_lsb); + } + return 0; +} +subsys_initcall(crc64_x86_init); + +static void __exit crc64_x86_exit(void) +{ +} +module_exit(crc64_x86_exit); + +MODULE_DESCRIPTION("CRC64 using [V]PCLMULQDQ instructions"); +MODULE_LICENSE("GPL"); diff --git a/arch/x86/lib/crct10dif-pcl-asm_64.S b/arch/x86/lib/crct10dif-pcl-asm_64.S deleted file mode 100644 index 5286db5b8165..000000000000 --- a/arch/x86/lib/crct10dif-pcl-asm_64.S +++ /dev/null @@ -1,332 +0,0 @@ -######################################################################## -# Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions -# -# Copyright (c) 2013, Intel Corporation -# -# Authors: -# Erdinc Ozturk <erdinc.ozturk@intel.com> -# Vinodh Gopal <vinodh.gopal@intel.com> -# James Guilford <james.guilford@intel.com> -# Tim Chen <tim.c.chen@linux.intel.com> -# -# This software is available to you under a choice of one of two -# licenses. You may choose to be licensed under the terms of the GNU -# General Public License (GPL) Version 2, available from the file -# COPYING in the main directory of this source tree, or the -# OpenIB.org BSD license below: -# -# Redistribution and use in source and binary forms, with or without -# modification, are permitted provided that the following conditions are -# met: -# -# * Redistributions of source code must retain the above copyright -# notice, this list of conditions and the following disclaimer. -# -# * Redistributions in binary form must reproduce the above copyright -# notice, this list of conditions and the following disclaimer in the -# documentation and/or other materials provided with the -# distribution. -# -# * Neither the name of the Intel Corporation nor the names of its -# contributors may be used to endorse or promote products derived from -# this software without specific prior written permission. -# -# -# THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY -# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR -# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR -# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, -# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, -# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR -# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF -# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING -# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -# -# Reference paper titled "Fast CRC Computation for Generic -# Polynomials Using PCLMULQDQ Instruction" -# URL: http://www.intel.com/content/dam/www/public/us/en/documents -# /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf -# - -#include <linux/linkage.h> - -.text - -#define init_crc %edi -#define buf %rsi -#define len %rdx - -#define FOLD_CONSTS %xmm10 -#define BSWAP_MASK %xmm11 - -# Fold reg1, reg2 into the next 32 data bytes, storing the result back into -# reg1, reg2. -.macro fold_32_bytes offset, reg1, reg2 - movdqu \offset(buf), %xmm9 - movdqu \offset+16(buf), %xmm12 - pshufb BSWAP_MASK, %xmm9 - pshufb BSWAP_MASK, %xmm12 - movdqa \reg1, %xmm8 - movdqa \reg2, %xmm13 - pclmulqdq $0x00, FOLD_CONSTS, \reg1 - pclmulqdq $0x11, FOLD_CONSTS, %xmm8 - pclmulqdq $0x00, FOLD_CONSTS, \reg2 - pclmulqdq $0x11, FOLD_CONSTS, %xmm13 - pxor %xmm9 , \reg1 - xorps %xmm8 , \reg1 - pxor %xmm12, \reg2 - xorps %xmm13, \reg2 -.endm - -# Fold src_reg into dst_reg. -.macro fold_16_bytes src_reg, dst_reg - movdqa \src_reg, %xmm8 - pclmulqdq $0x11, FOLD_CONSTS, \src_reg - pclmulqdq $0x00, FOLD_CONSTS, %xmm8 - pxor %xmm8, \dst_reg - xorps \src_reg, \dst_reg -.endm - -# -# u16 crc_t10dif_pcl(u16 init_crc, const *u8 buf, size_t len); -# -# Assumes len >= 16. -# -SYM_FUNC_START(crc_t10dif_pcl) - - movdqa .Lbswap_mask(%rip), BSWAP_MASK - - # For sizes less than 256 bytes, we can't fold 128 bytes at a time. - cmp $256, len - jl .Lless_than_256_bytes - - # Load the first 128 data bytes. Byte swapping is necessary to make the - # bit order match the polynomial coefficient order. - movdqu 16*0(buf), %xmm0 - movdqu 16*1(buf), %xmm1 - movdqu 16*2(buf), %xmm2 - movdqu 16*3(buf), %xmm3 - movdqu 16*4(buf), %xmm4 - movdqu 16*5(buf), %xmm5 - movdqu 16*6(buf), %xmm6 - movdqu 16*7(buf), %xmm7 - add $128, buf - pshufb BSWAP_MASK, %xmm0 - pshufb BSWAP_MASK, %xmm1 - pshufb BSWAP_MASK, %xmm2 - pshufb BSWAP_MASK, %xmm3 - pshufb BSWAP_MASK, %xmm4 - pshufb BSWAP_MASK, %xmm5 - pshufb BSWAP_MASK, %xmm6 - pshufb BSWAP_MASK, %xmm7 - - # XOR the first 16 data *bits* with the initial CRC value. - pxor %xmm8, %xmm8 - pinsrw $7, init_crc, %xmm8 - pxor %xmm8, %xmm0 - - movdqa .Lfold_across_128_bytes_consts(%rip), FOLD_CONSTS - - # Subtract 128 for the 128 data bytes just consumed. Subtract another - # 128 to simplify the termination condition of the following loop. - sub $256, len - - # While >= 128 data bytes remain (not counting xmm0-7), fold the 128 - # bytes xmm0-7 into them, storing the result back into xmm0-7. -.Lfold_128_bytes_loop: - fold_32_bytes 0, %xmm0, %xmm1 - fold_32_bytes 32, %xmm2, %xmm3 - fold_32_bytes 64, %xmm4, %xmm5 - fold_32_bytes 96, %xmm6, %xmm7 - add $128, buf - sub $128, len - jge .Lfold_128_bytes_loop - - # Now fold the 112 bytes in xmm0-xmm6 into the 16 bytes in xmm7. - - # Fold across 64 bytes. - movdqa .Lfold_across_64_bytes_consts(%rip), FOLD_CONSTS - fold_16_bytes %xmm0, %xmm4 - fold_16_bytes %xmm1, %xmm5 - fold_16_bytes %xmm2, %xmm6 - fold_16_bytes %xmm3, %xmm7 - # Fold across 32 bytes. - movdqa .Lfold_across_32_bytes_consts(%rip), FOLD_CONSTS - fold_16_bytes %xmm4, %xmm6 - fold_16_bytes %xmm5, %xmm7 - # Fold across 16 bytes. - movdqa .Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS - fold_16_bytes %xmm6, %xmm7 - - # Add 128 to get the correct number of data bytes remaining in 0...127 - # (not counting xmm7), following the previous extra subtraction by 128. - # Then subtract 16 to simplify the termination condition of the - # following loop. - add $128-16, len - - # While >= 16 data bytes remain (not counting xmm7), fold the 16 bytes - # xmm7 into them, storing the result back into xmm7. - jl .Lfold_16_bytes_loop_done -.Lfold_16_bytes_loop: - movdqa %xmm7, %xmm8 - pclmulqdq $0x11, FOLD_CONSTS, %xmm7 - pclmulqdq $0x00, FOLD_CONSTS, %xmm8 - pxor %xmm8, %xmm7 - movdqu (buf), %xmm0 - pshufb BSWAP_MASK, %xmm0 - pxor %xmm0 , %xmm7 - add $16, buf - sub $16, len - jge .Lfold_16_bytes_loop - -.Lfold_16_bytes_loop_done: - # Add 16 to get the correct number of data bytes remaining in 0...15 - # (not counting xmm7), following the previous extra subtraction by 16. - add $16, len - je .Lreduce_final_16_bytes - -.Lhandle_partial_segment: - # Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first 16 - # bytes are in xmm7 and the rest are the remaining data in 'buf'. To do - # this without needing a fold constant for each possible 'len', redivide - # the bytes into a first chunk of 'len' bytes and a second chunk of 16 - # bytes, then fold the first chunk into the second. - - movdqa %xmm7, %xmm2 - - # xmm1 = last 16 original data bytes - movdqu -16(buf, len), %xmm1 - pshufb BSWAP_MASK, %xmm1 - - # xmm2 = high order part of second chunk: xmm7 left-shifted by 'len' bytes. - lea .Lbyteshift_table+16(%rip), %rax - sub len, %rax - movdqu (%rax), %xmm0 - pshufb %xmm0, %xmm2 - - # xmm7 = first chunk: xmm7 right-shifted by '16-len' bytes. - pxor .Lmask1(%rip), %xmm0 - pshufb %xmm0, %xmm7 - - # xmm1 = second chunk: 'len' bytes from xmm1 (low-order bytes), - # then '16-len' bytes from xmm2 (high-order bytes). - pblendvb %xmm2, %xmm1 #xmm0 is implicit - - # Fold the first chunk into the second chunk, storing the result in xmm7. - movdqa %xmm7, %xmm8 - pclmulqdq $0x11, FOLD_CONSTS, %xmm7 - pclmulqdq $0x00, FOLD_CONSTS, %xmm8 - pxor %xmm8, %xmm7 - pxor %xmm1, %xmm7 - -.Lreduce_final_16_bytes: - # Reduce the 128-bit value M(x), stored in xmm7, to the final 16-bit CRC - - # Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'. - movdqa .Lfinal_fold_consts(%rip), FOLD_CONSTS - - # Fold the high 64 bits into the low 64 bits, while also multiplying by - # x^64. This produces a 128-bit value congruent to x^64 * M(x) and - # whose low 48 bits are 0. - movdqa %xmm7, %xmm0 - pclmulqdq $0x11, FOLD_CONSTS, %xmm7 # high bits * x^48 * (x^80 mod G(x)) - pslldq $8, %xmm0 - pxor %xmm0, %xmm7 # + low bits * x^64 - - # Fold the high 32 bits into the low 96 bits. This produces a 96-bit - # value congruent to x^64 * M(x) and whose low 48 bits are 0. - movdqa %xmm7, %xmm0 - pand .Lmask2(%rip), %xmm0 # zero high 32 bits - psrldq $12, %xmm7 # extract high 32 bits - pclmulqdq $0x00, FOLD_CONSTS, %xmm7 # high 32 bits * x^48 * (x^48 mod G(x)) - pxor %xmm0, %xmm7 # + low bits - - # Load G(x) and floor(x^48 / G(x)). - movdqa .Lbarrett_reduction_consts(%rip), FOLD_CONSTS - - # Use Barrett reduction to compute the final CRC value. - movdqa %xmm7, %xmm0 - pclmulqdq $0x11, FOLD_CONSTS, %xmm7 # high 32 bits * floor(x^48 / G(x)) - psrlq $32, %xmm7 # /= x^32 - pclmulqdq $0x00, FOLD_CONSTS, %xmm7 # *= G(x) - psrlq $48, %xmm0 - pxor %xmm7, %xmm0 # + low 16 nonzero bits - # Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of xmm0. - - pextrw $0, %xmm0, %eax - RET - -.align 16 -.Lless_than_256_bytes: - # Checksumming a buffer of length 16...255 bytes - - # Load the first 16 data bytes. - movdqu (buf), %xmm7 - pshufb BSWAP_MASK, %xmm7 - add $16, buf - - # XOR the first 16 data *bits* with the initial CRC value. - pxor %xmm0, %xmm0 - pinsrw $7, init_crc, %xmm0 - pxor %xmm0, %xmm7 - - movdqa .Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS - cmp $16, len - je .Lreduce_final_16_bytes # len == 16 - sub $32, len - jge .Lfold_16_bytes_loop # 32 <= len <= 255 - add $16, len - jmp .Lhandle_partial_segment # 17 <= len <= 31 -SYM_FUNC_END(crc_t10dif_pcl) - -.section .rodata, "a", @progbits -.align 16 - -# Fold constants precomputed from the polynomial 0x18bb7 -# G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0 -.Lfold_across_128_bytes_consts: - .quad 0x0000000000006123 # x^(8*128) mod G(x) - .quad 0x0000000000002295 # x^(8*128+64) mod G(x) -.Lfold_across_64_bytes_consts: - .quad 0x0000000000001069 # x^(4*128) mod G(x) - .quad 0x000000000000dd31 # x^(4*128+64) mod G(x) -.Lfold_across_32_bytes_consts: - .quad 0x000000000000857d # x^(2*128) mod G(x) - .quad 0x0000000000007acc # x^(2*128+64) mod G(x) -.Lfold_across_16_bytes_consts: - .quad 0x000000000000a010 # x^(1*128) mod G(x) - .quad 0x0000000000001faa # x^(1*128+64) mod G(x) -.Lfinal_fold_consts: - .quad 0x1368000000000000 # x^48 * (x^48 mod G(x)) - .quad 0x2d56000000000000 # x^48 * (x^80 mod G(x)) -.Lbarrett_reduction_consts: - .quad 0x0000000000018bb7 # G(x) - .quad 0x00000001f65a57f8 # floor(x^48 / G(x)) - -.section .rodata.cst16.mask1, "aM", @progbits, 16 -.align 16 -.Lmask1: - .octa 0x80808080808080808080808080808080 - -.section .rodata.cst16.mask2, "aM", @progbits, 16 -.align 16 -.Lmask2: - .octa 0x00000000FFFFFFFFFFFFFFFFFFFFFFFF - -.section .rodata.cst16.bswap_mask, "aM", @progbits, 16 -.align 16 -.Lbswap_mask: - .octa 0x000102030405060708090A0B0C0D0E0F - -.section .rodata.cst32.byteshift_table, "aM", @progbits, 32 -.align 16 -# For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 - len] -# is the index vector to shift left by 'len' bytes, and is also {0x80, ..., -# 0x80} XOR the index vector to shift right by '16 - len' bytes. -.Lbyteshift_table: - .byte 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87 - .byte 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f - .byte 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7 - .byte 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe , 0x0 diff --git a/arch/x86/lib/crypto/.gitignore b/arch/x86/lib/crypto/.gitignore new file mode 100644 index 000000000000..580c839bb177 --- /dev/null +++ b/arch/x86/lib/crypto/.gitignore @@ -0,0 +1,2 @@ +# SPDX-License-Identifier: GPL-2.0-only +poly1305-x86_64-cryptogams.S diff --git a/arch/x86/lib/crypto/Kconfig b/arch/x86/lib/crypto/Kconfig new file mode 100644 index 000000000000..5e94cdee492c --- /dev/null +++ b/arch/x86/lib/crypto/Kconfig @@ -0,0 +1,34 @@ +# SPDX-License-Identifier: GPL-2.0-only + +config CRYPTO_BLAKE2S_X86 + bool "Hash functions: BLAKE2s (SSSE3/AVX-512)" + depends on 64BIT + select CRYPTO_LIB_BLAKE2S_GENERIC + select CRYPTO_ARCH_HAVE_LIB_BLAKE2S + help + BLAKE2s cryptographic hash function (RFC 7693) + + Architecture: x86_64 using: + - SSSE3 (Supplemental SSE3) + - AVX-512 (Advanced Vector Extensions-512) + +config CRYPTO_CHACHA20_X86_64 + tristate + depends on 64BIT + default CRYPTO_LIB_CHACHA + select CRYPTO_LIB_CHACHA_GENERIC + select CRYPTO_ARCH_HAVE_LIB_CHACHA + +config CRYPTO_POLY1305_X86_64 + tristate + depends on 64BIT + default CRYPTO_LIB_POLY1305 + select CRYPTO_ARCH_HAVE_LIB_POLY1305 + +config CRYPTO_SHA256_X86_64 + tristate + depends on 64BIT + default CRYPTO_LIB_SHA256 + select CRYPTO_ARCH_HAVE_LIB_SHA256 + select CRYPTO_ARCH_HAVE_LIB_SHA256_SIMD + select CRYPTO_LIB_SHA256_GENERIC diff --git a/arch/x86/lib/crypto/Makefile b/arch/x86/lib/crypto/Makefile new file mode 100644 index 000000000000..abceca3d31c0 --- /dev/null +++ b/arch/x86/lib/crypto/Makefile @@ -0,0 +1,20 @@ +# SPDX-License-Identifier: GPL-2.0-only + +obj-$(CONFIG_CRYPTO_BLAKE2S_X86) += libblake2s-x86_64.o +libblake2s-x86_64-y := blake2s-core.o blake2s-glue.o + +obj-$(CONFIG_CRYPTO_CHACHA20_X86_64) += chacha-x86_64.o +chacha-x86_64-y := chacha-avx2-x86_64.o chacha-ssse3-x86_64.o chacha-avx512vl-x86_64.o chacha_glue.o + +obj-$(CONFIG_CRYPTO_POLY1305_X86_64) += poly1305-x86_64.o +poly1305-x86_64-y := poly1305-x86_64-cryptogams.o poly1305_glue.o +targets += poly1305-x86_64-cryptogams.S + +obj-$(CONFIG_CRYPTO_SHA256_X86_64) += sha256-x86_64.o +sha256-x86_64-y := sha256.o sha256-ssse3-asm.o sha256-avx-asm.o sha256-avx2-asm.o sha256-ni-asm.o + +quiet_cmd_perlasm = PERLASM $@ + cmd_perlasm = $(PERL) $< > $@ + +$(obj)/%.S: $(src)/%.pl FORCE + $(call if_changed,perlasm) diff --git a/arch/x86/lib/crypto/blake2s-core.S b/arch/x86/lib/crypto/blake2s-core.S new file mode 100644 index 000000000000..ac1c845445a4 --- /dev/null +++ b/arch/x86/lib/crypto/blake2s-core.S @@ -0,0 +1,252 @@ +/* SPDX-License-Identifier: GPL-2.0 OR MIT */ +/* + * Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. + * Copyright (C) 2017-2019 Samuel Neves <sneves@dei.uc.pt>. All Rights Reserved. + */ + +#include <linux/linkage.h> + +.section .rodata.cst32.BLAKE2S_IV, "aM", @progbits, 32 +.align 32 +IV: .octa 0xA54FF53A3C6EF372BB67AE856A09E667 + .octa 0x5BE0CD191F83D9AB9B05688C510E527F +.section .rodata.cst16.ROT16, "aM", @progbits, 16 +.align 16 +ROT16: .octa 0x0D0C0F0E09080B0A0504070601000302 +.section .rodata.cst16.ROR328, "aM", @progbits, 16 +.align 16 +ROR328: .octa 0x0C0F0E0D080B0A090407060500030201 +.section .rodata.cst64.BLAKE2S_SIGMA, "aM", @progbits, 160 +.align 64 +SIGMA: +.byte 0, 2, 4, 6, 1, 3, 5, 7, 14, 8, 10, 12, 15, 9, 11, 13 +.byte 14, 4, 9, 13, 10, 8, 15, 6, 5, 1, 0, 11, 3, 12, 2, 7 +.byte 11, 12, 5, 15, 8, 0, 2, 13, 9, 10, 3, 7, 4, 14, 6, 1 +.byte 7, 3, 13, 11, 9, 1, 12, 14, 15, 2, 5, 4, 8, 6, 10, 0 +.byte 9, 5, 2, 10, 0, 7, 4, 15, 3, 14, 11, 6, 13, 1, 12, 8 +.byte 2, 6, 0, 8, 12, 10, 11, 3, 1, 4, 7, 15, 9, 13, 5, 14 +.byte 12, 1, 14, 4, 5, 15, 13, 10, 8, 0, 6, 9, 11, 7, 3, 2 +.byte 13, 7, 12, 3, 11, 14, 1, 9, 2, 5, 15, 8, 10, 0, 4, 6 +.byte 6, 14, 11, 0, 15, 9, 3, 8, 10, 12, 13, 1, 5, 2, 7, 4 +.byte 10, 8, 7, 1, 2, 4, 6, 5, 13, 15, 9, 3, 0, 11, 14, 12 +.section .rodata.cst64.BLAKE2S_SIGMA2, "aM", @progbits, 640 +.align 64 +SIGMA2: +.long 0, 2, 4, 6, 1, 3, 5, 7, 14, 8, 10, 12, 15, 9, 11, 13 +.long 8, 2, 13, 15, 10, 9, 12, 3, 6, 4, 0, 14, 5, 11, 1, 7 +.long 11, 13, 8, 6, 5, 10, 14, 3, 2, 4, 12, 15, 1, 0, 7, 9 +.long 11, 10, 7, 0, 8, 15, 1, 13, 3, 6, 2, 12, 4, 14, 9, 5 +.long 4, 10, 9, 14, 15, 0, 11, 8, 1, 7, 3, 13, 2, 5, 6, 12 +.long 2, 11, 4, 15, 14, 3, 10, 8, 13, 6, 5, 7, 0, 12, 1, 9 +.long 4, 8, 15, 9, 14, 11, 13, 5, 3, 2, 1, 12, 6, 10, 7, 0 +.long 6, 13, 0, 14, 12, 2, 1, 11, 15, 4, 5, 8, 7, 9, 3, 10 +.long 15, 5, 4, 13, 10, 7, 3, 11, 12, 2, 0, 6, 9, 8, 1, 14 +.long 8, 7, 14, 11, 13, 15, 0, 12, 10, 4, 5, 6, 3, 2, 1, 9 + +.text +SYM_FUNC_START(blake2s_compress_ssse3) + testq %rdx,%rdx + je .Lendofloop + movdqu (%rdi),%xmm0 + movdqu 0x10(%rdi),%xmm1 + movdqa ROT16(%rip),%xmm12 + movdqa ROR328(%rip),%xmm13 + movdqu 0x20(%rdi),%xmm14 + movq %rcx,%xmm15 + leaq SIGMA+0xa0(%rip),%r8 + jmp .Lbeginofloop + .align 32 +.Lbeginofloop: + movdqa %xmm0,%xmm10 + movdqa %xmm1,%xmm11 + paddq %xmm15,%xmm14 + movdqa IV(%rip),%xmm2 + movdqa %xmm14,%xmm3 + pxor IV+0x10(%rip),%xmm3 + leaq SIGMA(%rip),%rcx +.Lroundloop: + movzbl (%rcx),%eax + movd (%rsi,%rax,4),%xmm4 + movzbl 0x1(%rcx),%eax + movd (%rsi,%rax,4),%xmm5 + movzbl 0x2(%rcx),%eax + movd (%rsi,%rax,4),%xmm6 + movzbl 0x3(%rcx),%eax + movd (%rsi,%rax,4),%xmm7 + punpckldq %xmm5,%xmm4 + punpckldq %xmm7,%xmm6 + punpcklqdq %xmm6,%xmm4 + paddd %xmm4,%xmm0 + paddd %xmm1,%xmm0 + pxor %xmm0,%xmm3 + pshufb %xmm12,%xmm3 + paddd %xmm3,%xmm2 + pxor %xmm2,%xmm1 + movdqa %xmm1,%xmm8 + psrld $0xc,%xmm1 + pslld $0x14,%xmm8 + por %xmm8,%xmm1 + movzbl 0x4(%rcx),%eax + movd (%rsi,%rax,4),%xmm5 + movzbl 0x5(%rcx),%eax + movd (%rsi,%rax,4),%xmm6 + movzbl 0x6(%rcx),%eax + movd (%rsi,%rax,4),%xmm7 + movzbl 0x7(%rcx),%eax + movd (%rsi,%rax,4),%xmm4 + punpckldq %xmm6,%xmm5 + punpckldq %xmm4,%xmm7 + punpcklqdq %xmm7,%xmm5 + paddd %xmm5,%xmm0 + paddd %xmm1,%xmm0 + pxor %xmm0,%xmm3 + pshufb %xmm13,%xmm3 + paddd %xmm3,%xmm2 + pxor %xmm2,%xmm1 + movdqa %xmm1,%xmm8 + psrld $0x7,%xmm1 + pslld $0x19,%xmm8 + por %xmm8,%xmm1 + pshufd $0x93,%xmm0,%xmm0 + pshufd $0x4e,%xmm3,%xmm3 + pshufd $0x39,%xmm2,%xmm2 + movzbl 0x8(%rcx),%eax + movd (%rsi,%rax,4),%xmm6 + movzbl 0x9(%rcx),%eax + movd (%rsi,%rax,4),%xmm7 + movzbl 0xa(%rcx),%eax + movd (%rsi,%rax,4),%xmm4 + movzbl 0xb(%rcx),%eax + movd (%rsi,%rax,4),%xmm5 + punpckldq %xmm7,%xmm6 + punpckldq %xmm5,%xmm4 + punpcklqdq %xmm4,%xmm6 + paddd %xmm6,%xmm0 + paddd %xmm1,%xmm0 + pxor %xmm0,%xmm3 + pshufb %xmm12,%xmm3 + paddd %xmm3,%xmm2 + pxor %xmm2,%xmm1 + movdqa %xmm1,%xmm8 + psrld $0xc,%xmm1 + pslld $0x14,%xmm8 + por %xmm8,%xmm1 + movzbl 0xc(%rcx),%eax + movd (%rsi,%rax,4),%xmm7 + movzbl 0xd(%rcx),%eax + movd (%rsi,%rax,4),%xmm4 + movzbl 0xe(%rcx),%eax + movd (%rsi,%rax,4),%xmm5 + movzbl 0xf(%rcx),%eax + movd (%rsi,%rax,4),%xmm6 + punpckldq %xmm4,%xmm7 + punpckldq %xmm6,%xmm5 + punpcklqdq %xmm5,%xmm7 + paddd %xmm7,%xmm0 + paddd %xmm1,%xmm0 + pxor %xmm0,%xmm3 + pshufb %xmm13,%xmm3 + paddd %xmm3,%xmm2 + pxor %xmm2,%xmm1 + movdqa %xmm1,%xmm8 + psrld $0x7,%xmm1 + pslld $0x19,%xmm8 + por %xmm8,%xmm1 + pshufd $0x39,%xmm0,%xmm0 + pshufd $0x4e,%xmm3,%xmm3 + pshufd $0x93,%xmm2,%xmm2 + addq $0x10,%rcx + cmpq %r8,%rcx + jnz .Lroundloop + pxor %xmm2,%xmm0 + pxor %xmm3,%xmm1 + pxor %xmm10,%xmm0 + pxor %xmm11,%xmm1 + addq $0x40,%rsi + decq %rdx + jnz .Lbeginofloop + movdqu %xmm0,(%rdi) + movdqu %xmm1,0x10(%rdi) + movdqu %xmm14,0x20(%rdi) +.Lendofloop: + RET +SYM_FUNC_END(blake2s_compress_ssse3) + +SYM_FUNC_START(blake2s_compress_avx512) + vmovdqu (%rdi),%xmm0 + vmovdqu 0x10(%rdi),%xmm1 + vmovdqu 0x20(%rdi),%xmm4 + vmovq %rcx,%xmm5 + vmovdqa IV(%rip),%xmm14 + vmovdqa IV+16(%rip),%xmm15 + jmp .Lblake2s_compress_avx512_mainloop +.align 32 +.Lblake2s_compress_avx512_mainloop: + vmovdqa %xmm0,%xmm10 + vmovdqa %xmm1,%xmm11 + vpaddq %xmm5,%xmm4,%xmm4 + vmovdqa %xmm14,%xmm2 + vpxor %xmm15,%xmm4,%xmm3 + vmovdqu (%rsi),%ymm6 + vmovdqu 0x20(%rsi),%ymm7 + addq $0x40,%rsi + leaq SIGMA2(%rip),%rax + movb $0xa,%cl +.Lblake2s_compress_avx512_roundloop: + addq $0x40,%rax + vmovdqa -0x40(%rax),%ymm8 + vmovdqa -0x20(%rax),%ymm9 + vpermi2d %ymm7,%ymm6,%ymm8 + vpermi2d %ymm7,%ymm6,%ymm9 + vmovdqa %ymm8,%ymm6 + vmovdqa %ymm9,%ymm7 + vpaddd %xmm8,%xmm0,%xmm0 + vpaddd %xmm1,%xmm0,%xmm0 + vpxor %xmm0,%xmm3,%xmm3 + vprord $0x10,%xmm3,%xmm3 + vpaddd %xmm3,%xmm2,%xmm2 + vpxor %xmm2,%xmm1,%xmm1 + vprord $0xc,%xmm1,%xmm1 + vextracti128 $0x1,%ymm8,%xmm8 + vpaddd %xmm8,%xmm0,%xmm0 + vpaddd %xmm1,%xmm0,%xmm0 + vpxor %xmm0,%xmm3,%xmm3 + vprord $0x8,%xmm3,%xmm3 + vpaddd %xmm3,%xmm2,%xmm2 + vpxor %xmm2,%xmm1,%xmm1 + vprord $0x7,%xmm1,%xmm1 + vpshufd $0x93,%xmm0,%xmm0 + vpshufd $0x4e,%xmm3,%xmm3 + vpshufd $0x39,%xmm2,%xmm2 + vpaddd %xmm9,%xmm0,%xmm0 + vpaddd %xmm1,%xmm0,%xmm0 + vpxor %xmm0,%xmm3,%xmm3 + vprord $0x10,%xmm3,%xmm3 + vpaddd %xmm3,%xmm2,%xmm2 + vpxor %xmm2,%xmm1,%xmm1 + vprord $0xc,%xmm1,%xmm1 + vextracti128 $0x1,%ymm9,%xmm9 + vpaddd %xmm9,%xmm0,%xmm0 + vpaddd %xmm1,%xmm0,%xmm0 + vpxor %xmm0,%xmm3,%xmm3 + vprord $0x8,%xmm3,%xmm3 + vpaddd %xmm3,%xmm2,%xmm2 + vpxor %xmm2,%xmm1,%xmm1 + vprord $0x7,%xmm1,%xmm1 + vpshufd $0x39,%xmm0,%xmm0 + vpshufd $0x4e,%xmm3,%xmm3 + vpshufd $0x93,%xmm2,%xmm2 + decb %cl + jne .Lblake2s_compress_avx512_roundloop + vpxor %xmm10,%xmm0,%xmm0 + vpxor %xmm11,%xmm1,%xmm1 + vpxor %xmm2,%xmm0,%xmm0 + vpxor %xmm3,%xmm1,%xmm1 + decq %rdx + jne .Lblake2s_compress_avx512_mainloop + vmovdqu %xmm0,(%rdi) + vmovdqu %xmm1,0x10(%rdi) + vmovdqu %xmm4,0x20(%rdi) + vzeroupper + RET +SYM_FUNC_END(blake2s_compress_avx512) diff --git a/arch/x86/lib/crypto/blake2s-glue.c b/arch/x86/lib/crypto/blake2s-glue.c new file mode 100644 index 000000000000..adc296cd17c9 --- /dev/null +++ b/arch/x86/lib/crypto/blake2s-glue.c @@ -0,0 +1,70 @@ +// SPDX-License-Identifier: GPL-2.0 OR MIT +/* + * Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. + */ + +#include <asm/cpufeature.h> +#include <asm/fpu/api.h> +#include <asm/processor.h> +#include <asm/simd.h> +#include <crypto/internal/blake2s.h> +#include <linux/init.h> +#include <linux/jump_label.h> +#include <linux/kernel.h> +#include <linux/sizes.h> + +asmlinkage void blake2s_compress_ssse3(struct blake2s_state *state, + const u8 *block, const size_t nblocks, + const u32 inc); +asmlinkage void blake2s_compress_avx512(struct blake2s_state *state, + const u8 *block, const size_t nblocks, + const u32 inc); + +static __ro_after_init DEFINE_STATIC_KEY_FALSE(blake2s_use_ssse3); +static __ro_after_init DEFINE_STATIC_KEY_FALSE(blake2s_use_avx512); + +void blake2s_compress(struct blake2s_state *state, const u8 *block, + size_t nblocks, const u32 inc) +{ + /* SIMD disables preemption, so relax after processing each page. */ + BUILD_BUG_ON(SZ_4K / BLAKE2S_BLOCK_SIZE < 8); + + if (!static_branch_likely(&blake2s_use_ssse3) || !may_use_simd()) { + blake2s_compress_generic(state, block, nblocks, inc); + return; + } + + do { + const size_t blocks = min_t(size_t, nblocks, + SZ_4K / BLAKE2S_BLOCK_SIZE); + + kernel_fpu_begin(); + if (static_branch_likely(&blake2s_use_avx512)) + blake2s_compress_avx512(state, block, blocks, inc); + else + blake2s_compress_ssse3(state, block, blocks, inc); + kernel_fpu_end(); + + nblocks -= blocks; + block += blocks * BLAKE2S_BLOCK_SIZE; + } while (nblocks); +} +EXPORT_SYMBOL(blake2s_compress); + +static int __init blake2s_mod_init(void) +{ + if (boot_cpu_has(X86_FEATURE_SSSE3)) + static_branch_enable(&blake2s_use_ssse3); + + if (boot_cpu_has(X86_FEATURE_AVX) && + boot_cpu_has(X86_FEATURE_AVX2) && + boot_cpu_has(X86_FEATURE_AVX512F) && + boot_cpu_has(X86_FEATURE_AVX512VL) && + cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM | + XFEATURE_MASK_AVX512, NULL)) + static_branch_enable(&blake2s_use_avx512); + + return 0; +} + +subsys_initcall(blake2s_mod_init); diff --git a/arch/x86/lib/crypto/chacha-avx2-x86_64.S b/arch/x86/lib/crypto/chacha-avx2-x86_64.S new file mode 100644 index 000000000000..f3d8fc018249 --- /dev/null +++ b/arch/x86/lib/crypto/chacha-avx2-x86_64.S @@ -0,0 +1,1021 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * ChaCha 256-bit cipher algorithm, x64 AVX2 functions + * + * Copyright (C) 2015 Martin Willi + */ + +#include <linux/linkage.h> + +.section .rodata.cst32.ROT8, "aM", @progbits, 32 +.align 32 +ROT8: .octa 0x0e0d0c0f0a09080b0605040702010003 + .octa 0x0e0d0c0f0a09080b0605040702010003 + +.section .rodata.cst32.ROT16, "aM", @progbits, 32 +.align 32 +ROT16: .octa 0x0d0c0f0e09080b0a0504070601000302 + .octa 0x0d0c0f0e09080b0a0504070601000302 + +.section .rodata.cst32.CTRINC, "aM", @progbits, 32 +.align 32 +CTRINC: .octa 0x00000003000000020000000100000000 + .octa 0x00000007000000060000000500000004 + +.section .rodata.cst32.CTR2BL, "aM", @progbits, 32 +.align 32 +CTR2BL: .octa 0x00000000000000000000000000000000 + .octa 0x00000000000000000000000000000001 + +.section .rodata.cst32.CTR4BL, "aM", @progbits, 32 +.align 32 +CTR4BL: .octa 0x00000000000000000000000000000002 + .octa 0x00000000000000000000000000000003 + +.text + +SYM_FUNC_START(chacha_2block_xor_avx2) + # %rdi: Input state matrix, s + # %rsi: up to 2 data blocks output, o + # %rdx: up to 2 data blocks input, i + # %rcx: input/output length in bytes + # %r8d: nrounds + + # This function encrypts two ChaCha blocks by loading the state + # matrix twice across four AVX registers. It performs matrix operations + # on four words in each matrix in parallel, but requires shuffling to + # rearrange the words after each round. + + vzeroupper + + # x0..3[0-2] = s0..3 + vbroadcasti128 0x00(%rdi),%ymm0 + vbroadcasti128 0x10(%rdi),%ymm1 + vbroadcasti128 0x20(%rdi),%ymm2 + vbroadcasti128 0x30(%rdi),%ymm3 + + vpaddd CTR2BL(%rip),%ymm3,%ymm3 + + vmovdqa %ymm0,%ymm8 + vmovdqa %ymm1,%ymm9 + vmovdqa %ymm2,%ymm10 + vmovdqa %ymm3,%ymm11 + + vmovdqa ROT8(%rip),%ymm4 + vmovdqa ROT16(%rip),%ymm5 + + mov %rcx,%rax + +.Ldoubleround: + + # x0 += x1, x3 = rotl32(x3 ^ x0, 16) + vpaddd %ymm1,%ymm0,%ymm0 + vpxor %ymm0,%ymm3,%ymm3 + vpshufb %ymm5,%ymm3,%ymm3 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 12) + vpaddd %ymm3,%ymm2,%ymm2 + vpxor %ymm2,%ymm1,%ymm1 + vmovdqa %ymm1,%ymm6 + vpslld $12,%ymm6,%ymm6 + vpsrld $20,%ymm1,%ymm1 + vpor %ymm6,%ymm1,%ymm1 + + # x0 += x1, x3 = rotl32(x3 ^ x0, 8) + vpaddd %ymm1,%ymm0,%ymm0 + vpxor %ymm0,%ymm3,%ymm3 + vpshufb %ymm4,%ymm3,%ymm3 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 7) + vpaddd %ymm3,%ymm2,%ymm2 + vpxor %ymm2,%ymm1,%ymm1 + vmovdqa %ymm1,%ymm7 + vpslld $7,%ymm7,%ymm7 + vpsrld $25,%ymm1,%ymm1 + vpor %ymm7,%ymm1,%ymm1 + + # x1 = shuffle32(x1, MASK(0, 3, 2, 1)) + vpshufd $0x39,%ymm1,%ymm1 + # x2 = shuffle32(x2, MASK(1, 0, 3, 2)) + vpshufd $0x4e,%ymm2,%ymm2 + # x3 = shuffle32(x3, MASK(2, 1, 0, 3)) + vpshufd $0x93,%ymm3,%ymm3 + + # x0 += x1, x3 = rotl32(x3 ^ x0, 16) + vpaddd %ymm1,%ymm0,%ymm0 + vpxor %ymm0,%ymm3,%ymm3 + vpshufb %ymm5,%ymm3,%ymm3 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 12) + vpaddd %ymm3,%ymm2,%ymm2 + vpxor %ymm2,%ymm1,%ymm1 + vmovdqa %ymm1,%ymm6 + vpslld $12,%ymm6,%ymm6 + vpsrld $20,%ymm1,%ymm1 + vpor %ymm6,%ymm1,%ymm1 + + # x0 += x1, x3 = rotl32(x3 ^ x0, 8) + vpaddd %ymm1,%ymm0,%ymm0 + vpxor %ymm0,%ymm3,%ymm3 + vpshufb %ymm4,%ymm3,%ymm3 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 7) + vpaddd %ymm3,%ymm2,%ymm2 + vpxor %ymm2,%ymm1,%ymm1 + vmovdqa %ymm1,%ymm7 + vpslld $7,%ymm7,%ymm7 + vpsrld $25,%ymm1,%ymm1 + vpor %ymm7,%ymm1,%ymm1 + + # x1 = shuffle32(x1, MASK(2, 1, 0, 3)) + vpshufd $0x93,%ymm1,%ymm1 + # x2 = shuffle32(x2, MASK(1, 0, 3, 2)) + vpshufd $0x4e,%ymm2,%ymm2 + # x3 = shuffle32(x3, MASK(0, 3, 2, 1)) + vpshufd $0x39,%ymm3,%ymm3 + + sub $2,%r8d + jnz .Ldoubleround + + # o0 = i0 ^ (x0 + s0) + vpaddd %ymm8,%ymm0,%ymm7 + cmp $0x10,%rax + jl .Lxorpart2 + vpxor 0x00(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x00(%rsi) + vextracti128 $1,%ymm7,%xmm0 + # o1 = i1 ^ (x1 + s1) + vpaddd %ymm9,%ymm1,%ymm7 + cmp $0x20,%rax + jl .Lxorpart2 + vpxor 0x10(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x10(%rsi) + vextracti128 $1,%ymm7,%xmm1 + # o2 = i2 ^ (x2 + s2) + vpaddd %ymm10,%ymm2,%ymm7 + cmp $0x30,%rax + jl .Lxorpart2 + vpxor 0x20(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x20(%rsi) + vextracti128 $1,%ymm7,%xmm2 + # o3 = i3 ^ (x3 + s3) + vpaddd %ymm11,%ymm3,%ymm7 + cmp $0x40,%rax + jl .Lxorpart2 + vpxor 0x30(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x30(%rsi) + vextracti128 $1,%ymm7,%xmm3 + + # xor and write second block + vmovdqa %xmm0,%xmm7 + cmp $0x50,%rax + jl .Lxorpart2 + vpxor 0x40(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x40(%rsi) + + vmovdqa %xmm1,%xmm7 + cmp $0x60,%rax + jl .Lxorpart2 + vpxor 0x50(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x50(%rsi) + + vmovdqa %xmm2,%xmm7 + cmp $0x70,%rax + jl .Lxorpart2 + vpxor 0x60(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x60(%rsi) + + vmovdqa %xmm3,%xmm7 + cmp $0x80,%rax + jl .Lxorpart2 + vpxor 0x70(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x70(%rsi) + +.Ldone2: + vzeroupper + RET + +.Lxorpart2: + # xor remaining bytes from partial register into output + mov %rax,%r9 + and $0x0f,%r9 + jz .Ldone2 + and $~0x0f,%rax + + mov %rsi,%r11 + + lea 8(%rsp),%r10 + sub $0x10,%rsp + and $~31,%rsp + + lea (%rdx,%rax),%rsi + mov %rsp,%rdi + mov %r9,%rcx + rep movsb + + vpxor 0x00(%rsp),%xmm7,%xmm7 + vmovdqa %xmm7,0x00(%rsp) + + mov %rsp,%rsi + lea (%r11,%rax),%rdi + mov %r9,%rcx + rep movsb + + lea -8(%r10),%rsp + jmp .Ldone2 + +SYM_FUNC_END(chacha_2block_xor_avx2) + +SYM_FUNC_START(chacha_4block_xor_avx2) + # %rdi: Input state matrix, s + # %rsi: up to 4 data blocks output, o + # %rdx: up to 4 data blocks input, i + # %rcx: input/output length in bytes + # %r8d: nrounds + + # This function encrypts four ChaCha blocks by loading the state + # matrix four times across eight AVX registers. It performs matrix + # operations on four words in two matrices in parallel, sequentially + # to the operations on the four words of the other two matrices. The + # required word shuffling has a rather high latency, we can do the + # arithmetic on two matrix-pairs without much slowdown. + + vzeroupper + + # x0..3[0-4] = s0..3 + vbroadcasti128 0x00(%rdi),%ymm0 + vbroadcasti128 0x10(%rdi),%ymm1 + vbroadcasti128 0x20(%rdi),%ymm2 + vbroadcasti128 0x30(%rdi),%ymm3 + + vmovdqa %ymm0,%ymm4 + vmovdqa %ymm1,%ymm5 + vmovdqa %ymm2,%ymm6 + vmovdqa %ymm3,%ymm7 + + vpaddd CTR2BL(%rip),%ymm3,%ymm3 + vpaddd CTR4BL(%rip),%ymm7,%ymm7 + + vmovdqa %ymm0,%ymm11 + vmovdqa %ymm1,%ymm12 + vmovdqa %ymm2,%ymm13 + vmovdqa %ymm3,%ymm14 + vmovdqa %ymm7,%ymm15 + + vmovdqa ROT8(%rip),%ymm8 + vmovdqa ROT16(%rip),%ymm9 + + mov %rcx,%rax + +.Ldoubleround4: + + # x0 += x1, x3 = rotl32(x3 ^ x0, 16) + vpaddd %ymm1,%ymm0,%ymm0 + vpxor %ymm0,%ymm3,%ymm3 + vpshufb %ymm9,%ymm3,%ymm3 + + vpaddd %ymm5,%ymm4,%ymm4 + vpxor %ymm4,%ymm7,%ymm7 + vpshufb %ymm9,%ymm7,%ymm7 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 12) + vpaddd %ymm3,%ymm2,%ymm2 + vpxor %ymm2,%ymm1,%ymm1 + vmovdqa %ymm1,%ymm10 + vpslld $12,%ymm10,%ymm10 + vpsrld $20,%ymm1,%ymm1 + vpor %ymm10,%ymm1,%ymm1 + + vpaddd %ymm7,%ymm6,%ymm6 + vpxor %ymm6,%ymm5,%ymm5 + vmovdqa %ymm5,%ymm10 + vpslld $12,%ymm10,%ymm10 + vpsrld $20,%ymm5,%ymm5 + vpor %ymm10,%ymm5,%ymm5 + + # x0 += x1, x3 = rotl32(x3 ^ x0, 8) + vpaddd %ymm1,%ymm0,%ymm0 + vpxor %ymm0,%ymm3,%ymm3 + vpshufb %ymm8,%ymm3,%ymm3 + + vpaddd %ymm5,%ymm4,%ymm4 + vpxor %ymm4,%ymm7,%ymm7 + vpshufb %ymm8,%ymm7,%ymm7 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 7) + vpaddd %ymm3,%ymm2,%ymm2 + vpxor %ymm2,%ymm1,%ymm1 + vmovdqa %ymm1,%ymm10 + vpslld $7,%ymm10,%ymm10 + vpsrld $25,%ymm1,%ymm1 + vpor %ymm10,%ymm1,%ymm1 + + vpaddd %ymm7,%ymm6,%ymm6 + vpxor %ymm6,%ymm5,%ymm5 + vmovdqa %ymm5,%ymm10 + vpslld $7,%ymm10,%ymm10 + vpsrld $25,%ymm5,%ymm5 + vpor %ymm10,%ymm5,%ymm5 + + # x1 = shuffle32(x1, MASK(0, 3, 2, 1)) + vpshufd $0x39,%ymm1,%ymm1 + vpshufd $0x39,%ymm5,%ymm5 + # x2 = shuffle32(x2, MASK(1, 0, 3, 2)) + vpshufd $0x4e,%ymm2,%ymm2 + vpshufd $0x4e,%ymm6,%ymm6 + # x3 = shuffle32(x3, MASK(2, 1, 0, 3)) + vpshufd $0x93,%ymm3,%ymm3 + vpshufd $0x93,%ymm7,%ymm7 + + # x0 += x1, x3 = rotl32(x3 ^ x0, 16) + vpaddd %ymm1,%ymm0,%ymm0 + vpxor %ymm0,%ymm3,%ymm3 + vpshufb %ymm9,%ymm3,%ymm3 + + vpaddd %ymm5,%ymm4,%ymm4 + vpxor %ymm4,%ymm7,%ymm7 + vpshufb %ymm9,%ymm7,%ymm7 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 12) + vpaddd %ymm3,%ymm2,%ymm2 + vpxor %ymm2,%ymm1,%ymm1 + vmovdqa %ymm1,%ymm10 + vpslld $12,%ymm10,%ymm10 + vpsrld $20,%ymm1,%ymm1 + vpor %ymm10,%ymm1,%ymm1 + + vpaddd %ymm7,%ymm6,%ymm6 + vpxor %ymm6,%ymm5,%ymm5 + vmovdqa %ymm5,%ymm10 + vpslld $12,%ymm10,%ymm10 + vpsrld $20,%ymm5,%ymm5 + vpor %ymm10,%ymm5,%ymm5 + + # x0 += x1, x3 = rotl32(x3 ^ x0, 8) + vpaddd %ymm1,%ymm0,%ymm0 + vpxor %ymm0,%ymm3,%ymm3 + vpshufb %ymm8,%ymm3,%ymm3 + + vpaddd %ymm5,%ymm4,%ymm4 + vpxor %ymm4,%ymm7,%ymm7 + vpshufb %ymm8,%ymm7,%ymm7 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 7) + vpaddd %ymm3,%ymm2,%ymm2 + vpxor %ymm2,%ymm1,%ymm1 + vmovdqa %ymm1,%ymm10 + vpslld $7,%ymm10,%ymm10 + vpsrld $25,%ymm1,%ymm1 + vpor %ymm10,%ymm1,%ymm1 + + vpaddd %ymm7,%ymm6,%ymm6 + vpxor %ymm6,%ymm5,%ymm5 + vmovdqa %ymm5,%ymm10 + vpslld $7,%ymm10,%ymm10 + vpsrld $25,%ymm5,%ymm5 + vpor %ymm10,%ymm5,%ymm5 + + # x1 = shuffle32(x1, MASK(2, 1, 0, 3)) + vpshufd $0x93,%ymm1,%ymm1 + vpshufd $0x93,%ymm5,%ymm5 + # x2 = shuffle32(x2, MASK(1, 0, 3, 2)) + vpshufd $0x4e,%ymm2,%ymm2 + vpshufd $0x4e,%ymm6,%ymm6 + # x3 = shuffle32(x3, MASK(0, 3, 2, 1)) + vpshufd $0x39,%ymm3,%ymm3 + vpshufd $0x39,%ymm7,%ymm7 + + sub $2,%r8d + jnz .Ldoubleround4 + + # o0 = i0 ^ (x0 + s0), first block + vpaddd %ymm11,%ymm0,%ymm10 + cmp $0x10,%rax + jl .Lxorpart4 + vpxor 0x00(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x00(%rsi) + vextracti128 $1,%ymm10,%xmm0 + # o1 = i1 ^ (x1 + s1), first block + vpaddd %ymm12,%ymm1,%ymm10 + cmp $0x20,%rax + jl .Lxorpart4 + vpxor 0x10(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x10(%rsi) + vextracti128 $1,%ymm10,%xmm1 + # o2 = i2 ^ (x2 + s2), first block + vpaddd %ymm13,%ymm2,%ymm10 + cmp $0x30,%rax + jl .Lxorpart4 + vpxor 0x20(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x20(%rsi) + vextracti128 $1,%ymm10,%xmm2 + # o3 = i3 ^ (x3 + s3), first block + vpaddd %ymm14,%ymm3,%ymm10 + cmp $0x40,%rax + jl .Lxorpart4 + vpxor 0x30(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x30(%rsi) + vextracti128 $1,%ymm10,%xmm3 + + # xor and write second block + vmovdqa %xmm0,%xmm10 + cmp $0x50,%rax + jl .Lxorpart4 + vpxor 0x40(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x40(%rsi) + + vmovdqa %xmm1,%xmm10 + cmp $0x60,%rax + jl .Lxorpart4 + vpxor 0x50(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x50(%rsi) + + vmovdqa %xmm2,%xmm10 + cmp $0x70,%rax + jl .Lxorpart4 + vpxor 0x60(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x60(%rsi) + + vmovdqa %xmm3,%xmm10 + cmp $0x80,%rax + jl .Lxorpart4 + vpxor 0x70(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x70(%rsi) + + # o0 = i0 ^ (x0 + s0), third block + vpaddd %ymm11,%ymm4,%ymm10 + cmp $0x90,%rax + jl .Lxorpart4 + vpxor 0x80(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x80(%rsi) + vextracti128 $1,%ymm10,%xmm4 + # o1 = i1 ^ (x1 + s1), third block + vpaddd %ymm12,%ymm5,%ymm10 + cmp $0xa0,%rax + jl .Lxorpart4 + vpxor 0x90(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x90(%rsi) + vextracti128 $1,%ymm10,%xmm5 + # o2 = i2 ^ (x2 + s2), third block + vpaddd %ymm13,%ymm6,%ymm10 + cmp $0xb0,%rax + jl .Lxorpart4 + vpxor 0xa0(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0xa0(%rsi) + vextracti128 $1,%ymm10,%xmm6 + # o3 = i3 ^ (x3 + s3), third block + vpaddd %ymm15,%ymm7,%ymm10 + cmp $0xc0,%rax + jl .Lxorpart4 + vpxor 0xb0(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0xb0(%rsi) + vextracti128 $1,%ymm10,%xmm7 + + # xor and write fourth block + vmovdqa %xmm4,%xmm10 + cmp $0xd0,%rax + jl .Lxorpart4 + vpxor 0xc0(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0xc0(%rsi) + + vmovdqa %xmm5,%xmm10 + cmp $0xe0,%rax + jl .Lxorpart4 + vpxor 0xd0(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0xd0(%rsi) + + vmovdqa %xmm6,%xmm10 + cmp $0xf0,%rax + jl .Lxorpart4 + vpxor 0xe0(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0xe0(%rsi) + + vmovdqa %xmm7,%xmm10 + cmp $0x100,%rax + jl .Lxorpart4 + vpxor 0xf0(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0xf0(%rsi) + +.Ldone4: + vzeroupper + RET + +.Lxorpart4: + # xor remaining bytes from partial register into output + mov %rax,%r9 + and $0x0f,%r9 + jz .Ldone4 + and $~0x0f,%rax + + mov %rsi,%r11 + + lea 8(%rsp),%r10 + sub $0x10,%rsp + and $~31,%rsp + + lea (%rdx,%rax),%rsi + mov %rsp,%rdi + mov %r9,%rcx + rep movsb + + vpxor 0x00(%rsp),%xmm10,%xmm10 + vmovdqa %xmm10,0x00(%rsp) + + mov %rsp,%rsi + lea (%r11,%rax),%rdi + mov %r9,%rcx + rep movsb + + lea -8(%r10),%rsp + jmp .Ldone4 + +SYM_FUNC_END(chacha_4block_xor_avx2) + +SYM_FUNC_START(chacha_8block_xor_avx2) + # %rdi: Input state matrix, s + # %rsi: up to 8 data blocks output, o + # %rdx: up to 8 data blocks input, i + # %rcx: input/output length in bytes + # %r8d: nrounds + + # This function encrypts eight consecutive ChaCha blocks by loading + # the state matrix in AVX registers eight times. As we need some + # scratch registers, we save the first four registers on the stack. The + # algorithm performs each operation on the corresponding word of each + # state matrix, hence requires no word shuffling. For final XORing step + # we transpose the matrix by interleaving 32-, 64- and then 128-bit + # words, which allows us to do XOR in AVX registers. 8/16-bit word + # rotation is done with the slightly better performing byte shuffling, + # 7/12-bit word rotation uses traditional shift+OR. + + vzeroupper + # 4 * 32 byte stack, 32-byte aligned + lea 8(%rsp),%r10 + and $~31, %rsp + sub $0x80, %rsp + mov %rcx,%rax + + # x0..15[0-7] = s[0..15] + vpbroadcastd 0x00(%rdi),%ymm0 + vpbroadcastd 0x04(%rdi),%ymm1 + vpbroadcastd 0x08(%rdi),%ymm2 + vpbroadcastd 0x0c(%rdi),%ymm3 + vpbroadcastd 0x10(%rdi),%ymm4 + vpbroadcastd 0x14(%rdi),%ymm5 + vpbroadcastd 0x18(%rdi),%ymm6 + vpbroadcastd 0x1c(%rdi),%ymm7 + vpbroadcastd 0x20(%rdi),%ymm8 + vpbroadcastd 0x24(%rdi),%ymm9 + vpbroadcastd 0x28(%rdi),%ymm10 + vpbroadcastd 0x2c(%rdi),%ymm11 + vpbroadcastd 0x30(%rdi),%ymm12 + vpbroadcastd 0x34(%rdi),%ymm13 + vpbroadcastd 0x38(%rdi),%ymm14 + vpbroadcastd 0x3c(%rdi),%ymm15 + # x0..3 on stack + vmovdqa %ymm0,0x00(%rsp) + vmovdqa %ymm1,0x20(%rsp) + vmovdqa %ymm2,0x40(%rsp) + vmovdqa %ymm3,0x60(%rsp) + + vmovdqa CTRINC(%rip),%ymm1 + vmovdqa ROT8(%rip),%ymm2 + vmovdqa ROT16(%rip),%ymm3 + + # x12 += counter values 0-3 + vpaddd %ymm1,%ymm12,%ymm12 + +.Ldoubleround8: + # x0 += x4, x12 = rotl32(x12 ^ x0, 16) + vpaddd 0x00(%rsp),%ymm4,%ymm0 + vmovdqa %ymm0,0x00(%rsp) + vpxor %ymm0,%ymm12,%ymm12 + vpshufb %ymm3,%ymm12,%ymm12 + # x1 += x5, x13 = rotl32(x13 ^ x1, 16) + vpaddd 0x20(%rsp),%ymm5,%ymm0 + vmovdqa %ymm0,0x20(%rsp) + vpxor %ymm0,%ymm13,%ymm13 + vpshufb %ymm3,%ymm13,%ymm13 + # x2 += x6, x14 = rotl32(x14 ^ x2, 16) + vpaddd 0x40(%rsp),%ymm6,%ymm0 + vmovdqa %ymm0,0x40(%rsp) + vpxor %ymm0,%ymm14,%ymm14 + vpshufb %ymm3,%ymm14,%ymm14 + # x3 += x7, x15 = rotl32(x15 ^ x3, 16) + vpaddd 0x60(%rsp),%ymm7,%ymm0 + vmovdqa %ymm0,0x60(%rsp) + vpxor %ymm0,%ymm15,%ymm15 + vpshufb %ymm3,%ymm15,%ymm15 + + # x8 += x12, x4 = rotl32(x4 ^ x8, 12) + vpaddd %ymm12,%ymm8,%ymm8 + vpxor %ymm8,%ymm4,%ymm4 + vpslld $12,%ymm4,%ymm0 + vpsrld $20,%ymm4,%ymm4 + vpor %ymm0,%ymm4,%ymm4 + # x9 += x13, x5 = rotl32(x5 ^ x9, 12) + vpaddd %ymm13,%ymm9,%ymm9 + vpxor %ymm9,%ymm5,%ymm5 + vpslld $12,%ymm5,%ymm0 + vpsrld $20,%ymm5,%ymm5 + vpor %ymm0,%ymm5,%ymm5 + # x10 += x14, x6 = rotl32(x6 ^ x10, 12) + vpaddd %ymm14,%ymm10,%ymm10 + vpxor %ymm10,%ymm6,%ymm6 + vpslld $12,%ymm6,%ymm0 + vpsrld $20,%ymm6,%ymm6 + vpor %ymm0,%ymm6,%ymm6 + # x11 += x15, x7 = rotl32(x7 ^ x11, 12) + vpaddd %ymm15,%ymm11,%ymm11 + vpxor %ymm11,%ymm7,%ymm7 + vpslld $12,%ymm7,%ymm0 + vpsrld $20,%ymm7,%ymm7 + vpor %ymm0,%ymm7,%ymm7 + + # x0 += x4, x12 = rotl32(x12 ^ x0, 8) + vpaddd 0x00(%rsp),%ymm4,%ymm0 + vmovdqa %ymm0,0x00(%rsp) + vpxor %ymm0,%ymm12,%ymm12 + vpshufb %ymm2,%ymm12,%ymm12 + # x1 += x5, x13 = rotl32(x13 ^ x1, 8) + vpaddd 0x20(%rsp),%ymm5,%ymm0 + vmovdqa %ymm0,0x20(%rsp) + vpxor %ymm0,%ymm13,%ymm13 + vpshufb %ymm2,%ymm13,%ymm13 + # x2 += x6, x14 = rotl32(x14 ^ x2, 8) + vpaddd 0x40(%rsp),%ymm6,%ymm0 + vmovdqa %ymm0,0x40(%rsp) + vpxor %ymm0,%ymm14,%ymm14 + vpshufb %ymm2,%ymm14,%ymm14 + # x3 += x7, x15 = rotl32(x15 ^ x3, 8) + vpaddd 0x60(%rsp),%ymm7,%ymm0 + vmovdqa %ymm0,0x60(%rsp) + vpxor %ymm0,%ymm15,%ymm15 + vpshufb %ymm2,%ymm15,%ymm15 + + # x8 += x12, x4 = rotl32(x4 ^ x8, 7) + vpaddd %ymm12,%ymm8,%ymm8 + vpxor %ymm8,%ymm4,%ymm4 + vpslld $7,%ymm4,%ymm0 + vpsrld $25,%ymm4,%ymm4 + vpor %ymm0,%ymm4,%ymm4 + # x9 += x13, x5 = rotl32(x5 ^ x9, 7) + vpaddd %ymm13,%ymm9,%ymm9 + vpxor %ymm9,%ymm5,%ymm5 + vpslld $7,%ymm5,%ymm0 + vpsrld $25,%ymm5,%ymm5 + vpor %ymm0,%ymm5,%ymm5 + # x10 += x14, x6 = rotl32(x6 ^ x10, 7) + vpaddd %ymm14,%ymm10,%ymm10 + vpxor %ymm10,%ymm6,%ymm6 + vpslld $7,%ymm6,%ymm0 + vpsrld $25,%ymm6,%ymm6 + vpor %ymm0,%ymm6,%ymm6 + # x11 += x15, x7 = rotl32(x7 ^ x11, 7) + vpaddd %ymm15,%ymm11,%ymm11 + vpxor %ymm11,%ymm7,%ymm7 + vpslld $7,%ymm7,%ymm0 + vpsrld $25,%ymm7,%ymm7 + vpor %ymm0,%ymm7,%ymm7 + + # x0 += x5, x15 = rotl32(x15 ^ x0, 16) + vpaddd 0x00(%rsp),%ymm5,%ymm0 + vmovdqa %ymm0,0x00(%rsp) + vpxor %ymm0,%ymm15,%ymm15 + vpshufb %ymm3,%ymm15,%ymm15 + # x1 += x6, x12 = rotl32(x12 ^ x1, 16)%ymm0 + vpaddd 0x20(%rsp),%ymm6,%ymm0 + vmovdqa %ymm0,0x20(%rsp) + vpxor %ymm0,%ymm12,%ymm12 + vpshufb %ymm3,%ymm12,%ymm12 + # x2 += x7, x13 = rotl32(x13 ^ x2, 16) + vpaddd 0x40(%rsp),%ymm7,%ymm0 + vmovdqa %ymm0,0x40(%rsp) + vpxor %ymm0,%ymm13,%ymm13 + vpshufb %ymm3,%ymm13,%ymm13 + # x3 += x4, x14 = rotl32(x14 ^ x3, 16) + vpaddd 0x60(%rsp),%ymm4,%ymm0 + vmovdqa %ymm0,0x60(%rsp) + vpxor %ymm0,%ymm14,%ymm14 + vpshufb %ymm3,%ymm14,%ymm14 + + # x10 += x15, x5 = rotl32(x5 ^ x10, 12) + vpaddd %ymm15,%ymm10,%ymm10 + vpxor %ymm10,%ymm5,%ymm5 + vpslld $12,%ymm5,%ymm0 + vpsrld $20,%ymm5,%ymm5 + vpor %ymm0,%ymm5,%ymm5 + # x11 += x12, x6 = rotl32(x6 ^ x11, 12) + vpaddd %ymm12,%ymm11,%ymm11 + vpxor %ymm11,%ymm6,%ymm6 + vpslld $12,%ymm6,%ymm0 + vpsrld $20,%ymm6,%ymm6 + vpor %ymm0,%ymm6,%ymm6 + # x8 += x13, x7 = rotl32(x7 ^ x8, 12) + vpaddd %ymm13,%ymm8,%ymm8 + vpxor %ymm8,%ymm7,%ymm7 + vpslld $12,%ymm7,%ymm0 + vpsrld $20,%ymm7,%ymm7 + vpor %ymm0,%ymm7,%ymm7 + # x9 += x14, x4 = rotl32(x4 ^ x9, 12) + vpaddd %ymm14,%ymm9,%ymm9 + vpxor %ymm9,%ymm4,%ymm4 + vpslld $12,%ymm4,%ymm0 + vpsrld $20,%ymm4,%ymm4 + vpor %ymm0,%ymm4,%ymm4 + + # x0 += x5, x15 = rotl32(x15 ^ x0, 8) + vpaddd 0x00(%rsp),%ymm5,%ymm0 + vmovdqa %ymm0,0x00(%rsp) + vpxor %ymm0,%ymm15,%ymm15 + vpshufb %ymm2,%ymm15,%ymm15 + # x1 += x6, x12 = rotl32(x12 ^ x1, 8) + vpaddd 0x20(%rsp),%ymm6,%ymm0 + vmovdqa %ymm0,0x20(%rsp) + vpxor %ymm0,%ymm12,%ymm12 + vpshufb %ymm2,%ymm12,%ymm12 + # x2 += x7, x13 = rotl32(x13 ^ x2, 8) + vpaddd 0x40(%rsp),%ymm7,%ymm0 + vmovdqa %ymm0,0x40(%rsp) + vpxor %ymm0,%ymm13,%ymm13 + vpshufb %ymm2,%ymm13,%ymm13 + # x3 += x4, x14 = rotl32(x14 ^ x3, 8) + vpaddd 0x60(%rsp),%ymm4,%ymm0 + vmovdqa %ymm0,0x60(%rsp) + vpxor %ymm0,%ymm14,%ymm14 + vpshufb %ymm2,%ymm14,%ymm14 + + # x10 += x15, x5 = rotl32(x5 ^ x10, 7) + vpaddd %ymm15,%ymm10,%ymm10 + vpxor %ymm10,%ymm5,%ymm5 + vpslld $7,%ymm5,%ymm0 + vpsrld $25,%ymm5,%ymm5 + vpor %ymm0,%ymm5,%ymm5 + # x11 += x12, x6 = rotl32(x6 ^ x11, 7) + vpaddd %ymm12,%ymm11,%ymm11 + vpxor %ymm11,%ymm6,%ymm6 + vpslld $7,%ymm6,%ymm0 + vpsrld $25,%ymm6,%ymm6 + vpor %ymm0,%ymm6,%ymm6 + # x8 += x13, x7 = rotl32(x7 ^ x8, 7) + vpaddd %ymm13,%ymm8,%ymm8 + vpxor %ymm8,%ymm7,%ymm7 + vpslld $7,%ymm7,%ymm0 + vpsrld $25,%ymm7,%ymm7 + vpor %ymm0,%ymm7,%ymm7 + # x9 += x14, x4 = rotl32(x4 ^ x9, 7) + vpaddd %ymm14,%ymm9,%ymm9 + vpxor %ymm9,%ymm4,%ymm4 + vpslld $7,%ymm4,%ymm0 + vpsrld $25,%ymm4,%ymm4 + vpor %ymm0,%ymm4,%ymm4 + + sub $2,%r8d + jnz .Ldoubleround8 + + # x0..15[0-3] += s[0..15] + vpbroadcastd 0x00(%rdi),%ymm0 + vpaddd 0x00(%rsp),%ymm0,%ymm0 + vmovdqa %ymm0,0x00(%rsp) + vpbroadcastd 0x04(%rdi),%ymm0 + vpaddd 0x20(%rsp),%ymm0,%ymm0 + vmovdqa %ymm0,0x20(%rsp) + vpbroadcastd 0x08(%rdi),%ymm0 + vpaddd 0x40(%rsp),%ymm0,%ymm0 + vmovdqa %ymm0,0x40(%rsp) + vpbroadcastd 0x0c(%rdi),%ymm0 + vpaddd 0x60(%rsp),%ymm0,%ymm0 + vmovdqa %ymm0,0x60(%rsp) + vpbroadcastd 0x10(%rdi),%ymm0 + vpaddd %ymm0,%ymm4,%ymm4 + vpbroadcastd 0x14(%rdi),%ymm0 + vpaddd %ymm0,%ymm5,%ymm5 + vpbroadcastd 0x18(%rdi),%ymm0 + vpaddd %ymm0,%ymm6,%ymm6 + vpbroadcastd 0x1c(%rdi),%ymm0 + vpaddd %ymm0,%ymm7,%ymm7 + vpbroadcastd 0x20(%rdi),%ymm0 + vpaddd %ymm0,%ymm8,%ymm8 + vpbroadcastd 0x24(%rdi),%ymm0 + vpaddd %ymm0,%ymm9,%ymm9 + vpbroadcastd 0x28(%rdi),%ymm0 + vpaddd %ymm0,%ymm10,%ymm10 + vpbroadcastd 0x2c(%rdi),%ymm0 + vpaddd %ymm0,%ymm11,%ymm11 + vpbroadcastd 0x30(%rdi),%ymm0 + vpaddd %ymm0,%ymm12,%ymm12 + vpbroadcastd 0x34(%rdi),%ymm0 + vpaddd %ymm0,%ymm13,%ymm13 + vpbroadcastd 0x38(%rdi),%ymm0 + vpaddd %ymm0,%ymm14,%ymm14 + vpbroadcastd 0x3c(%rdi),%ymm0 + vpaddd %ymm0,%ymm15,%ymm15 + + # x12 += counter values 0-3 + vpaddd %ymm1,%ymm12,%ymm12 + + # interleave 32-bit words in state n, n+1 + vmovdqa 0x00(%rsp),%ymm0 + vmovdqa 0x20(%rsp),%ymm1 + vpunpckldq %ymm1,%ymm0,%ymm2 + vpunpckhdq %ymm1,%ymm0,%ymm1 + vmovdqa %ymm2,0x00(%rsp) + vmovdqa %ymm1,0x20(%rsp) + vmovdqa 0x40(%rsp),%ymm0 + vmovdqa 0x60(%rsp),%ymm1 + vpunpckldq %ymm1,%ymm0,%ymm2 + vpunpckhdq %ymm1,%ymm0,%ymm1 + vmovdqa %ymm2,0x40(%rsp) + vmovdqa %ymm1,0x60(%rsp) + vmovdqa %ymm4,%ymm0 + vpunpckldq %ymm5,%ymm0,%ymm4 + vpunpckhdq %ymm5,%ymm0,%ymm5 + vmovdqa %ymm6,%ymm0 + vpunpckldq %ymm7,%ymm0,%ymm6 + vpunpckhdq %ymm7,%ymm0,%ymm7 + vmovdqa %ymm8,%ymm0 + vpunpckldq %ymm9,%ymm0,%ymm8 + vpunpckhdq %ymm9,%ymm0,%ymm9 + vmovdqa %ymm10,%ymm0 + vpunpckldq %ymm11,%ymm0,%ymm10 + vpunpckhdq %ymm11,%ymm0,%ymm11 + vmovdqa %ymm12,%ymm0 + vpunpckldq %ymm13,%ymm0,%ymm12 + vpunpckhdq %ymm13,%ymm0,%ymm13 + vmovdqa %ymm14,%ymm0 + vpunpckldq %ymm15,%ymm0,%ymm14 + vpunpckhdq %ymm15,%ymm0,%ymm15 + + # interleave 64-bit words in state n, n+2 + vmovdqa 0x00(%rsp),%ymm0 + vmovdqa 0x40(%rsp),%ymm2 + vpunpcklqdq %ymm2,%ymm0,%ymm1 + vpunpckhqdq %ymm2,%ymm0,%ymm2 + vmovdqa %ymm1,0x00(%rsp) + vmovdqa %ymm2,0x40(%rsp) + vmovdqa 0x20(%rsp),%ymm0 + vmovdqa 0x60(%rsp),%ymm2 + vpunpcklqdq %ymm2,%ymm0,%ymm1 + vpunpckhqdq %ymm2,%ymm0,%ymm2 + vmovdqa %ymm1,0x20(%rsp) + vmovdqa %ymm2,0x60(%rsp) + vmovdqa %ymm4,%ymm0 + vpunpcklqdq %ymm6,%ymm0,%ymm4 + vpunpckhqdq %ymm6,%ymm0,%ymm6 + vmovdqa %ymm5,%ymm0 + vpunpcklqdq %ymm7,%ymm0,%ymm5 + vpunpckhqdq %ymm7,%ymm0,%ymm7 + vmovdqa %ymm8,%ymm0 + vpunpcklqdq %ymm10,%ymm0,%ymm8 + vpunpckhqdq %ymm10,%ymm0,%ymm10 + vmovdqa %ymm9,%ymm0 + vpunpcklqdq %ymm11,%ymm0,%ymm9 + vpunpckhqdq %ymm11,%ymm0,%ymm11 + vmovdqa %ymm12,%ymm0 + vpunpcklqdq %ymm14,%ymm0,%ymm12 + vpunpckhqdq %ymm14,%ymm0,%ymm14 + vmovdqa %ymm13,%ymm0 + vpunpcklqdq %ymm15,%ymm0,%ymm13 + vpunpckhqdq %ymm15,%ymm0,%ymm15 + + # interleave 128-bit words in state n, n+4 + # xor/write first four blocks + vmovdqa 0x00(%rsp),%ymm1 + vperm2i128 $0x20,%ymm4,%ymm1,%ymm0 + cmp $0x0020,%rax + jl .Lxorpart8 + vpxor 0x0000(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x0000(%rsi) + vperm2i128 $0x31,%ymm4,%ymm1,%ymm4 + + vperm2i128 $0x20,%ymm12,%ymm8,%ymm0 + cmp $0x0040,%rax + jl .Lxorpart8 + vpxor 0x0020(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x0020(%rsi) + vperm2i128 $0x31,%ymm12,%ymm8,%ymm12 + + vmovdqa 0x40(%rsp),%ymm1 + vperm2i128 $0x20,%ymm6,%ymm1,%ymm0 + cmp $0x0060,%rax + jl .Lxorpart8 + vpxor 0x0040(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x0040(%rsi) + vperm2i128 $0x31,%ymm6,%ymm1,%ymm6 + + vperm2i128 $0x20,%ymm14,%ymm10,%ymm0 + cmp $0x0080,%rax + jl .Lxorpart8 + vpxor 0x0060(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x0060(%rsi) + vperm2i128 $0x31,%ymm14,%ymm10,%ymm14 + + vmovdqa 0x20(%rsp),%ymm1 + vperm2i128 $0x20,%ymm5,%ymm1,%ymm0 + cmp $0x00a0,%rax + jl .Lxorpart8 + vpxor 0x0080(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x0080(%rsi) + vperm2i128 $0x31,%ymm5,%ymm1,%ymm5 + + vperm2i128 $0x20,%ymm13,%ymm9,%ymm0 + cmp $0x00c0,%rax + jl .Lxorpart8 + vpxor 0x00a0(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x00a0(%rsi) + vperm2i128 $0x31,%ymm13,%ymm9,%ymm13 + + vmovdqa 0x60(%rsp),%ymm1 + vperm2i128 $0x20,%ymm7,%ymm1,%ymm0 + cmp $0x00e0,%rax + jl .Lxorpart8 + vpxor 0x00c0(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x00c0(%rsi) + vperm2i128 $0x31,%ymm7,%ymm1,%ymm7 + + vperm2i128 $0x20,%ymm15,%ymm11,%ymm0 + cmp $0x0100,%rax + jl .Lxorpart8 + vpxor 0x00e0(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x00e0(%rsi) + vperm2i128 $0x31,%ymm15,%ymm11,%ymm15 + + # xor remaining blocks, write to output + vmovdqa %ymm4,%ymm0 + cmp $0x0120,%rax + jl .Lxorpart8 + vpxor 0x0100(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x0100(%rsi) + + vmovdqa %ymm12,%ymm0 + cmp $0x0140,%rax + jl .Lxorpart8 + vpxor 0x0120(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x0120(%rsi) + + vmovdqa %ymm6,%ymm0 + cmp $0x0160,%rax + jl .Lxorpart8 + vpxor 0x0140(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x0140(%rsi) + + vmovdqa %ymm14,%ymm0 + cmp $0x0180,%rax + jl .Lxorpart8 + vpxor 0x0160(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x0160(%rsi) + + vmovdqa %ymm5,%ymm0 + cmp $0x01a0,%rax + jl .Lxorpart8 + vpxor 0x0180(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x0180(%rsi) + + vmovdqa %ymm13,%ymm0 + cmp $0x01c0,%rax + jl .Lxorpart8 + vpxor 0x01a0(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x01a0(%rsi) + + vmovdqa %ymm7,%ymm0 + cmp $0x01e0,%rax + jl .Lxorpart8 + vpxor 0x01c0(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x01c0(%rsi) + + vmovdqa %ymm15,%ymm0 + cmp $0x0200,%rax + jl .Lxorpart8 + vpxor 0x01e0(%rdx),%ymm0,%ymm0 + vmovdqu %ymm0,0x01e0(%rsi) + +.Ldone8: + vzeroupper + lea -8(%r10),%rsp + RET + +.Lxorpart8: + # xor remaining bytes from partial register into output + mov %rax,%r9 + and $0x1f,%r9 + jz .Ldone8 + and $~0x1f,%rax + + mov %rsi,%r11 + + lea (%rdx,%rax),%rsi + mov %rsp,%rdi + mov %r9,%rcx + rep movsb + + vpxor 0x00(%rsp),%ymm0,%ymm0 + vmovdqa %ymm0,0x00(%rsp) + + mov %rsp,%rsi + lea (%r11,%rax),%rdi + mov %r9,%rcx + rep movsb + + jmp .Ldone8 + +SYM_FUNC_END(chacha_8block_xor_avx2) diff --git a/arch/x86/lib/crypto/chacha-avx512vl-x86_64.S b/arch/x86/lib/crypto/chacha-avx512vl-x86_64.S new file mode 100644 index 000000000000..259383e1ad44 --- /dev/null +++ b/arch/x86/lib/crypto/chacha-avx512vl-x86_64.S @@ -0,0 +1,836 @@ +/* SPDX-License-Identifier: GPL-2.0+ */ +/* + * ChaCha 256-bit cipher algorithm, x64 AVX-512VL functions + * + * Copyright (C) 2018 Martin Willi + */ + +#include <linux/linkage.h> + +.section .rodata.cst32.CTR2BL, "aM", @progbits, 32 +.align 32 +CTR2BL: .octa 0x00000000000000000000000000000000 + .octa 0x00000000000000000000000000000001 + +.section .rodata.cst32.CTR4BL, "aM", @progbits, 32 +.align 32 +CTR4BL: .octa 0x00000000000000000000000000000002 + .octa 0x00000000000000000000000000000003 + +.section .rodata.cst32.CTR8BL, "aM", @progbits, 32 +.align 32 +CTR8BL: .octa 0x00000003000000020000000100000000 + .octa 0x00000007000000060000000500000004 + +.text + +SYM_FUNC_START(chacha_2block_xor_avx512vl) + # %rdi: Input state matrix, s + # %rsi: up to 2 data blocks output, o + # %rdx: up to 2 data blocks input, i + # %rcx: input/output length in bytes + # %r8d: nrounds + + # This function encrypts two ChaCha blocks by loading the state + # matrix twice across four AVX registers. It performs matrix operations + # on four words in each matrix in parallel, but requires shuffling to + # rearrange the words after each round. + + vzeroupper + + # x0..3[0-2] = s0..3 + vbroadcasti128 0x00(%rdi),%ymm0 + vbroadcasti128 0x10(%rdi),%ymm1 + vbroadcasti128 0x20(%rdi),%ymm2 + vbroadcasti128 0x30(%rdi),%ymm3 + + vpaddd CTR2BL(%rip),%ymm3,%ymm3 + + vmovdqa %ymm0,%ymm8 + vmovdqa %ymm1,%ymm9 + vmovdqa %ymm2,%ymm10 + vmovdqa %ymm3,%ymm11 + +.Ldoubleround: + + # x0 += x1, x3 = rotl32(x3 ^ x0, 16) + vpaddd %ymm1,%ymm0,%ymm0 + vpxord %ymm0,%ymm3,%ymm3 + vprold $16,%ymm3,%ymm3 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 12) + vpaddd %ymm3,%ymm2,%ymm2 + vpxord %ymm2,%ymm1,%ymm1 + vprold $12,%ymm1,%ymm1 + + # x0 += x1, x3 = rotl32(x3 ^ x0, 8) + vpaddd %ymm1,%ymm0,%ymm0 + vpxord %ymm0,%ymm3,%ymm3 + vprold $8,%ymm3,%ymm3 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 7) + vpaddd %ymm3,%ymm2,%ymm2 + vpxord %ymm2,%ymm1,%ymm1 + vprold $7,%ymm1,%ymm1 + + # x1 = shuffle32(x1, MASK(0, 3, 2, 1)) + vpshufd $0x39,%ymm1,%ymm1 + # x2 = shuffle32(x2, MASK(1, 0, 3, 2)) + vpshufd $0x4e,%ymm2,%ymm2 + # x3 = shuffle32(x3, MASK(2, 1, 0, 3)) + vpshufd $0x93,%ymm3,%ymm3 + + # x0 += x1, x3 = rotl32(x3 ^ x0, 16) + vpaddd %ymm1,%ymm0,%ymm0 + vpxord %ymm0,%ymm3,%ymm3 + vprold $16,%ymm3,%ymm3 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 12) + vpaddd %ymm3,%ymm2,%ymm2 + vpxord %ymm2,%ymm1,%ymm1 + vprold $12,%ymm1,%ymm1 + + # x0 += x1, x3 = rotl32(x3 ^ x0, 8) + vpaddd %ymm1,%ymm0,%ymm0 + vpxord %ymm0,%ymm3,%ymm3 + vprold $8,%ymm3,%ymm3 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 7) + vpaddd %ymm3,%ymm2,%ymm2 + vpxord %ymm2,%ymm1,%ymm1 + vprold $7,%ymm1,%ymm1 + + # x1 = shuffle32(x1, MASK(2, 1, 0, 3)) + vpshufd $0x93,%ymm1,%ymm1 + # x2 = shuffle32(x2, MASK(1, 0, 3, 2)) + vpshufd $0x4e,%ymm2,%ymm2 + # x3 = shuffle32(x3, MASK(0, 3, 2, 1)) + vpshufd $0x39,%ymm3,%ymm3 + + sub $2,%r8d + jnz .Ldoubleround + + # o0 = i0 ^ (x0 + s0) + vpaddd %ymm8,%ymm0,%ymm7 + cmp $0x10,%rcx + jl .Lxorpart2 + vpxord 0x00(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x00(%rsi) + vextracti128 $1,%ymm7,%xmm0 + # o1 = i1 ^ (x1 + s1) + vpaddd %ymm9,%ymm1,%ymm7 + cmp $0x20,%rcx + jl .Lxorpart2 + vpxord 0x10(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x10(%rsi) + vextracti128 $1,%ymm7,%xmm1 + # o2 = i2 ^ (x2 + s2) + vpaddd %ymm10,%ymm2,%ymm7 + cmp $0x30,%rcx + jl .Lxorpart2 + vpxord 0x20(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x20(%rsi) + vextracti128 $1,%ymm7,%xmm2 + # o3 = i3 ^ (x3 + s3) + vpaddd %ymm11,%ymm3,%ymm7 + cmp $0x40,%rcx + jl .Lxorpart2 + vpxord 0x30(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x30(%rsi) + vextracti128 $1,%ymm7,%xmm3 + + # xor and write second block + vmovdqa %xmm0,%xmm7 + cmp $0x50,%rcx + jl .Lxorpart2 + vpxord 0x40(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x40(%rsi) + + vmovdqa %xmm1,%xmm7 + cmp $0x60,%rcx + jl .Lxorpart2 + vpxord 0x50(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x50(%rsi) + + vmovdqa %xmm2,%xmm7 + cmp $0x70,%rcx + jl .Lxorpart2 + vpxord 0x60(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x60(%rsi) + + vmovdqa %xmm3,%xmm7 + cmp $0x80,%rcx + jl .Lxorpart2 + vpxord 0x70(%rdx),%xmm7,%xmm6 + vmovdqu %xmm6,0x70(%rsi) + +.Ldone2: + vzeroupper + RET + +.Lxorpart2: + # xor remaining bytes from partial register into output + mov %rcx,%rax + and $0xf,%rcx + jz .Ldone2 + mov %rax,%r9 + and $~0xf,%r9 + + mov $1,%rax + shld %cl,%rax,%rax + sub $1,%rax + kmovq %rax,%k1 + + vmovdqu8 (%rdx,%r9),%xmm1{%k1}{z} + vpxord %xmm7,%xmm1,%xmm1 + vmovdqu8 %xmm1,(%rsi,%r9){%k1} + + jmp .Ldone2 + +SYM_FUNC_END(chacha_2block_xor_avx512vl) + +SYM_FUNC_START(chacha_4block_xor_avx512vl) + # %rdi: Input state matrix, s + # %rsi: up to 4 data blocks output, o + # %rdx: up to 4 data blocks input, i + # %rcx: input/output length in bytes + # %r8d: nrounds + + # This function encrypts four ChaCha blocks by loading the state + # matrix four times across eight AVX registers. It performs matrix + # operations on four words in two matrices in parallel, sequentially + # to the operations on the four words of the other two matrices. The + # required word shuffling has a rather high latency, we can do the + # arithmetic on two matrix-pairs without much slowdown. + + vzeroupper + + # x0..3[0-4] = s0..3 + vbroadcasti128 0x00(%rdi),%ymm0 + vbroadcasti128 0x10(%rdi),%ymm1 + vbroadcasti128 0x20(%rdi),%ymm2 + vbroadcasti128 0x30(%rdi),%ymm3 + + vmovdqa %ymm0,%ymm4 + vmovdqa %ymm1,%ymm5 + vmovdqa %ymm2,%ymm6 + vmovdqa %ymm3,%ymm7 + + vpaddd CTR2BL(%rip),%ymm3,%ymm3 + vpaddd CTR4BL(%rip),%ymm7,%ymm7 + + vmovdqa %ymm0,%ymm11 + vmovdqa %ymm1,%ymm12 + vmovdqa %ymm2,%ymm13 + vmovdqa %ymm3,%ymm14 + vmovdqa %ymm7,%ymm15 + +.Ldoubleround4: + + # x0 += x1, x3 = rotl32(x3 ^ x0, 16) + vpaddd %ymm1,%ymm0,%ymm0 + vpxord %ymm0,%ymm3,%ymm3 + vprold $16,%ymm3,%ymm3 + + vpaddd %ymm5,%ymm4,%ymm4 + vpxord %ymm4,%ymm7,%ymm7 + vprold $16,%ymm7,%ymm7 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 12) + vpaddd %ymm3,%ymm2,%ymm2 + vpxord %ymm2,%ymm1,%ymm1 + vprold $12,%ymm1,%ymm1 + + vpaddd %ymm7,%ymm6,%ymm6 + vpxord %ymm6,%ymm5,%ymm5 + vprold $12,%ymm5,%ymm5 + + # x0 += x1, x3 = rotl32(x3 ^ x0, 8) + vpaddd %ymm1,%ymm0,%ymm0 + vpxord %ymm0,%ymm3,%ymm3 + vprold $8,%ymm3,%ymm3 + + vpaddd %ymm5,%ymm4,%ymm4 + vpxord %ymm4,%ymm7,%ymm7 + vprold $8,%ymm7,%ymm7 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 7) + vpaddd %ymm3,%ymm2,%ymm2 + vpxord %ymm2,%ymm1,%ymm1 + vprold $7,%ymm1,%ymm1 + + vpaddd %ymm7,%ymm6,%ymm6 + vpxord %ymm6,%ymm5,%ymm5 + vprold $7,%ymm5,%ymm5 + + # x1 = shuffle32(x1, MASK(0, 3, 2, 1)) + vpshufd $0x39,%ymm1,%ymm1 + vpshufd $0x39,%ymm5,%ymm5 + # x2 = shuffle32(x2, MASK(1, 0, 3, 2)) + vpshufd $0x4e,%ymm2,%ymm2 + vpshufd $0x4e,%ymm6,%ymm6 + # x3 = shuffle32(x3, MASK(2, 1, 0, 3)) + vpshufd $0x93,%ymm3,%ymm3 + vpshufd $0x93,%ymm7,%ymm7 + + # x0 += x1, x3 = rotl32(x3 ^ x0, 16) + vpaddd %ymm1,%ymm0,%ymm0 + vpxord %ymm0,%ymm3,%ymm3 + vprold $16,%ymm3,%ymm3 + + vpaddd %ymm5,%ymm4,%ymm4 + vpxord %ymm4,%ymm7,%ymm7 + vprold $16,%ymm7,%ymm7 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 12) + vpaddd %ymm3,%ymm2,%ymm2 + vpxord %ymm2,%ymm1,%ymm1 + vprold $12,%ymm1,%ymm1 + + vpaddd %ymm7,%ymm6,%ymm6 + vpxord %ymm6,%ymm5,%ymm5 + vprold $12,%ymm5,%ymm5 + + # x0 += x1, x3 = rotl32(x3 ^ x0, 8) + vpaddd %ymm1,%ymm0,%ymm0 + vpxord %ymm0,%ymm3,%ymm3 + vprold $8,%ymm3,%ymm3 + + vpaddd %ymm5,%ymm4,%ymm4 + vpxord %ymm4,%ymm7,%ymm7 + vprold $8,%ymm7,%ymm7 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 7) + vpaddd %ymm3,%ymm2,%ymm2 + vpxord %ymm2,%ymm1,%ymm1 + vprold $7,%ymm1,%ymm1 + + vpaddd %ymm7,%ymm6,%ymm6 + vpxord %ymm6,%ymm5,%ymm5 + vprold $7,%ymm5,%ymm5 + + # x1 = shuffle32(x1, MASK(2, 1, 0, 3)) + vpshufd $0x93,%ymm1,%ymm1 + vpshufd $0x93,%ymm5,%ymm5 + # x2 = shuffle32(x2, MASK(1, 0, 3, 2)) + vpshufd $0x4e,%ymm2,%ymm2 + vpshufd $0x4e,%ymm6,%ymm6 + # x3 = shuffle32(x3, MASK(0, 3, 2, 1)) + vpshufd $0x39,%ymm3,%ymm3 + vpshufd $0x39,%ymm7,%ymm7 + + sub $2,%r8d + jnz .Ldoubleround4 + + # o0 = i0 ^ (x0 + s0), first block + vpaddd %ymm11,%ymm0,%ymm10 + cmp $0x10,%rcx + jl .Lxorpart4 + vpxord 0x00(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x00(%rsi) + vextracti128 $1,%ymm10,%xmm0 + # o1 = i1 ^ (x1 + s1), first block + vpaddd %ymm12,%ymm1,%ymm10 + cmp $0x20,%rcx + jl .Lxorpart4 + vpxord 0x10(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x10(%rsi) + vextracti128 $1,%ymm10,%xmm1 + # o2 = i2 ^ (x2 + s2), first block + vpaddd %ymm13,%ymm2,%ymm10 + cmp $0x30,%rcx + jl .Lxorpart4 + vpxord 0x20(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x20(%rsi) + vextracti128 $1,%ymm10,%xmm2 + # o3 = i3 ^ (x3 + s3), first block + vpaddd %ymm14,%ymm3,%ymm10 + cmp $0x40,%rcx + jl .Lxorpart4 + vpxord 0x30(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x30(%rsi) + vextracti128 $1,%ymm10,%xmm3 + + # xor and write second block + vmovdqa %xmm0,%xmm10 + cmp $0x50,%rcx + jl .Lxorpart4 + vpxord 0x40(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x40(%rsi) + + vmovdqa %xmm1,%xmm10 + cmp $0x60,%rcx + jl .Lxorpart4 + vpxord 0x50(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x50(%rsi) + + vmovdqa %xmm2,%xmm10 + cmp $0x70,%rcx + jl .Lxorpart4 + vpxord 0x60(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x60(%rsi) + + vmovdqa %xmm3,%xmm10 + cmp $0x80,%rcx + jl .Lxorpart4 + vpxord 0x70(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x70(%rsi) + + # o0 = i0 ^ (x0 + s0), third block + vpaddd %ymm11,%ymm4,%ymm10 + cmp $0x90,%rcx + jl .Lxorpart4 + vpxord 0x80(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x80(%rsi) + vextracti128 $1,%ymm10,%xmm4 + # o1 = i1 ^ (x1 + s1), third block + vpaddd %ymm12,%ymm5,%ymm10 + cmp $0xa0,%rcx + jl .Lxorpart4 + vpxord 0x90(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0x90(%rsi) + vextracti128 $1,%ymm10,%xmm5 + # o2 = i2 ^ (x2 + s2), third block + vpaddd %ymm13,%ymm6,%ymm10 + cmp $0xb0,%rcx + jl .Lxorpart4 + vpxord 0xa0(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0xa0(%rsi) + vextracti128 $1,%ymm10,%xmm6 + # o3 = i3 ^ (x3 + s3), third block + vpaddd %ymm15,%ymm7,%ymm10 + cmp $0xc0,%rcx + jl .Lxorpart4 + vpxord 0xb0(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0xb0(%rsi) + vextracti128 $1,%ymm10,%xmm7 + + # xor and write fourth block + vmovdqa %xmm4,%xmm10 + cmp $0xd0,%rcx + jl .Lxorpart4 + vpxord 0xc0(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0xc0(%rsi) + + vmovdqa %xmm5,%xmm10 + cmp $0xe0,%rcx + jl .Lxorpart4 + vpxord 0xd0(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0xd0(%rsi) + + vmovdqa %xmm6,%xmm10 + cmp $0xf0,%rcx + jl .Lxorpart4 + vpxord 0xe0(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0xe0(%rsi) + + vmovdqa %xmm7,%xmm10 + cmp $0x100,%rcx + jl .Lxorpart4 + vpxord 0xf0(%rdx),%xmm10,%xmm9 + vmovdqu %xmm9,0xf0(%rsi) + +.Ldone4: + vzeroupper + RET + +.Lxorpart4: + # xor remaining bytes from partial register into output + mov %rcx,%rax + and $0xf,%rcx + jz .Ldone4 + mov %rax,%r9 + and $~0xf,%r9 + + mov $1,%rax + shld %cl,%rax,%rax + sub $1,%rax + kmovq %rax,%k1 + + vmovdqu8 (%rdx,%r9),%xmm1{%k1}{z} + vpxord %xmm10,%xmm1,%xmm1 + vmovdqu8 %xmm1,(%rsi,%r9){%k1} + + jmp .Ldone4 + +SYM_FUNC_END(chacha_4block_xor_avx512vl) + +SYM_FUNC_START(chacha_8block_xor_avx512vl) + # %rdi: Input state matrix, s + # %rsi: up to 8 data blocks output, o + # %rdx: up to 8 data blocks input, i + # %rcx: input/output length in bytes + # %r8d: nrounds + + # This function encrypts eight consecutive ChaCha blocks by loading + # the state matrix in AVX registers eight times. Compared to AVX2, this + # mostly benefits from the new rotate instructions in VL and the + # additional registers. + + vzeroupper + + # x0..15[0-7] = s[0..15] + vpbroadcastd 0x00(%rdi),%ymm0 + vpbroadcastd 0x04(%rdi),%ymm1 + vpbroadcastd 0x08(%rdi),%ymm2 + vpbroadcastd 0x0c(%rdi),%ymm3 + vpbroadcastd 0x10(%rdi),%ymm4 + vpbroadcastd 0x14(%rdi),%ymm5 + vpbroadcastd 0x18(%rdi),%ymm6 + vpbroadcastd 0x1c(%rdi),%ymm7 + vpbroadcastd 0x20(%rdi),%ymm8 + vpbroadcastd 0x24(%rdi),%ymm9 + vpbroadcastd 0x28(%rdi),%ymm10 + vpbroadcastd 0x2c(%rdi),%ymm11 + vpbroadcastd 0x30(%rdi),%ymm12 + vpbroadcastd 0x34(%rdi),%ymm13 + vpbroadcastd 0x38(%rdi),%ymm14 + vpbroadcastd 0x3c(%rdi),%ymm15 + + # x12 += counter values 0-3 + vpaddd CTR8BL(%rip),%ymm12,%ymm12 + + vmovdqa64 %ymm0,%ymm16 + vmovdqa64 %ymm1,%ymm17 + vmovdqa64 %ymm2,%ymm18 + vmovdqa64 %ymm3,%ymm19 + vmovdqa64 %ymm4,%ymm20 + vmovdqa64 %ymm5,%ymm21 + vmovdqa64 %ymm6,%ymm22 + vmovdqa64 %ymm7,%ymm23 + vmovdqa64 %ymm8,%ymm24 + vmovdqa64 %ymm9,%ymm25 + vmovdqa64 %ymm10,%ymm26 + vmovdqa64 %ymm11,%ymm27 + vmovdqa64 %ymm12,%ymm28 + vmovdqa64 %ymm13,%ymm29 + vmovdqa64 %ymm14,%ymm30 + vmovdqa64 %ymm15,%ymm31 + +.Ldoubleround8: + # x0 += x4, x12 = rotl32(x12 ^ x0, 16) + vpaddd %ymm0,%ymm4,%ymm0 + vpxord %ymm0,%ymm12,%ymm12 + vprold $16,%ymm12,%ymm12 + # x1 += x5, x13 = rotl32(x13 ^ x1, 16) + vpaddd %ymm1,%ymm5,%ymm1 + vpxord %ymm1,%ymm13,%ymm13 + vprold $16,%ymm13,%ymm13 + # x2 += x6, x14 = rotl32(x14 ^ x2, 16) + vpaddd %ymm2,%ymm6,%ymm2 + vpxord %ymm2,%ymm14,%ymm14 + vprold $16,%ymm14,%ymm14 + # x3 += x7, x15 = rotl32(x15 ^ x3, 16) + vpaddd %ymm3,%ymm7,%ymm3 + vpxord %ymm3,%ymm15,%ymm15 + vprold $16,%ymm15,%ymm15 + + # x8 += x12, x4 = rotl32(x4 ^ x8, 12) + vpaddd %ymm12,%ymm8,%ymm8 + vpxord %ymm8,%ymm4,%ymm4 + vprold $12,%ymm4,%ymm4 + # x9 += x13, x5 = rotl32(x5 ^ x9, 12) + vpaddd %ymm13,%ymm9,%ymm9 + vpxord %ymm9,%ymm5,%ymm5 + vprold $12,%ymm5,%ymm5 + # x10 += x14, x6 = rotl32(x6 ^ x10, 12) + vpaddd %ymm14,%ymm10,%ymm10 + vpxord %ymm10,%ymm6,%ymm6 + vprold $12,%ymm6,%ymm6 + # x11 += x15, x7 = rotl32(x7 ^ x11, 12) + vpaddd %ymm15,%ymm11,%ymm11 + vpxord %ymm11,%ymm7,%ymm7 + vprold $12,%ymm7,%ymm7 + + # x0 += x4, x12 = rotl32(x12 ^ x0, 8) + vpaddd %ymm0,%ymm4,%ymm0 + vpxord %ymm0,%ymm12,%ymm12 + vprold $8,%ymm12,%ymm12 + # x1 += x5, x13 = rotl32(x13 ^ x1, 8) + vpaddd %ymm1,%ymm5,%ymm1 + vpxord %ymm1,%ymm13,%ymm13 + vprold $8,%ymm13,%ymm13 + # x2 += x6, x14 = rotl32(x14 ^ x2, 8) + vpaddd %ymm2,%ymm6,%ymm2 + vpxord %ymm2,%ymm14,%ymm14 + vprold $8,%ymm14,%ymm14 + # x3 += x7, x15 = rotl32(x15 ^ x3, 8) + vpaddd %ymm3,%ymm7,%ymm3 + vpxord %ymm3,%ymm15,%ymm15 + vprold $8,%ymm15,%ymm15 + + # x8 += x12, x4 = rotl32(x4 ^ x8, 7) + vpaddd %ymm12,%ymm8,%ymm8 + vpxord %ymm8,%ymm4,%ymm4 + vprold $7,%ymm4,%ymm4 + # x9 += x13, x5 = rotl32(x5 ^ x9, 7) + vpaddd %ymm13,%ymm9,%ymm9 + vpxord %ymm9,%ymm5,%ymm5 + vprold $7,%ymm5,%ymm5 + # x10 += x14, x6 = rotl32(x6 ^ x10, 7) + vpaddd %ymm14,%ymm10,%ymm10 + vpxord %ymm10,%ymm6,%ymm6 + vprold $7,%ymm6,%ymm6 + # x11 += x15, x7 = rotl32(x7 ^ x11, 7) + vpaddd %ymm15,%ymm11,%ymm11 + vpxord %ymm11,%ymm7,%ymm7 + vprold $7,%ymm7,%ymm7 + + # x0 += x5, x15 = rotl32(x15 ^ x0, 16) + vpaddd %ymm0,%ymm5,%ymm0 + vpxord %ymm0,%ymm15,%ymm15 + vprold $16,%ymm15,%ymm15 + # x1 += x6, x12 = rotl32(x12 ^ x1, 16) + vpaddd %ymm1,%ymm6,%ymm1 + vpxord %ymm1,%ymm12,%ymm12 + vprold $16,%ymm12,%ymm12 + # x2 += x7, x13 = rotl32(x13 ^ x2, 16) + vpaddd %ymm2,%ymm7,%ymm2 + vpxord %ymm2,%ymm13,%ymm13 + vprold $16,%ymm13,%ymm13 + # x3 += x4, x14 = rotl32(x14 ^ x3, 16) + vpaddd %ymm3,%ymm4,%ymm3 + vpxord %ymm3,%ymm14,%ymm14 + vprold $16,%ymm14,%ymm14 + + # x10 += x15, x5 = rotl32(x5 ^ x10, 12) + vpaddd %ymm15,%ymm10,%ymm10 + vpxord %ymm10,%ymm5,%ymm5 + vprold $12,%ymm5,%ymm5 + # x11 += x12, x6 = rotl32(x6 ^ x11, 12) + vpaddd %ymm12,%ymm11,%ymm11 + vpxord %ymm11,%ymm6,%ymm6 + vprold $12,%ymm6,%ymm6 + # x8 += x13, x7 = rotl32(x7 ^ x8, 12) + vpaddd %ymm13,%ymm8,%ymm8 + vpxord %ymm8,%ymm7,%ymm7 + vprold $12,%ymm7,%ymm7 + # x9 += x14, x4 = rotl32(x4 ^ x9, 12) + vpaddd %ymm14,%ymm9,%ymm9 + vpxord %ymm9,%ymm4,%ymm4 + vprold $12,%ymm4,%ymm4 + + # x0 += x5, x15 = rotl32(x15 ^ x0, 8) + vpaddd %ymm0,%ymm5,%ymm0 + vpxord %ymm0,%ymm15,%ymm15 + vprold $8,%ymm15,%ymm15 + # x1 += x6, x12 = rotl32(x12 ^ x1, 8) + vpaddd %ymm1,%ymm6,%ymm1 + vpxord %ymm1,%ymm12,%ymm12 + vprold $8,%ymm12,%ymm12 + # x2 += x7, x13 = rotl32(x13 ^ x2, 8) + vpaddd %ymm2,%ymm7,%ymm2 + vpxord %ymm2,%ymm13,%ymm13 + vprold $8,%ymm13,%ymm13 + # x3 += x4, x14 = rotl32(x14 ^ x3, 8) + vpaddd %ymm3,%ymm4,%ymm3 + vpxord %ymm3,%ymm14,%ymm14 + vprold $8,%ymm14,%ymm14 + + # x10 += x15, x5 = rotl32(x5 ^ x10, 7) + vpaddd %ymm15,%ymm10,%ymm10 + vpxord %ymm10,%ymm5,%ymm5 + vprold $7,%ymm5,%ymm5 + # x11 += x12, x6 = rotl32(x6 ^ x11, 7) + vpaddd %ymm12,%ymm11,%ymm11 + vpxord %ymm11,%ymm6,%ymm6 + vprold $7,%ymm6,%ymm6 + # x8 += x13, x7 = rotl32(x7 ^ x8, 7) + vpaddd %ymm13,%ymm8,%ymm8 + vpxord %ymm8,%ymm7,%ymm7 + vprold $7,%ymm7,%ymm7 + # x9 += x14, x4 = rotl32(x4 ^ x9, 7) + vpaddd %ymm14,%ymm9,%ymm9 + vpxord %ymm9,%ymm4,%ymm4 + vprold $7,%ymm4,%ymm4 + + sub $2,%r8d + jnz .Ldoubleround8 + + # x0..15[0-3] += s[0..15] + vpaddd %ymm16,%ymm0,%ymm0 + vpaddd %ymm17,%ymm1,%ymm1 + vpaddd %ymm18,%ymm2,%ymm2 + vpaddd %ymm19,%ymm3,%ymm3 + vpaddd %ymm20,%ymm4,%ymm4 + vpaddd %ymm21,%ymm5,%ymm5 + vpaddd %ymm22,%ymm6,%ymm6 + vpaddd %ymm23,%ymm7,%ymm7 + vpaddd %ymm24,%ymm8,%ymm8 + vpaddd %ymm25,%ymm9,%ymm9 + vpaddd %ymm26,%ymm10,%ymm10 + vpaddd %ymm27,%ymm11,%ymm11 + vpaddd %ymm28,%ymm12,%ymm12 + vpaddd %ymm29,%ymm13,%ymm13 + vpaddd %ymm30,%ymm14,%ymm14 + vpaddd %ymm31,%ymm15,%ymm15 + + # interleave 32-bit words in state n, n+1 + vpunpckldq %ymm1,%ymm0,%ymm16 + vpunpckhdq %ymm1,%ymm0,%ymm17 + vpunpckldq %ymm3,%ymm2,%ymm18 + vpunpckhdq %ymm3,%ymm2,%ymm19 + vpunpckldq %ymm5,%ymm4,%ymm20 + vpunpckhdq %ymm5,%ymm4,%ymm21 + vpunpckldq %ymm7,%ymm6,%ymm22 + vpunpckhdq %ymm7,%ymm6,%ymm23 + vpunpckldq %ymm9,%ymm8,%ymm24 + vpunpckhdq %ymm9,%ymm8,%ymm25 + vpunpckldq %ymm11,%ymm10,%ymm26 + vpunpckhdq %ymm11,%ymm10,%ymm27 + vpunpckldq %ymm13,%ymm12,%ymm28 + vpunpckhdq %ymm13,%ymm12,%ymm29 + vpunpckldq %ymm15,%ymm14,%ymm30 + vpunpckhdq %ymm15,%ymm14,%ymm31 + + # interleave 64-bit words in state n, n+2 + vpunpcklqdq %ymm18,%ymm16,%ymm0 + vpunpcklqdq %ymm19,%ymm17,%ymm1 + vpunpckhqdq %ymm18,%ymm16,%ymm2 + vpunpckhqdq %ymm19,%ymm17,%ymm3 + vpunpcklqdq %ymm22,%ymm20,%ymm4 + vpunpcklqdq %ymm23,%ymm21,%ymm5 + vpunpckhqdq %ymm22,%ymm20,%ymm6 + vpunpckhqdq %ymm23,%ymm21,%ymm7 + vpunpcklqdq %ymm26,%ymm24,%ymm8 + vpunpcklqdq %ymm27,%ymm25,%ymm9 + vpunpckhqdq %ymm26,%ymm24,%ymm10 + vpunpckhqdq %ymm27,%ymm25,%ymm11 + vpunpcklqdq %ymm30,%ymm28,%ymm12 + vpunpcklqdq %ymm31,%ymm29,%ymm13 + vpunpckhqdq %ymm30,%ymm28,%ymm14 + vpunpckhqdq %ymm31,%ymm29,%ymm15 + + # interleave 128-bit words in state n, n+4 + # xor/write first four blocks + vmovdqa64 %ymm0,%ymm16 + vperm2i128 $0x20,%ymm4,%ymm0,%ymm0 + cmp $0x0020,%rcx + jl .Lxorpart8 + vpxord 0x0000(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x0000(%rsi) + vmovdqa64 %ymm16,%ymm0 + vperm2i128 $0x31,%ymm4,%ymm0,%ymm4 + + vperm2i128 $0x20,%ymm12,%ymm8,%ymm0 + cmp $0x0040,%rcx + jl .Lxorpart8 + vpxord 0x0020(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x0020(%rsi) + vperm2i128 $0x31,%ymm12,%ymm8,%ymm12 + + vperm2i128 $0x20,%ymm6,%ymm2,%ymm0 + cmp $0x0060,%rcx + jl .Lxorpart8 + vpxord 0x0040(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x0040(%rsi) + vperm2i128 $0x31,%ymm6,%ymm2,%ymm6 + + vperm2i128 $0x20,%ymm14,%ymm10,%ymm0 + cmp $0x0080,%rcx + jl .Lxorpart8 + vpxord 0x0060(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x0060(%rsi) + vperm2i128 $0x31,%ymm14,%ymm10,%ymm14 + + vperm2i128 $0x20,%ymm5,%ymm1,%ymm0 + cmp $0x00a0,%rcx + jl .Lxorpart8 + vpxord 0x0080(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x0080(%rsi) + vperm2i128 $0x31,%ymm5,%ymm1,%ymm5 + + vperm2i128 $0x20,%ymm13,%ymm9,%ymm0 + cmp $0x00c0,%rcx + jl .Lxorpart8 + vpxord 0x00a0(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x00a0(%rsi) + vperm2i128 $0x31,%ymm13,%ymm9,%ymm13 + + vperm2i128 $0x20,%ymm7,%ymm3,%ymm0 + cmp $0x00e0,%rcx + jl .Lxorpart8 + vpxord 0x00c0(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x00c0(%rsi) + vperm2i128 $0x31,%ymm7,%ymm3,%ymm7 + + vperm2i128 $0x20,%ymm15,%ymm11,%ymm0 + cmp $0x0100,%rcx + jl .Lxorpart8 + vpxord 0x00e0(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x00e0(%rsi) + vperm2i128 $0x31,%ymm15,%ymm11,%ymm15 + + # xor remaining blocks, write to output + vmovdqa64 %ymm4,%ymm0 + cmp $0x0120,%rcx + jl .Lxorpart8 + vpxord 0x0100(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x0100(%rsi) + + vmovdqa64 %ymm12,%ymm0 + cmp $0x0140,%rcx + jl .Lxorpart8 + vpxord 0x0120(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x0120(%rsi) + + vmovdqa64 %ymm6,%ymm0 + cmp $0x0160,%rcx + jl .Lxorpart8 + vpxord 0x0140(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x0140(%rsi) + + vmovdqa64 %ymm14,%ymm0 + cmp $0x0180,%rcx + jl .Lxorpart8 + vpxord 0x0160(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x0160(%rsi) + + vmovdqa64 %ymm5,%ymm0 + cmp $0x01a0,%rcx + jl .Lxorpart8 + vpxord 0x0180(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x0180(%rsi) + + vmovdqa64 %ymm13,%ymm0 + cmp $0x01c0,%rcx + jl .Lxorpart8 + vpxord 0x01a0(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x01a0(%rsi) + + vmovdqa64 %ymm7,%ymm0 + cmp $0x01e0,%rcx + jl .Lxorpart8 + vpxord 0x01c0(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x01c0(%rsi) + + vmovdqa64 %ymm15,%ymm0 + cmp $0x0200,%rcx + jl .Lxorpart8 + vpxord 0x01e0(%rdx),%ymm0,%ymm0 + vmovdqu64 %ymm0,0x01e0(%rsi) + +.Ldone8: + vzeroupper + RET + +.Lxorpart8: + # xor remaining bytes from partial register into output + mov %rcx,%rax + and $0x1f,%rcx + jz .Ldone8 + mov %rax,%r9 + and $~0x1f,%r9 + + mov $1,%rax + shld %cl,%rax,%rax + sub $1,%rax + kmovq %rax,%k1 + + vmovdqu8 (%rdx,%r9),%ymm1{%k1}{z} + vpxord %ymm0,%ymm1,%ymm1 + vmovdqu8 %ymm1,(%rsi,%r9){%k1} + + jmp .Ldone8 + +SYM_FUNC_END(chacha_8block_xor_avx512vl) diff --git a/arch/x86/lib/crypto/chacha-ssse3-x86_64.S b/arch/x86/lib/crypto/chacha-ssse3-x86_64.S new file mode 100644 index 000000000000..7111949cd5b9 --- /dev/null +++ b/arch/x86/lib/crypto/chacha-ssse3-x86_64.S @@ -0,0 +1,791 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * ChaCha 256-bit cipher algorithm, x64 SSSE3 functions + * + * Copyright (C) 2015 Martin Willi + */ + +#include <linux/linkage.h> +#include <asm/frame.h> + +.section .rodata.cst16.ROT8, "aM", @progbits, 16 +.align 16 +ROT8: .octa 0x0e0d0c0f0a09080b0605040702010003 +.section .rodata.cst16.ROT16, "aM", @progbits, 16 +.align 16 +ROT16: .octa 0x0d0c0f0e09080b0a0504070601000302 +.section .rodata.cst16.CTRINC, "aM", @progbits, 16 +.align 16 +CTRINC: .octa 0x00000003000000020000000100000000 + +.text + +/* + * chacha_permute - permute one block + * + * Permute one 64-byte block where the state matrix is in %xmm0-%xmm3. This + * function performs matrix operations on four words in parallel, but requires + * shuffling to rearrange the words after each round. 8/16-bit word rotation is + * done with the slightly better performing SSSE3 byte shuffling, 7/12-bit word + * rotation uses traditional shift+OR. + * + * The round count is given in %r8d. + * + * Clobbers: %r8d, %xmm4-%xmm7 + */ +SYM_FUNC_START_LOCAL(chacha_permute) + + movdqa ROT8(%rip),%xmm4 + movdqa ROT16(%rip),%xmm5 + +.Ldoubleround: + # x0 += x1, x3 = rotl32(x3 ^ x0, 16) + paddd %xmm1,%xmm0 + pxor %xmm0,%xmm3 + pshufb %xmm5,%xmm3 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 12) + paddd %xmm3,%xmm2 + pxor %xmm2,%xmm1 + movdqa %xmm1,%xmm6 + pslld $12,%xmm6 + psrld $20,%xmm1 + por %xmm6,%xmm1 + + # x0 += x1, x3 = rotl32(x3 ^ x0, 8) + paddd %xmm1,%xmm0 + pxor %xmm0,%xmm3 + pshufb %xmm4,%xmm3 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 7) + paddd %xmm3,%xmm2 + pxor %xmm2,%xmm1 + movdqa %xmm1,%xmm7 + pslld $7,%xmm7 + psrld $25,%xmm1 + por %xmm7,%xmm1 + + # x1 = shuffle32(x1, MASK(0, 3, 2, 1)) + pshufd $0x39,%xmm1,%xmm1 + # x2 = shuffle32(x2, MASK(1, 0, 3, 2)) + pshufd $0x4e,%xmm2,%xmm2 + # x3 = shuffle32(x3, MASK(2, 1, 0, 3)) + pshufd $0x93,%xmm3,%xmm3 + + # x0 += x1, x3 = rotl32(x3 ^ x0, 16) + paddd %xmm1,%xmm0 + pxor %xmm0,%xmm3 + pshufb %xmm5,%xmm3 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 12) + paddd %xmm3,%xmm2 + pxor %xmm2,%xmm1 + movdqa %xmm1,%xmm6 + pslld $12,%xmm6 + psrld $20,%xmm1 + por %xmm6,%xmm1 + + # x0 += x1, x3 = rotl32(x3 ^ x0, 8) + paddd %xmm1,%xmm0 + pxor %xmm0,%xmm3 + pshufb %xmm4,%xmm3 + + # x2 += x3, x1 = rotl32(x1 ^ x2, 7) + paddd %xmm3,%xmm2 + pxor %xmm2,%xmm1 + movdqa %xmm1,%xmm7 + pslld $7,%xmm7 + psrld $25,%xmm1 + por %xmm7,%xmm1 + + # x1 = shuffle32(x1, MASK(2, 1, 0, 3)) + pshufd $0x93,%xmm1,%xmm1 + # x2 = shuffle32(x2, MASK(1, 0, 3, 2)) + pshufd $0x4e,%xmm2,%xmm2 + # x3 = shuffle32(x3, MASK(0, 3, 2, 1)) + pshufd $0x39,%xmm3,%xmm3 + + sub $2,%r8d + jnz .Ldoubleround + + RET +SYM_FUNC_END(chacha_permute) + +SYM_FUNC_START(chacha_block_xor_ssse3) + # %rdi: Input state matrix, s + # %rsi: up to 1 data block output, o + # %rdx: up to 1 data block input, i + # %rcx: input/output length in bytes + # %r8d: nrounds + FRAME_BEGIN + + # x0..3 = s0..3 + movdqu 0x00(%rdi),%xmm0 + movdqu 0x10(%rdi),%xmm1 + movdqu 0x20(%rdi),%xmm2 + movdqu 0x30(%rdi),%xmm3 + movdqa %xmm0,%xmm8 + movdqa %xmm1,%xmm9 + movdqa %xmm2,%xmm10 + movdqa %xmm3,%xmm11 + + mov %rcx,%rax + call chacha_permute + + # o0 = i0 ^ (x0 + s0) + paddd %xmm8,%xmm0 + cmp $0x10,%rax + jl .Lxorpart + movdqu 0x00(%rdx),%xmm4 + pxor %xmm4,%xmm0 + movdqu %xmm0,0x00(%rsi) + # o1 = i1 ^ (x1 + s1) + paddd %xmm9,%xmm1 + movdqa %xmm1,%xmm0 + cmp $0x20,%rax + jl .Lxorpart + movdqu 0x10(%rdx),%xmm0 + pxor %xmm1,%xmm0 + movdqu %xmm0,0x10(%rsi) + # o2 = i2 ^ (x2 + s2) + paddd %xmm10,%xmm2 + movdqa %xmm2,%xmm0 + cmp $0x30,%rax + jl .Lxorpart + movdqu 0x20(%rdx),%xmm0 + pxor %xmm2,%xmm0 + movdqu %xmm0,0x20(%rsi) + # o3 = i3 ^ (x3 + s3) + paddd %xmm11,%xmm3 + movdqa %xmm3,%xmm0 + cmp $0x40,%rax + jl .Lxorpart + movdqu 0x30(%rdx),%xmm0 + pxor %xmm3,%xmm0 + movdqu %xmm0,0x30(%rsi) + +.Ldone: + FRAME_END + RET + +.Lxorpart: + # xor remaining bytes from partial register into output + mov %rax,%r9 + and $0x0f,%r9 + jz .Ldone + and $~0x0f,%rax + + mov %rsi,%r11 + + lea 8(%rsp),%r10 + sub $0x10,%rsp + and $~31,%rsp + + lea (%rdx,%rax),%rsi + mov %rsp,%rdi + mov %r9,%rcx + rep movsb + + pxor 0x00(%rsp),%xmm0 + movdqa %xmm0,0x00(%rsp) + + mov %rsp,%rsi + lea (%r11,%rax),%rdi + mov %r9,%rcx + rep movsb + + lea -8(%r10),%rsp + jmp .Ldone + +SYM_FUNC_END(chacha_block_xor_ssse3) + +SYM_FUNC_START(hchacha_block_ssse3) + # %rdi: Input state matrix, s + # %rsi: output (8 32-bit words) + # %edx: nrounds + FRAME_BEGIN + + movdqu 0x00(%rdi),%xmm0 + movdqu 0x10(%rdi),%xmm1 + movdqu 0x20(%rdi),%xmm2 + movdqu 0x30(%rdi),%xmm3 + + mov %edx,%r8d + call chacha_permute + + movdqu %xmm0,0x00(%rsi) + movdqu %xmm3,0x10(%rsi) + + FRAME_END + RET +SYM_FUNC_END(hchacha_block_ssse3) + +SYM_FUNC_START(chacha_4block_xor_ssse3) + # %rdi: Input state matrix, s + # %rsi: up to 4 data blocks output, o + # %rdx: up to 4 data blocks input, i + # %rcx: input/output length in bytes + # %r8d: nrounds + + # This function encrypts four consecutive ChaCha blocks by loading the + # the state matrix in SSE registers four times. As we need some scratch + # registers, we save the first four registers on the stack. The + # algorithm performs each operation on the corresponding word of each + # state matrix, hence requires no word shuffling. For final XORing step + # we transpose the matrix by interleaving 32- and then 64-bit words, + # which allows us to do XOR in SSE registers. 8/16-bit word rotation is + # done with the slightly better performing SSSE3 byte shuffling, + # 7/12-bit word rotation uses traditional shift+OR. + + lea 8(%rsp),%r10 + sub $0x80,%rsp + and $~63,%rsp + mov %rcx,%rax + + # x0..15[0-3] = s0..3[0..3] + movq 0x00(%rdi),%xmm1 + pshufd $0x00,%xmm1,%xmm0 + pshufd $0x55,%xmm1,%xmm1 + movq 0x08(%rdi),%xmm3 + pshufd $0x00,%xmm3,%xmm2 + pshufd $0x55,%xmm3,%xmm3 + movq 0x10(%rdi),%xmm5 + pshufd $0x00,%xmm5,%xmm4 + pshufd $0x55,%xmm5,%xmm5 + movq 0x18(%rdi),%xmm7 + pshufd $0x00,%xmm7,%xmm6 + pshufd $0x55,%xmm7,%xmm7 + movq 0x20(%rdi),%xmm9 + pshufd $0x00,%xmm9,%xmm8 + pshufd $0x55,%xmm9,%xmm9 + movq 0x28(%rdi),%xmm11 + pshufd $0x00,%xmm11,%xmm10 + pshufd $0x55,%xmm11,%xmm11 + movq 0x30(%rdi),%xmm13 + pshufd $0x00,%xmm13,%xmm12 + pshufd $0x55,%xmm13,%xmm13 + movq 0x38(%rdi),%xmm15 + pshufd $0x00,%xmm15,%xmm14 + pshufd $0x55,%xmm15,%xmm15 + # x0..3 on stack + movdqa %xmm0,0x00(%rsp) + movdqa %xmm1,0x10(%rsp) + movdqa %xmm2,0x20(%rsp) + movdqa %xmm3,0x30(%rsp) + + movdqa CTRINC(%rip),%xmm1 + movdqa ROT8(%rip),%xmm2 + movdqa ROT16(%rip),%xmm3 + + # x12 += counter values 0-3 + paddd %xmm1,%xmm12 + +.Ldoubleround4: + # x0 += x4, x12 = rotl32(x12 ^ x0, 16) + movdqa 0x00(%rsp),%xmm0 + paddd %xmm4,%xmm0 + movdqa %xmm0,0x00(%rsp) + pxor %xmm0,%xmm12 + pshufb %xmm3,%xmm12 + # x1 += x5, x13 = rotl32(x13 ^ x1, 16) + movdqa 0x10(%rsp),%xmm0 + paddd %xmm5,%xmm0 + movdqa %xmm0,0x10(%rsp) + pxor %xmm0,%xmm13 + pshufb %xmm3,%xmm13 + # x2 += x6, x14 = rotl32(x14 ^ x2, 16) + movdqa 0x20(%rsp),%xmm0 + paddd %xmm6,%xmm0 + movdqa %xmm0,0x20(%rsp) + pxor %xmm0,%xmm14 + pshufb %xmm3,%xmm14 + # x3 += x7, x15 = rotl32(x15 ^ x3, 16) + movdqa 0x30(%rsp),%xmm0 + paddd %xmm7,%xmm0 + movdqa %xmm0,0x30(%rsp) + pxor %xmm0,%xmm15 + pshufb %xmm3,%xmm15 + + # x8 += x12, x4 = rotl32(x4 ^ x8, 12) + paddd %xmm12,%xmm8 + pxor %xmm8,%xmm4 + movdqa %xmm4,%xmm0 + pslld $12,%xmm0 + psrld $20,%xmm4 + por %xmm0,%xmm4 + # x9 += x13, x5 = rotl32(x5 ^ x9, 12) + paddd %xmm13,%xmm9 + pxor %xmm9,%xmm5 + movdqa %xmm5,%xmm0 + pslld $12,%xmm0 + psrld $20,%xmm5 + por %xmm0,%xmm5 + # x10 += x14, x6 = rotl32(x6 ^ x10, 12) + paddd %xmm14,%xmm10 + pxor %xmm10,%xmm6 + movdqa %xmm6,%xmm0 + pslld $12,%xmm0 + psrld $20,%xmm6 + por %xmm0,%xmm6 + # x11 += x15, x7 = rotl32(x7 ^ x11, 12) + paddd %xmm15,%xmm11 + pxor %xmm11,%xmm7 + movdqa %xmm7,%xmm0 + pslld $12,%xmm0 + psrld $20,%xmm7 + por %xmm0,%xmm7 + + # x0 += x4, x12 = rotl32(x12 ^ x0, 8) + movdqa 0x00(%rsp),%xmm0 + paddd %xmm4,%xmm0 + movdqa %xmm0,0x00(%rsp) + pxor %xmm0,%xmm12 + pshufb %xmm2,%xmm12 + # x1 += x5, x13 = rotl32(x13 ^ x1, 8) + movdqa 0x10(%rsp),%xmm0 + paddd %xmm5,%xmm0 + movdqa %xmm0,0x10(%rsp) + pxor %xmm0,%xmm13 + pshufb %xmm2,%xmm13 + # x2 += x6, x14 = rotl32(x14 ^ x2, 8) + movdqa 0x20(%rsp),%xmm0 + paddd %xmm6,%xmm0 + movdqa %xmm0,0x20(%rsp) + pxor %xmm0,%xmm14 + pshufb %xmm2,%xmm14 + # x3 += x7, x15 = rotl32(x15 ^ x3, 8) + movdqa 0x30(%rsp),%xmm0 + paddd %xmm7,%xmm0 + movdqa %xmm0,0x30(%rsp) + pxor %xmm0,%xmm15 + pshufb %xmm2,%xmm15 + + # x8 += x12, x4 = rotl32(x4 ^ x8, 7) + paddd %xmm12,%xmm8 + pxor %xmm8,%xmm4 + movdqa %xmm4,%xmm0 + pslld $7,%xmm0 + psrld $25,%xmm4 + por %xmm0,%xmm4 + # x9 += x13, x5 = rotl32(x5 ^ x9, 7) + paddd %xmm13,%xmm9 + pxor %xmm9,%xmm5 + movdqa %xmm5,%xmm0 + pslld $7,%xmm0 + psrld $25,%xmm5 + por %xmm0,%xmm5 + # x10 += x14, x6 = rotl32(x6 ^ x10, 7) + paddd %xmm14,%xmm10 + pxor %xmm10,%xmm6 + movdqa %xmm6,%xmm0 + pslld $7,%xmm0 + psrld $25,%xmm6 + por %xmm0,%xmm6 + # x11 += x15, x7 = rotl32(x7 ^ x11, 7) + paddd %xmm15,%xmm11 + pxor %xmm11,%xmm7 + movdqa %xmm7,%xmm0 + pslld $7,%xmm0 + psrld $25,%xmm7 + por %xmm0,%xmm7 + + # x0 += x5, x15 = rotl32(x15 ^ x0, 16) + movdqa 0x00(%rsp),%xmm0 + paddd %xmm5,%xmm0 + movdqa %xmm0,0x00(%rsp) + pxor %xmm0,%xmm15 + pshufb %xmm3,%xmm15 + # x1 += x6, x12 = rotl32(x12 ^ x1, 16) + movdqa 0x10(%rsp),%xmm0 + paddd %xmm6,%xmm0 + movdqa %xmm0,0x10(%rsp) + pxor %xmm0,%xmm12 + pshufb %xmm3,%xmm12 + # x2 += x7, x13 = rotl32(x13 ^ x2, 16) + movdqa 0x20(%rsp),%xmm0 + paddd %xmm7,%xmm0 + movdqa %xmm0,0x20(%rsp) + pxor %xmm0,%xmm13 + pshufb %xmm3,%xmm13 + # x3 += x4, x14 = rotl32(x14 ^ x3, 16) + movdqa 0x30(%rsp),%xmm0 + paddd %xmm4,%xmm0 + movdqa %xmm0,0x30(%rsp) + pxor %xmm0,%xmm14 + pshufb %xmm3,%xmm14 + + # x10 += x15, x5 = rotl32(x5 ^ x10, 12) + paddd %xmm15,%xmm10 + pxor %xmm10,%xmm5 + movdqa %xmm5,%xmm0 + pslld $12,%xmm0 + psrld $20,%xmm5 + por %xmm0,%xmm5 + # x11 += x12, x6 = rotl32(x6 ^ x11, 12) + paddd %xmm12,%xmm11 + pxor %xmm11,%xmm6 + movdqa %xmm6,%xmm0 + pslld $12,%xmm0 + psrld $20,%xmm6 + por %xmm0,%xmm6 + # x8 += x13, x7 = rotl32(x7 ^ x8, 12) + paddd %xmm13,%xmm8 + pxor %xmm8,%xmm7 + movdqa %xmm7,%xmm0 + pslld $12,%xmm0 + psrld $20,%xmm7 + por %xmm0,%xmm7 + # x9 += x14, x4 = rotl32(x4 ^ x9, 12) + paddd %xmm14,%xmm9 + pxor %xmm9,%xmm4 + movdqa %xmm4,%xmm0 + pslld $12,%xmm0 + psrld $20,%xmm4 + por %xmm0,%xmm4 + + # x0 += x5, x15 = rotl32(x15 ^ x0, 8) + movdqa 0x00(%rsp),%xmm0 + paddd %xmm5,%xmm0 + movdqa %xmm0,0x00(%rsp) + pxor %xmm0,%xmm15 + pshufb %xmm2,%xmm15 + # x1 += x6, x12 = rotl32(x12 ^ x1, 8) + movdqa 0x10(%rsp),%xmm0 + paddd %xmm6,%xmm0 + movdqa %xmm0,0x10(%rsp) + pxor %xmm0,%xmm12 + pshufb %xmm2,%xmm12 + # x2 += x7, x13 = rotl32(x13 ^ x2, 8) + movdqa 0x20(%rsp),%xmm0 + paddd %xmm7,%xmm0 + movdqa %xmm0,0x20(%rsp) + pxor %xmm0,%xmm13 + pshufb %xmm2,%xmm13 + # x3 += x4, x14 = rotl32(x14 ^ x3, 8) + movdqa 0x30(%rsp),%xmm0 + paddd %xmm4,%xmm0 + movdqa %xmm0,0x30(%rsp) + pxor %xmm0,%xmm14 + pshufb %xmm2,%xmm14 + + # x10 += x15, x5 = rotl32(x5 ^ x10, 7) + paddd %xmm15,%xmm10 + pxor %xmm10,%xmm5 + movdqa %xmm5,%xmm0 + pslld $7,%xmm0 + psrld $25,%xmm5 + por %xmm0,%xmm5 + # x11 += x12, x6 = rotl32(x6 ^ x11, 7) + paddd %xmm12,%xmm11 + pxor %xmm11,%xmm6 + movdqa %xmm6,%xmm0 + pslld $7,%xmm0 + psrld $25,%xmm6 + por %xmm0,%xmm6 + # x8 += x13, x7 = rotl32(x7 ^ x8, 7) + paddd %xmm13,%xmm8 + pxor %xmm8,%xmm7 + movdqa %xmm7,%xmm0 + pslld $7,%xmm0 + psrld $25,%xmm7 + por %xmm0,%xmm7 + # x9 += x14, x4 = rotl32(x4 ^ x9, 7) + paddd %xmm14,%xmm9 + pxor %xmm9,%xmm4 + movdqa %xmm4,%xmm0 + pslld $7,%xmm0 + psrld $25,%xmm4 + por %xmm0,%xmm4 + + sub $2,%r8d + jnz .Ldoubleround4 + + # x0[0-3] += s0[0] + # x1[0-3] += s0[1] + movq 0x00(%rdi),%xmm3 + pshufd $0x00,%xmm3,%xmm2 + pshufd $0x55,%xmm3,%xmm3 + paddd 0x00(%rsp),%xmm2 + movdqa %xmm2,0x00(%rsp) + paddd 0x10(%rsp),%xmm3 + movdqa %xmm3,0x10(%rsp) + # x2[0-3] += s0[2] + # x3[0-3] += s0[3] + movq 0x08(%rdi),%xmm3 + pshufd $0x00,%xmm3,%xmm2 + pshufd $0x55,%xmm3,%xmm3 + paddd 0x20(%rsp),%xmm2 + movdqa %xmm2,0x20(%rsp) + paddd 0x30(%rsp),%xmm3 + movdqa %xmm3,0x30(%rsp) + + # x4[0-3] += s1[0] + # x5[0-3] += s1[1] + movq 0x10(%rdi),%xmm3 + pshufd $0x00,%xmm3,%xmm2 + pshufd $0x55,%xmm3,%xmm3 + paddd %xmm2,%xmm4 + paddd %xmm3,%xmm5 + # x6[0-3] += s1[2] + # x7[0-3] += s1[3] + movq 0x18(%rdi),%xmm3 + pshufd $0x00,%xmm3,%xmm2 + pshufd $0x55,%xmm3,%xmm3 + paddd %xmm2,%xmm6 + paddd %xmm3,%xmm7 + + # x8[0-3] += s2[0] + # x9[0-3] += s2[1] + movq 0x20(%rdi),%xmm3 + pshufd $0x00,%xmm3,%xmm2 + pshufd $0x55,%xmm3,%xmm3 + paddd %xmm2,%xmm8 + paddd %xmm3,%xmm9 + # x10[0-3] += s2[2] + # x11[0-3] += s2[3] + movq 0x28(%rdi),%xmm3 + pshufd $0x00,%xmm3,%xmm2 + pshufd $0x55,%xmm3,%xmm3 + paddd %xmm2,%xmm10 + paddd %xmm3,%xmm11 + + # x12[0-3] += s3[0] + # x13[0-3] += s3[1] + movq 0x30(%rdi),%xmm3 + pshufd $0x00,%xmm3,%xmm2 + pshufd $0x55,%xmm3,%xmm3 + paddd %xmm2,%xmm12 + paddd %xmm3,%xmm13 + # x14[0-3] += s3[2] + # x15[0-3] += s3[3] + movq 0x38(%rdi),%xmm3 + pshufd $0x00,%xmm3,%xmm2 + pshufd $0x55,%xmm3,%xmm3 + paddd %xmm2,%xmm14 + paddd %xmm3,%xmm15 + + # x12 += counter values 0-3 + paddd %xmm1,%xmm12 + + # interleave 32-bit words in state n, n+1 + movdqa 0x00(%rsp),%xmm0 + movdqa 0x10(%rsp),%xmm1 + movdqa %xmm0,%xmm2 + punpckldq %xmm1,%xmm2 + punpckhdq %xmm1,%xmm0 + movdqa %xmm2,0x00(%rsp) + movdqa %xmm0,0x10(%rsp) + movdqa 0x20(%rsp),%xmm0 + movdqa 0x30(%rsp),%xmm1 + movdqa %xmm0,%xmm2 + punpckldq %xmm1,%xmm2 + punpckhdq %xmm1,%xmm0 + movdqa %xmm2,0x20(%rsp) + movdqa %xmm0,0x30(%rsp) + movdqa %xmm4,%xmm0 + punpckldq %xmm5,%xmm4 + punpckhdq %xmm5,%xmm0 + movdqa %xmm0,%xmm5 + movdqa %xmm6,%xmm0 + punpckldq %xmm7,%xmm6 + punpckhdq %xmm7,%xmm0 + movdqa %xmm0,%xmm7 + movdqa %xmm8,%xmm0 + punpckldq %xmm9,%xmm8 + punpckhdq %xmm9,%xmm0 + movdqa %xmm0,%xmm9 + movdqa %xmm10,%xmm0 + punpckldq %xmm11,%xmm10 + punpckhdq %xmm11,%xmm0 + movdqa %xmm0,%xmm11 + movdqa %xmm12,%xmm0 + punpckldq %xmm13,%xmm12 + punpckhdq %xmm13,%xmm0 + movdqa %xmm0,%xmm13 + movdqa %xmm14,%xmm0 + punpckldq %xmm15,%xmm14 + punpckhdq %xmm15,%xmm0 + movdqa %xmm0,%xmm15 + + # interleave 64-bit words in state n, n+2 + movdqa 0x00(%rsp),%xmm0 + movdqa 0x20(%rsp),%xmm1 + movdqa %xmm0,%xmm2 + punpcklqdq %xmm1,%xmm2 + punpckhqdq %xmm1,%xmm0 + movdqa %xmm2,0x00(%rsp) + movdqa %xmm0,0x20(%rsp) + movdqa 0x10(%rsp),%xmm0 + movdqa 0x30(%rsp),%xmm1 + movdqa %xmm0,%xmm2 + punpcklqdq %xmm1,%xmm2 + punpckhqdq %xmm1,%xmm0 + movdqa %xmm2,0x10(%rsp) + movdqa %xmm0,0x30(%rsp) + movdqa %xmm4,%xmm0 + punpcklqdq %xmm6,%xmm4 + punpckhqdq %xmm6,%xmm0 + movdqa %xmm0,%xmm6 + movdqa %xmm5,%xmm0 + punpcklqdq %xmm7,%xmm5 + punpckhqdq %xmm7,%xmm0 + movdqa %xmm0,%xmm7 + movdqa %xmm8,%xmm0 + punpcklqdq %xmm10,%xmm8 + punpckhqdq %xmm10,%xmm0 + movdqa %xmm0,%xmm10 + movdqa %xmm9,%xmm0 + punpcklqdq %xmm11,%xmm9 + punpckhqdq %xmm11,%xmm0 + movdqa %xmm0,%xmm11 + movdqa %xmm12,%xmm0 + punpcklqdq %xmm14,%xmm12 + punpckhqdq %xmm14,%xmm0 + movdqa %xmm0,%xmm14 + movdqa %xmm13,%xmm0 + punpcklqdq %xmm15,%xmm13 + punpckhqdq %xmm15,%xmm0 + movdqa %xmm0,%xmm15 + + # xor with corresponding input, write to output + movdqa 0x00(%rsp),%xmm0 + cmp $0x10,%rax + jl .Lxorpart4 + movdqu 0x00(%rdx),%xmm1 + pxor %xmm1,%xmm0 + movdqu %xmm0,0x00(%rsi) + + movdqu %xmm4,%xmm0 + cmp $0x20,%rax + jl .Lxorpart4 + movdqu 0x10(%rdx),%xmm1 + pxor %xmm1,%xmm0 + movdqu %xmm0,0x10(%rsi) + + movdqu %xmm8,%xmm0 + cmp $0x30,%rax + jl .Lxorpart4 + movdqu 0x20(%rdx),%xmm1 + pxor %xmm1,%xmm0 + movdqu %xmm0,0x20(%rsi) + + movdqu %xmm12,%xmm0 + cmp $0x40,%rax + jl .Lxorpart4 + movdqu 0x30(%rdx),%xmm1 + pxor %xmm1,%xmm0 + movdqu %xmm0,0x30(%rsi) + + movdqa 0x20(%rsp),%xmm0 + cmp $0x50,%rax + jl .Lxorpart4 + movdqu 0x40(%rdx),%xmm1 + pxor %xmm1,%xmm0 + movdqu %xmm0,0x40(%rsi) + + movdqu %xmm6,%xmm0 + cmp $0x60,%rax + jl .Lxorpart4 + movdqu 0x50(%rdx),%xmm1 + pxor %xmm1,%xmm0 + movdqu %xmm0,0x50(%rsi) + + movdqu %xmm10,%xmm0 + cmp $0x70,%rax + jl .Lxorpart4 + movdqu 0x60(%rdx),%xmm1 + pxor %xmm1,%xmm0 + movdqu %xmm0,0x60(%rsi) + + movdqu %xmm14,%xmm0 + cmp $0x80,%rax + jl .Lxorpart4 + movdqu 0x70(%rdx),%xmm1 + pxor %xmm1,%xmm0 + movdqu %xmm0,0x70(%rsi) + + movdqa 0x10(%rsp),%xmm0 + cmp $0x90,%rax + jl .Lxorpart4 + movdqu 0x80(%rdx),%xmm1 + pxor %xmm1,%xmm0 + movdqu %xmm0,0x80(%rsi) + + movdqu %xmm5,%xmm0 + cmp $0xa0,%rax + jl .Lxorpart4 + movdqu 0x90(%rdx),%xmm1 + pxor %xmm1,%xmm0 + movdqu %xmm0,0x90(%rsi) + + movdqu %xmm9,%xmm0 + cmp $0xb0,%rax + jl .Lxorpart4 + movdqu 0xa0(%rdx),%xmm1 + pxor %xmm1,%xmm0 + movdqu %xmm0,0xa0(%rsi) + + movdqu %xmm13,%xmm0 + cmp $0xc0,%rax + jl .Lxorpart4 + movdqu 0xb0(%rdx),%xmm1 + pxor %xmm1,%xmm0 + movdqu %xmm0,0xb0(%rsi) + + movdqa 0x30(%rsp),%xmm0 + cmp $0xd0,%rax + jl .Lxorpart4 + movdqu 0xc0(%rdx),%xmm1 + pxor %xmm1,%xmm0 + movdqu %xmm0,0xc0(%rsi) + + movdqu %xmm7,%xmm0 + cmp $0xe0,%rax + jl .Lxorpart4 + movdqu 0xd0(%rdx),%xmm1 + pxor %xmm1,%xmm0 + movdqu %xmm0,0xd0(%rsi) + + movdqu %xmm11,%xmm0 + cmp $0xf0,%rax + jl .Lxorpart4 + movdqu 0xe0(%rdx),%xmm1 + pxor %xmm1,%xmm0 + movdqu %xmm0,0xe0(%rsi) + + movdqu %xmm15,%xmm0 + cmp $0x100,%rax + jl .Lxorpart4 + movdqu 0xf0(%rdx),%xmm1 + pxor %xmm1,%xmm0 + movdqu %xmm0,0xf0(%rsi) + +.Ldone4: + lea -8(%r10),%rsp + RET + +.Lxorpart4: + # xor remaining bytes from partial register into output + mov %rax,%r9 + and $0x0f,%r9 + jz .Ldone4 + and $~0x0f,%rax + + mov %rsi,%r11 + + lea (%rdx,%rax),%rsi + mov %rsp,%rdi + mov %r9,%rcx + rep movsb + + pxor 0x00(%rsp),%xmm0 + movdqa %xmm0,0x00(%rsp) + + mov %rsp,%rsi + lea (%r11,%rax),%rdi + mov %r9,%rcx + rep movsb + + jmp .Ldone4 + +SYM_FUNC_END(chacha_4block_xor_ssse3) diff --git a/arch/x86/lib/crypto/chacha_glue.c b/arch/x86/lib/crypto/chacha_glue.c new file mode 100644 index 000000000000..10b2c945f541 --- /dev/null +++ b/arch/x86/lib/crypto/chacha_glue.c @@ -0,0 +1,196 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * ChaCha and HChaCha functions (x86_64 optimized) + * + * Copyright (C) 2015 Martin Willi + */ + +#include <asm/simd.h> +#include <crypto/chacha.h> +#include <linux/jump_label.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/sizes.h> + +asmlinkage void chacha_block_xor_ssse3(const struct chacha_state *state, + u8 *dst, const u8 *src, + unsigned int len, int nrounds); +asmlinkage void chacha_4block_xor_ssse3(const struct chacha_state *state, + u8 *dst, const u8 *src, + unsigned int len, int nrounds); +asmlinkage void hchacha_block_ssse3(const struct chacha_state *state, + u32 out[HCHACHA_OUT_WORDS], int nrounds); + +asmlinkage void chacha_2block_xor_avx2(const struct chacha_state *state, + u8 *dst, const u8 *src, + unsigned int len, int nrounds); +asmlinkage void chacha_4block_xor_avx2(const struct chacha_state *state, + u8 *dst, const u8 *src, + unsigned int len, int nrounds); +asmlinkage void chacha_8block_xor_avx2(const struct chacha_state *state, + u8 *dst, const u8 *src, + unsigned int len, int nrounds); + +asmlinkage void chacha_2block_xor_avx512vl(const struct chacha_state *state, + u8 *dst, const u8 *src, + unsigned int len, int nrounds); +asmlinkage void chacha_4block_xor_avx512vl(const struct chacha_state *state, + u8 *dst, const u8 *src, + unsigned int len, int nrounds); +asmlinkage void chacha_8block_xor_avx512vl(const struct chacha_state *state, + u8 *dst, const u8 *src, + unsigned int len, int nrounds); + +static __ro_after_init DEFINE_STATIC_KEY_FALSE(chacha_use_simd); +static __ro_after_init DEFINE_STATIC_KEY_FALSE(chacha_use_avx2); +static __ro_after_init DEFINE_STATIC_KEY_FALSE(chacha_use_avx512vl); + +static unsigned int chacha_advance(unsigned int len, unsigned int maxblocks) +{ + len = min(len, maxblocks * CHACHA_BLOCK_SIZE); + return round_up(len, CHACHA_BLOCK_SIZE) / CHACHA_BLOCK_SIZE; +} + +static void chacha_dosimd(struct chacha_state *state, u8 *dst, const u8 *src, + unsigned int bytes, int nrounds) +{ + if (static_branch_likely(&chacha_use_avx512vl)) { + while (bytes >= CHACHA_BLOCK_SIZE * 8) { + chacha_8block_xor_avx512vl(state, dst, src, bytes, + nrounds); + bytes -= CHACHA_BLOCK_SIZE * 8; + src += CHACHA_BLOCK_SIZE * 8; + dst += CHACHA_BLOCK_SIZE * 8; + state->x[12] += 8; + } + if (bytes > CHACHA_BLOCK_SIZE * 4) { + chacha_8block_xor_avx512vl(state, dst, src, bytes, + nrounds); + state->x[12] += chacha_advance(bytes, 8); + return; + } + if (bytes > CHACHA_BLOCK_SIZE * 2) { + chacha_4block_xor_avx512vl(state, dst, src, bytes, + nrounds); + state->x[12] += chacha_advance(bytes, 4); + return; + } + if (bytes) { + chacha_2block_xor_avx512vl(state, dst, src, bytes, + nrounds); + state->x[12] += chacha_advance(bytes, 2); + return; + } + } + + if (static_branch_likely(&chacha_use_avx2)) { + while (bytes >= CHACHA_BLOCK_SIZE * 8) { + chacha_8block_xor_avx2(state, dst, src, bytes, nrounds); + bytes -= CHACHA_BLOCK_SIZE * 8; + src += CHACHA_BLOCK_SIZE * 8; + dst += CHACHA_BLOCK_SIZE * 8; + state->x[12] += 8; + } + if (bytes > CHACHA_BLOCK_SIZE * 4) { + chacha_8block_xor_avx2(state, dst, src, bytes, nrounds); + state->x[12] += chacha_advance(bytes, 8); + return; + } + if (bytes > CHACHA_BLOCK_SIZE * 2) { + chacha_4block_xor_avx2(state, dst, src, bytes, nrounds); + state->x[12] += chacha_advance(bytes, 4); + return; + } + if (bytes > CHACHA_BLOCK_SIZE) { + chacha_2block_xor_avx2(state, dst, src, bytes, nrounds); + state->x[12] += chacha_advance(bytes, 2); + return; + } + } + + while (bytes >= CHACHA_BLOCK_SIZE * 4) { + chacha_4block_xor_ssse3(state, dst, src, bytes, nrounds); + bytes -= CHACHA_BLOCK_SIZE * 4; + src += CHACHA_BLOCK_SIZE * 4; + dst += CHACHA_BLOCK_SIZE * 4; + state->x[12] += 4; + } + if (bytes > CHACHA_BLOCK_SIZE) { + chacha_4block_xor_ssse3(state, dst, src, bytes, nrounds); + state->x[12] += chacha_advance(bytes, 4); + return; + } + if (bytes) { + chacha_block_xor_ssse3(state, dst, src, bytes, nrounds); + state->x[12]++; + } +} + +void hchacha_block_arch(const struct chacha_state *state, + u32 out[HCHACHA_OUT_WORDS], int nrounds) +{ + if (!static_branch_likely(&chacha_use_simd)) { + hchacha_block_generic(state, out, nrounds); + } else { + kernel_fpu_begin(); + hchacha_block_ssse3(state, out, nrounds); + kernel_fpu_end(); + } +} +EXPORT_SYMBOL(hchacha_block_arch); + +void chacha_crypt_arch(struct chacha_state *state, u8 *dst, const u8 *src, + unsigned int bytes, int nrounds) +{ + if (!static_branch_likely(&chacha_use_simd) || + bytes <= CHACHA_BLOCK_SIZE) + return chacha_crypt_generic(state, dst, src, bytes, nrounds); + + do { + unsigned int todo = min_t(unsigned int, bytes, SZ_4K); + + kernel_fpu_begin(); + chacha_dosimd(state, dst, src, todo, nrounds); + kernel_fpu_end(); + + bytes -= todo; + src += todo; + dst += todo; + } while (bytes); +} +EXPORT_SYMBOL(chacha_crypt_arch); + +bool chacha_is_arch_optimized(void) +{ + return static_key_enabled(&chacha_use_simd); +} +EXPORT_SYMBOL(chacha_is_arch_optimized); + +static int __init chacha_simd_mod_init(void) +{ + if (!boot_cpu_has(X86_FEATURE_SSSE3)) + return 0; + + static_branch_enable(&chacha_use_simd); + + if (boot_cpu_has(X86_FEATURE_AVX) && + boot_cpu_has(X86_FEATURE_AVX2) && + cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, NULL)) { + static_branch_enable(&chacha_use_avx2); + + if (boot_cpu_has(X86_FEATURE_AVX512VL) && + boot_cpu_has(X86_FEATURE_AVX512BW)) /* kmovq */ + static_branch_enable(&chacha_use_avx512vl); + } + return 0; +} +subsys_initcall(chacha_simd_mod_init); + +static void __exit chacha_simd_mod_exit(void) +{ +} +module_exit(chacha_simd_mod_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Martin Willi <martin@strongswan.org>"); +MODULE_DESCRIPTION("ChaCha and HChaCha functions (x86_64 optimized)"); diff --git a/arch/x86/lib/crypto/poly1305-x86_64-cryptogams.pl b/arch/x86/lib/crypto/poly1305-x86_64-cryptogams.pl new file mode 100644 index 000000000000..501827254fed --- /dev/null +++ b/arch/x86/lib/crypto/poly1305-x86_64-cryptogams.pl @@ -0,0 +1,4253 @@ +#!/usr/bin/env perl +# SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause +# +# Copyright (C) 2017-2018 Samuel Neves <sneves@dei.uc.pt>. All Rights Reserved. +# Copyright (C) 2017-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. +# Copyright (C) 2006-2017 CRYPTOGAMS by <appro@openssl.org>. All Rights Reserved. +# +# This code is taken from the OpenSSL project but the author, Andy Polyakov, +# has relicensed it under the licenses specified in the SPDX header above. +# The original headers, including the original license headers, are +# included below for completeness. +# +# ==================================================================== +# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL +# project. The module is, however, dual licensed under OpenSSL and +# CRYPTOGAMS licenses depending on where you obtain it. For further +# details see http://www.openssl.org/~appro/cryptogams/. +# ==================================================================== +# +# This module implements Poly1305 hash for x86_64. +# +# March 2015 +# +# Initial release. +# +# December 2016 +# +# Add AVX512F+VL+BW code path. +# +# November 2017 +# +# Convert AVX512F+VL+BW code path to pure AVX512F, so that it can be +# executed even on Knights Landing. Trigger for modification was +# observation that AVX512 code paths can negatively affect overall +# Skylake-X system performance. Since we are likely to suppress +# AVX512F capability flag [at least on Skylake-X], conversion serves +# as kind of "investment protection". Note that next *lake processor, +# Cannonlake, has AVX512IFMA code path to execute... +# +# Numbers are cycles per processed byte with poly1305_blocks alone, +# measured with rdtsc at fixed clock frequency. +# +# IALU/gcc-4.8(*) AVX(**) AVX2 AVX-512 +# P4 4.46/+120% - +# Core 2 2.41/+90% - +# Westmere 1.88/+120% - +# Sandy Bridge 1.39/+140% 1.10 +# Haswell 1.14/+175% 1.11 0.65 +# Skylake[-X] 1.13/+120% 0.96 0.51 [0.35] +# Silvermont 2.83/+95% - +# Knights L 3.60/? 1.65 1.10 0.41(***) +# Goldmont 1.70/+180% - +# VIA Nano 1.82/+150% - +# Sledgehammer 1.38/+160% - +# Bulldozer 2.30/+130% 0.97 +# Ryzen 1.15/+200% 1.08 1.18 +# +# (*) improvement coefficients relative to clang are more modest and +# are ~50% on most processors, in both cases we are comparing to +# __int128 code; +# (**) SSE2 implementation was attempted, but among non-AVX processors +# it was faster than integer-only code only on older Intel P4 and +# Core processors, 50-30%, less newer processor is, but slower on +# contemporary ones, for example almost 2x slower on Atom, and as +# former are naturally disappearing, SSE2 is deemed unnecessary; +# (***) strangely enough performance seems to vary from core to core, +# listed result is best case; + +$flavour = shift; +$output = shift; +if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } + +$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); +$kernel=0; $kernel=1 if (!$flavour && !$output); + +if (!$kernel) { + $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; + ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or + ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or + die "can't locate x86_64-xlate.pl"; + + open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\""; + *STDOUT=*OUT; + + if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` + =~ /GNU assembler version ([2-9]\.[0-9]+)/) { + $avx = ($1>=2.19) + ($1>=2.22) + ($1>=2.25); + } + + if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) && + `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)(?:\.([0-9]+))?/) { + $avx = ($1>=2.09) + ($1>=2.10) + ($1>=2.12); + $avx += 1 if ($1==2.11 && $2>=8); + } + + if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) && + `ml64 2>&1` =~ /Version ([0-9]+)\./) { + $avx = ($1>=10) + ($1>=11); + } + + if (!$avx && `$ENV{CC} -v 2>&1` =~ /((?:^clang|LLVM) version|.*based on LLVM) ([3-9]\.[0-9]+)/) { + $avx = ($2>=3.0) + ($2>3.0); + } +} else { + $avx = 4; # The kernel uses ifdefs for this. +} + +sub declare_function() { + my ($name, $align, $nargs) = @_; + if($kernel) { + $code .= "SYM_FUNC_START($name)\n"; + $code .= ".L$name:\n"; + } else { + $code .= ".globl $name\n"; + $code .= ".type $name,\@function,$nargs\n"; + $code .= ".align $align\n"; + $code .= "$name:\n"; + } +} + +sub declare_typed_function() { + my ($name, $align, $nargs) = @_; + if($kernel) { + $code .= "SYM_TYPED_FUNC_START($name)\n"; + $code .= ".L$name:\n"; + } else { + $code .= ".globl $name\n"; + $code .= ".type $name,\@function,$nargs\n"; + $code .= ".align $align\n"; + $code .= "$name:\n"; + } +} + +sub end_function() { + my ($name) = @_; + if($kernel) { + $code .= "SYM_FUNC_END($name)\n"; + } else { + $code .= ".size $name,.-$name\n"; + } +} + +$code.=<<___ if $kernel; +#include <linux/cfi_types.h> +___ + +if ($avx) { +$code.=<<___ if $kernel; +.section .rodata +___ +$code.=<<___; +.align 64 +.Lconst: +.Lmask24: +.long 0x0ffffff,0,0x0ffffff,0,0x0ffffff,0,0x0ffffff,0 +.L129: +.long `1<<24`,0,`1<<24`,0,`1<<24`,0,`1<<24`,0 +.Lmask26: +.long 0x3ffffff,0,0x3ffffff,0,0x3ffffff,0,0x3ffffff,0 +.Lpermd_avx2: +.long 2,2,2,3,2,0,2,1 +.Lpermd_avx512: +.long 0,0,0,1, 0,2,0,3, 0,4,0,5, 0,6,0,7 + +.L2_44_inp_permd: +.long 0,1,1,2,2,3,7,7 +.L2_44_inp_shift: +.quad 0,12,24,64 +.L2_44_mask: +.quad 0xfffffffffff,0xfffffffffff,0x3ffffffffff,0xffffffffffffffff +.L2_44_shift_rgt: +.quad 44,44,42,64 +.L2_44_shift_lft: +.quad 8,8,10,64 + +.align 64 +.Lx_mask44: +.quad 0xfffffffffff,0xfffffffffff,0xfffffffffff,0xfffffffffff +.quad 0xfffffffffff,0xfffffffffff,0xfffffffffff,0xfffffffffff +.Lx_mask42: +.quad 0x3ffffffffff,0x3ffffffffff,0x3ffffffffff,0x3ffffffffff +.quad 0x3ffffffffff,0x3ffffffffff,0x3ffffffffff,0x3ffffffffff +___ +} +$code.=<<___ if (!$kernel); +.asciz "Poly1305 for x86_64, CRYPTOGAMS by <appro\@openssl.org>" +.align 16 +___ + +my ($ctx,$inp,$len,$padbit)=("%rdi","%rsi","%rdx","%rcx"); +my ($mac,$nonce)=($inp,$len); # *_emit arguments +my ($d1,$d2,$d3, $r0,$r1,$s1)=("%r8","%r9","%rdi","%r11","%r12","%r13"); +my ($h0,$h1,$h2)=("%r14","%rbx","%r10"); + +sub poly1305_iteration { +# input: copy of $r1 in %rax, $h0-$h2, $r0-$r1 +# output: $h0-$h2 *= $r0-$r1 +$code.=<<___; + mulq $h0 # h0*r1 + mov %rax,$d2 + mov $r0,%rax + mov %rdx,$d3 + + mulq $h0 # h0*r0 + mov %rax,$h0 # future $h0 + mov $r0,%rax + mov %rdx,$d1 + + mulq $h1 # h1*r0 + add %rax,$d2 + mov $s1,%rax + adc %rdx,$d3 + + mulq $h1 # h1*s1 + mov $h2,$h1 # borrow $h1 + add %rax,$h0 + adc %rdx,$d1 + + imulq $s1,$h1 # h2*s1 + add $h1,$d2 + mov $d1,$h1 + adc \$0,$d3 + + imulq $r0,$h2 # h2*r0 + add $d2,$h1 + mov \$-4,%rax # mask value + adc $h2,$d3 + + and $d3,%rax # last reduction step + mov $d3,$h2 + shr \$2,$d3 + and \$3,$h2 + add $d3,%rax + add %rax,$h0 + adc \$0,$h1 + adc \$0,$h2 +___ +} + +######################################################################## +# Layout of opaque area is following. +# +# unsigned __int64 h[3]; # current hash value base 2^64 +# unsigned __int64 r[2]; # key value base 2^64 + +$code.=<<___; +.text +___ +$code.=<<___ if (!$kernel); +.extern OPENSSL_ia32cap_P + +.globl poly1305_block_init_arch +.hidden poly1305_block_init_arch +.globl poly1305_blocks_x86_64 +.hidden poly1305_blocks_x86_64 +.globl poly1305_emit_x86_64 +.hidden poly1305_emit_x86_64 +___ +&declare_typed_function("poly1305_block_init_arch", 32, 3); +$code.=<<___; + xor %eax,%eax + mov %rax,0($ctx) # initialize hash value + mov %rax,8($ctx) + mov %rax,16($ctx) + + test $inp,$inp + je .Lno_key +___ +$code.=<<___ if (!$kernel); + lea poly1305_blocks_x86_64(%rip),%r10 + lea poly1305_emit_x86_64(%rip),%r11 +___ +$code.=<<___ if (!$kernel && $avx); + mov OPENSSL_ia32cap_P+4(%rip),%r9 + lea poly1305_blocks_avx(%rip),%rax + lea poly1305_emit_avx(%rip),%rcx + bt \$`60-32`,%r9 # AVX? + cmovc %rax,%r10 + cmovc %rcx,%r11 +___ +$code.=<<___ if (!$kernel && $avx>1); + lea poly1305_blocks_avx2(%rip),%rax + bt \$`5+32`,%r9 # AVX2? + cmovc %rax,%r10 +___ +$code.=<<___ if (!$kernel && $avx>3); + mov \$`(1<<31|1<<21|1<<16)`,%rax + shr \$32,%r9 + and %rax,%r9 + cmp %rax,%r9 + je .Linit_base2_44 +___ +$code.=<<___; + mov \$0x0ffffffc0fffffff,%rax + mov \$0x0ffffffc0ffffffc,%rcx + and 0($inp),%rax + and 8($inp),%rcx + mov %rax,24($ctx) + mov %rcx,32($ctx) +___ +$code.=<<___ if (!$kernel && $flavour !~ /elf32/); + mov %r10,0(%rdx) + mov %r11,8(%rdx) +___ +$code.=<<___ if (!$kernel && $flavour =~ /elf32/); + mov %r10d,0(%rdx) + mov %r11d,4(%rdx) +___ +$code.=<<___; + mov \$1,%eax +.Lno_key: + RET +___ +&end_function("poly1305_block_init_arch"); + +&declare_function("poly1305_blocks_x86_64", 32, 4); +$code.=<<___; +.cfi_startproc +.Lblocks: + shr \$4,$len + jz .Lno_data # too short + + push %rbx +.cfi_push %rbx + push %r12 +.cfi_push %r12 + push %r13 +.cfi_push %r13 + push %r14 +.cfi_push %r14 + push %r15 +.cfi_push %r15 + push $ctx +.cfi_push $ctx +.Lblocks_body: + + mov $len,%r15 # reassign $len + + mov 24($ctx),$r0 # load r + mov 32($ctx),$s1 + + mov 0($ctx),$h0 # load hash value + mov 8($ctx),$h1 + mov 16($ctx),$h2 + + mov $s1,$r1 + shr \$2,$s1 + mov $r1,%rax + add $r1,$s1 # s1 = r1 + (r1 >> 2) + jmp .Loop + +.align 32 +.Loop: + add 0($inp),$h0 # accumulate input + adc 8($inp),$h1 + lea 16($inp),$inp + adc $padbit,$h2 +___ + + &poly1305_iteration(); + +$code.=<<___; + mov $r1,%rax + dec %r15 # len-=16 + jnz .Loop + + mov 0(%rsp),$ctx +.cfi_restore $ctx + + mov $h0,0($ctx) # store hash value + mov $h1,8($ctx) + mov $h2,16($ctx) + + mov 8(%rsp),%r15 +.cfi_restore %r15 + mov 16(%rsp),%r14 +.cfi_restore %r14 + mov 24(%rsp),%r13 +.cfi_restore %r13 + mov 32(%rsp),%r12 +.cfi_restore %r12 + mov 40(%rsp),%rbx +.cfi_restore %rbx + lea 48(%rsp),%rsp +.cfi_adjust_cfa_offset -48 +.Lno_data: +.Lblocks_epilogue: + RET +.cfi_endproc +___ +&end_function("poly1305_blocks_x86_64"); + +&declare_function("poly1305_emit_x86_64", 32, 3); +$code.=<<___; +.Lemit: + mov 0($ctx),%r8 # load hash value + mov 8($ctx),%r9 + mov 16($ctx),%r10 + + mov %r8,%rax + add \$5,%r8 # compare to modulus + mov %r9,%rcx + adc \$0,%r9 + adc \$0,%r10 + shr \$2,%r10 # did 130-bit value overflow? + cmovnz %r8,%rax + cmovnz %r9,%rcx + + add 0($nonce),%rax # accumulate nonce + adc 8($nonce),%rcx + mov %rax,0($mac) # write result + mov %rcx,8($mac) + + RET +___ +&end_function("poly1305_emit_x86_64"); +if ($avx) { + +######################################################################## +# Layout of opaque area is following. +# +# unsigned __int32 h[5]; # current hash value base 2^26 +# unsigned __int32 is_base2_26; +# unsigned __int64 r[2]; # key value base 2^64 +# unsigned __int64 pad; +# struct { unsigned __int32 r^2, r^1, r^4, r^3; } r[9]; +# +# where r^n are base 2^26 digits of degrees of multiplier key. There are +# 5 digits, but last four are interleaved with multiples of 5, totalling +# in 9 elements: r0, r1, 5*r1, r2, 5*r2, r3, 5*r3, r4, 5*r4. + +my ($H0,$H1,$H2,$H3,$H4, $T0,$T1,$T2,$T3,$T4, $D0,$D1,$D2,$D3,$D4, $MASK) = + map("%xmm$_",(0..15)); + +$code.=<<___; +.type __poly1305_block,\@abi-omnipotent +.align 32 +__poly1305_block: + push $ctx +___ + &poly1305_iteration(); +$code.=<<___; + pop $ctx + RET +.size __poly1305_block,.-__poly1305_block + +.type __poly1305_init_avx,\@abi-omnipotent +.align 32 +__poly1305_init_avx: + push %rbp + mov %rsp,%rbp + mov $r0,$h0 + mov $r1,$h1 + xor $h2,$h2 + + lea 48+64($ctx),$ctx # size optimization + + mov $r1,%rax + call __poly1305_block # r^2 + + mov \$0x3ffffff,%eax # save interleaved r^2 and r base 2^26 + mov \$0x3ffffff,%edx + mov $h0,$d1 + and $h0#d,%eax + mov $r0,$d2 + and $r0#d,%edx + mov %eax,`16*0+0-64`($ctx) + shr \$26,$d1 + mov %edx,`16*0+4-64`($ctx) + shr \$26,$d2 + + mov \$0x3ffffff,%eax + mov \$0x3ffffff,%edx + and $d1#d,%eax + and $d2#d,%edx + mov %eax,`16*1+0-64`($ctx) + lea (%rax,%rax,4),%eax # *5 + mov %edx,`16*1+4-64`($ctx) + lea (%rdx,%rdx,4),%edx # *5 + mov %eax,`16*2+0-64`($ctx) + shr \$26,$d1 + mov %edx,`16*2+4-64`($ctx) + shr \$26,$d2 + + mov $h1,%rax + mov $r1,%rdx + shl \$12,%rax + shl \$12,%rdx + or $d1,%rax + or $d2,%rdx + and \$0x3ffffff,%eax + and \$0x3ffffff,%edx + mov %eax,`16*3+0-64`($ctx) + lea (%rax,%rax,4),%eax # *5 + mov %edx,`16*3+4-64`($ctx) + lea (%rdx,%rdx,4),%edx # *5 + mov %eax,`16*4+0-64`($ctx) + mov $h1,$d1 + mov %edx,`16*4+4-64`($ctx) + mov $r1,$d2 + + mov \$0x3ffffff,%eax + mov \$0x3ffffff,%edx + shr \$14,$d1 + shr \$14,$d2 + and $d1#d,%eax + and $d2#d,%edx + mov %eax,`16*5+0-64`($ctx) + lea (%rax,%rax,4),%eax # *5 + mov %edx,`16*5+4-64`($ctx) + lea (%rdx,%rdx,4),%edx # *5 + mov %eax,`16*6+0-64`($ctx) + shr \$26,$d1 + mov %edx,`16*6+4-64`($ctx) + shr \$26,$d2 + + mov $h2,%rax + shl \$24,%rax + or %rax,$d1 + mov $d1#d,`16*7+0-64`($ctx) + lea ($d1,$d1,4),$d1 # *5 + mov $d2#d,`16*7+4-64`($ctx) + lea ($d2,$d2,4),$d2 # *5 + mov $d1#d,`16*8+0-64`($ctx) + mov $d2#d,`16*8+4-64`($ctx) + + mov $r1,%rax + call __poly1305_block # r^3 + + mov \$0x3ffffff,%eax # save r^3 base 2^26 + mov $h0,$d1 + and $h0#d,%eax + shr \$26,$d1 + mov %eax,`16*0+12-64`($ctx) + + mov \$0x3ffffff,%edx + and $d1#d,%edx + mov %edx,`16*1+12-64`($ctx) + lea (%rdx,%rdx,4),%edx # *5 + shr \$26,$d1 + mov %edx,`16*2+12-64`($ctx) + + mov $h1,%rax + shl \$12,%rax + or $d1,%rax + and \$0x3ffffff,%eax + mov %eax,`16*3+12-64`($ctx) + lea (%rax,%rax,4),%eax # *5 + mov $h1,$d1 + mov %eax,`16*4+12-64`($ctx) + + mov \$0x3ffffff,%edx + shr \$14,$d1 + and $d1#d,%edx + mov %edx,`16*5+12-64`($ctx) + lea (%rdx,%rdx,4),%edx # *5 + shr \$26,$d1 + mov %edx,`16*6+12-64`($ctx) + + mov $h2,%rax + shl \$24,%rax + or %rax,$d1 + mov $d1#d,`16*7+12-64`($ctx) + lea ($d1,$d1,4),$d1 # *5 + mov $d1#d,`16*8+12-64`($ctx) + + mov $r1,%rax + call __poly1305_block # r^4 + + mov \$0x3ffffff,%eax # save r^4 base 2^26 + mov $h0,$d1 + and $h0#d,%eax + shr \$26,$d1 + mov %eax,`16*0+8-64`($ctx) + + mov \$0x3ffffff,%edx + and $d1#d,%edx + mov %edx,`16*1+8-64`($ctx) + lea (%rdx,%rdx,4),%edx # *5 + shr \$26,$d1 + mov %edx,`16*2+8-64`($ctx) + + mov $h1,%rax + shl \$12,%rax + or $d1,%rax + and \$0x3ffffff,%eax + mov %eax,`16*3+8-64`($ctx) + lea (%rax,%rax,4),%eax # *5 + mov $h1,$d1 + mov %eax,`16*4+8-64`($ctx) + + mov \$0x3ffffff,%edx + shr \$14,$d1 + and $d1#d,%edx + mov %edx,`16*5+8-64`($ctx) + lea (%rdx,%rdx,4),%edx # *5 + shr \$26,$d1 + mov %edx,`16*6+8-64`($ctx) + + mov $h2,%rax + shl \$24,%rax + or %rax,$d1 + mov $d1#d,`16*7+8-64`($ctx) + lea ($d1,$d1,4),$d1 # *5 + mov $d1#d,`16*8+8-64`($ctx) + + lea -48-64($ctx),$ctx # size [de-]optimization + pop %rbp + RET +.size __poly1305_init_avx,.-__poly1305_init_avx +___ + +&declare_function("poly1305_blocks_avx", 32, 4); +$code.=<<___; +.cfi_startproc + mov 20($ctx),%r8d # is_base2_26 + cmp \$128,$len + jae .Lblocks_avx + test %r8d,%r8d + jz .Lblocks + +.Lblocks_avx: + and \$-16,$len + jz .Lno_data_avx + + vzeroupper + + test %r8d,%r8d + jz .Lbase2_64_avx + + test \$31,$len + jz .Leven_avx + + push %rbp +.cfi_push %rbp + mov %rsp,%rbp + push %rbx +.cfi_push %rbx + push %r12 +.cfi_push %r12 + push %r13 +.cfi_push %r13 + push %r14 +.cfi_push %r14 + push %r15 +.cfi_push %r15 +.Lblocks_avx_body: + + mov $len,%r15 # reassign $len + + mov 0($ctx),$d1 # load hash value + mov 8($ctx),$d2 + mov 16($ctx),$h2#d + + mov 24($ctx),$r0 # load r + mov 32($ctx),$s1 + + ################################# base 2^26 -> base 2^64 + mov $d1#d,$h0#d + and \$`-1*(1<<31)`,$d1 + mov $d2,$r1 # borrow $r1 + mov $d2#d,$h1#d + and \$`-1*(1<<31)`,$d2 + + shr \$6,$d1 + shl \$52,$r1 + add $d1,$h0 + shr \$12,$h1 + shr \$18,$d2 + add $r1,$h0 + adc $d2,$h1 + + mov $h2,$d1 + shl \$40,$d1 + shr \$24,$h2 + add $d1,$h1 + adc \$0,$h2 # can be partially reduced... + + mov \$-4,$d2 # ... so reduce + mov $h2,$d1 + and $h2,$d2 + shr \$2,$d1 + and \$3,$h2 + add $d2,$d1 # =*5 + add $d1,$h0 + adc \$0,$h1 + adc \$0,$h2 + + mov $s1,$r1 + mov $s1,%rax + shr \$2,$s1 + add $r1,$s1 # s1 = r1 + (r1 >> 2) + + add 0($inp),$h0 # accumulate input + adc 8($inp),$h1 + lea 16($inp),$inp + adc $padbit,$h2 + + call __poly1305_block + + test $padbit,$padbit # if $padbit is zero, + jz .Lstore_base2_64_avx # store hash in base 2^64 format + + ################################# base 2^64 -> base 2^26 + mov $h0,%rax + mov $h0,%rdx + shr \$52,$h0 + mov $h1,$r0 + mov $h1,$r1 + shr \$26,%rdx + and \$0x3ffffff,%rax # h[0] + shl \$12,$r0 + and \$0x3ffffff,%rdx # h[1] + shr \$14,$h1 + or $r0,$h0 + shl \$24,$h2 + and \$0x3ffffff,$h0 # h[2] + shr \$40,$r1 + and \$0x3ffffff,$h1 # h[3] + or $r1,$h2 # h[4] + + sub \$16,%r15 + jz .Lstore_base2_26_avx + + vmovd %rax#d,$H0 + vmovd %rdx#d,$H1 + vmovd $h0#d,$H2 + vmovd $h1#d,$H3 + vmovd $h2#d,$H4 + jmp .Lproceed_avx + +.align 32 +.Lstore_base2_64_avx: + mov $h0,0($ctx) + mov $h1,8($ctx) + mov $h2,16($ctx) # note that is_base2_26 is zeroed + jmp .Ldone_avx + +.align 16 +.Lstore_base2_26_avx: + mov %rax#d,0($ctx) # store hash value base 2^26 + mov %rdx#d,4($ctx) + mov $h0#d,8($ctx) + mov $h1#d,12($ctx) + mov $h2#d,16($ctx) +.align 16 +.Ldone_avx: + pop %r15 +.cfi_restore %r15 + pop %r14 +.cfi_restore %r14 + pop %r13 +.cfi_restore %r13 + pop %r12 +.cfi_restore %r12 + pop %rbx +.cfi_restore %rbx + pop %rbp +.cfi_restore %rbp +.Lno_data_avx: +.Lblocks_avx_epilogue: + RET +.cfi_endproc + +.align 32 +.Lbase2_64_avx: +.cfi_startproc + push %rbp +.cfi_push %rbp + mov %rsp,%rbp + push %rbx +.cfi_push %rbx + push %r12 +.cfi_push %r12 + push %r13 +.cfi_push %r13 + push %r14 +.cfi_push %r14 + push %r15 +.cfi_push %r15 +.Lbase2_64_avx_body: + + mov $len,%r15 # reassign $len + + mov 24($ctx),$r0 # load r + mov 32($ctx),$s1 + + mov 0($ctx),$h0 # load hash value + mov 8($ctx),$h1 + mov 16($ctx),$h2#d + + mov $s1,$r1 + mov $s1,%rax + shr \$2,$s1 + add $r1,$s1 # s1 = r1 + (r1 >> 2) + + test \$31,$len + jz .Linit_avx + + add 0($inp),$h0 # accumulate input + adc 8($inp),$h1 + lea 16($inp),$inp + adc $padbit,$h2 + sub \$16,%r15 + + call __poly1305_block + +.Linit_avx: + ################################# base 2^64 -> base 2^26 + mov $h0,%rax + mov $h0,%rdx + shr \$52,$h0 + mov $h1,$d1 + mov $h1,$d2 + shr \$26,%rdx + and \$0x3ffffff,%rax # h[0] + shl \$12,$d1 + and \$0x3ffffff,%rdx # h[1] + shr \$14,$h1 + or $d1,$h0 + shl \$24,$h2 + and \$0x3ffffff,$h0 # h[2] + shr \$40,$d2 + and \$0x3ffffff,$h1 # h[3] + or $d2,$h2 # h[4] + + vmovd %rax#d,$H0 + vmovd %rdx#d,$H1 + vmovd $h0#d,$H2 + vmovd $h1#d,$H3 + vmovd $h2#d,$H4 + movl \$1,20($ctx) # set is_base2_26 + + call __poly1305_init_avx + +.Lproceed_avx: + mov %r15,$len + pop %r15 +.cfi_restore %r15 + pop %r14 +.cfi_restore %r14 + pop %r13 +.cfi_restore %r13 + pop %r12 +.cfi_restore %r12 + pop %rbx +.cfi_restore %rbx + pop %rbp +.cfi_restore %rbp +.Lbase2_64_avx_epilogue: + jmp .Ldo_avx +.cfi_endproc + +.align 32 +.Leven_avx: +.cfi_startproc + vmovd 4*0($ctx),$H0 # load hash value + vmovd 4*1($ctx),$H1 + vmovd 4*2($ctx),$H2 + vmovd 4*3($ctx),$H3 + vmovd 4*4($ctx),$H4 + +.Ldo_avx: +___ +$code.=<<___ if (!$win64); + lea 8(%rsp),%r10 +.cfi_def_cfa_register %r10 + and \$-32,%rsp + sub \$-8,%rsp + lea -0x58(%rsp),%r11 + sub \$0x178,%rsp +___ +$code.=<<___ if ($win64); + lea -0xf8(%rsp),%r11 + sub \$0x218,%rsp + vmovdqa %xmm6,0x50(%r11) + vmovdqa %xmm7,0x60(%r11) + vmovdqa %xmm8,0x70(%r11) + vmovdqa %xmm9,0x80(%r11) + vmovdqa %xmm10,0x90(%r11) + vmovdqa %xmm11,0xa0(%r11) + vmovdqa %xmm12,0xb0(%r11) + vmovdqa %xmm13,0xc0(%r11) + vmovdqa %xmm14,0xd0(%r11) + vmovdqa %xmm15,0xe0(%r11) +.Ldo_avx_body: +___ +$code.=<<___; + sub \$64,$len + lea -32($inp),%rax + cmovc %rax,$inp + + vmovdqu `16*3`($ctx),$D4 # preload r0^2 + lea `16*3+64`($ctx),$ctx # size optimization + lea .Lconst(%rip),%rcx + + ################################################################ + # load input + vmovdqu 16*2($inp),$T0 + vmovdqu 16*3($inp),$T1 + vmovdqa 64(%rcx),$MASK # .Lmask26 + + vpsrldq \$6,$T0,$T2 # splat input + vpsrldq \$6,$T1,$T3 + vpunpckhqdq $T1,$T0,$T4 # 4 + vpunpcklqdq $T1,$T0,$T0 # 0:1 + vpunpcklqdq $T3,$T2,$T3 # 2:3 + + vpsrlq \$40,$T4,$T4 # 4 + vpsrlq \$26,$T0,$T1 + vpand $MASK,$T0,$T0 # 0 + vpsrlq \$4,$T3,$T2 + vpand $MASK,$T1,$T1 # 1 + vpsrlq \$30,$T3,$T3 + vpand $MASK,$T2,$T2 # 2 + vpand $MASK,$T3,$T3 # 3 + vpor 32(%rcx),$T4,$T4 # padbit, yes, always + + jbe .Lskip_loop_avx + + # expand and copy pre-calculated table to stack + vmovdqu `16*1-64`($ctx),$D1 + vmovdqu `16*2-64`($ctx),$D2 + vpshufd \$0xEE,$D4,$D3 # 34xx -> 3434 + vpshufd \$0x44,$D4,$D0 # xx12 -> 1212 + vmovdqa $D3,-0x90(%r11) + vmovdqa $D0,0x00(%rsp) + vpshufd \$0xEE,$D1,$D4 + vmovdqu `16*3-64`($ctx),$D0 + vpshufd \$0x44,$D1,$D1 + vmovdqa $D4,-0x80(%r11) + vmovdqa $D1,0x10(%rsp) + vpshufd \$0xEE,$D2,$D3 + vmovdqu `16*4-64`($ctx),$D1 + vpshufd \$0x44,$D2,$D2 + vmovdqa $D3,-0x70(%r11) + vmovdqa $D2,0x20(%rsp) + vpshufd \$0xEE,$D0,$D4 + vmovdqu `16*5-64`($ctx),$D2 + vpshufd \$0x44,$D0,$D0 + vmovdqa $D4,-0x60(%r11) + vmovdqa $D0,0x30(%rsp) + vpshufd \$0xEE,$D1,$D3 + vmovdqu `16*6-64`($ctx),$D0 + vpshufd \$0x44,$D1,$D1 + vmovdqa $D3,-0x50(%r11) + vmovdqa $D1,0x40(%rsp) + vpshufd \$0xEE,$D2,$D4 + vmovdqu `16*7-64`($ctx),$D1 + vpshufd \$0x44,$D2,$D2 + vmovdqa $D4,-0x40(%r11) + vmovdqa $D2,0x50(%rsp) + vpshufd \$0xEE,$D0,$D3 + vmovdqu `16*8-64`($ctx),$D2 + vpshufd \$0x44,$D0,$D0 + vmovdqa $D3,-0x30(%r11) + vmovdqa $D0,0x60(%rsp) + vpshufd \$0xEE,$D1,$D4 + vpshufd \$0x44,$D1,$D1 + vmovdqa $D4,-0x20(%r11) + vmovdqa $D1,0x70(%rsp) + vpshufd \$0xEE,$D2,$D3 + vmovdqa 0x00(%rsp),$D4 # preload r0^2 + vpshufd \$0x44,$D2,$D2 + vmovdqa $D3,-0x10(%r11) + vmovdqa $D2,0x80(%rsp) + + jmp .Loop_avx + +.align 32 +.Loop_avx: + ################################################################ + # ((inp[0]*r^4+inp[2]*r^2+inp[4])*r^4+inp[6]*r^2 + # ((inp[1]*r^4+inp[3]*r^2+inp[5])*r^3+inp[7]*r + # \___________________/ + # ((inp[0]*r^4+inp[2]*r^2+inp[4])*r^4+inp[6]*r^2+inp[8])*r^2 + # ((inp[1]*r^4+inp[3]*r^2+inp[5])*r^4+inp[7]*r^2+inp[9])*r + # \___________________/ \____________________/ + # + # Note that we start with inp[2:3]*r^2. This is because it + # doesn't depend on reduction in previous iteration. + ################################################################ + # d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4 + # d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4 + # d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4 + # d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4 + # d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4 + # + # though note that $Tx and $Hx are "reversed" in this section, + # and $D4 is preloaded with r0^2... + + vpmuludq $T0,$D4,$D0 # d0 = h0*r0 + vpmuludq $T1,$D4,$D1 # d1 = h1*r0 + vmovdqa $H2,0x20(%r11) # offload hash + vpmuludq $T2,$D4,$D2 # d3 = h2*r0 + vmovdqa 0x10(%rsp),$H2 # r1^2 + vpmuludq $T3,$D4,$D3 # d3 = h3*r0 + vpmuludq $T4,$D4,$D4 # d4 = h4*r0 + + vmovdqa $H0,0x00(%r11) # + vpmuludq 0x20(%rsp),$T4,$H0 # h4*s1 + vmovdqa $H1,0x10(%r11) # + vpmuludq $T3,$H2,$H1 # h3*r1 + vpaddq $H0,$D0,$D0 # d0 += h4*s1 + vpaddq $H1,$D4,$D4 # d4 += h3*r1 + vmovdqa $H3,0x30(%r11) # + vpmuludq $T2,$H2,$H0 # h2*r1 + vpmuludq $T1,$H2,$H1 # h1*r1 + vpaddq $H0,$D3,$D3 # d3 += h2*r1 + vmovdqa 0x30(%rsp),$H3 # r2^2 + vpaddq $H1,$D2,$D2 # d2 += h1*r1 + vmovdqa $H4,0x40(%r11) # + vpmuludq $T0,$H2,$H2 # h0*r1 + vpmuludq $T2,$H3,$H0 # h2*r2 + vpaddq $H2,$D1,$D1 # d1 += h0*r1 + + vmovdqa 0x40(%rsp),$H4 # s2^2 + vpaddq $H0,$D4,$D4 # d4 += h2*r2 + vpmuludq $T1,$H3,$H1 # h1*r2 + vpmuludq $T0,$H3,$H3 # h0*r2 + vpaddq $H1,$D3,$D3 # d3 += h1*r2 + vmovdqa 0x50(%rsp),$H2 # r3^2 + vpaddq $H3,$D2,$D2 # d2 += h0*r2 + vpmuludq $T4,$H4,$H0 # h4*s2 + vpmuludq $T3,$H4,$H4 # h3*s2 + vpaddq $H0,$D1,$D1 # d1 += h4*s2 + vmovdqa 0x60(%rsp),$H3 # s3^2 + vpaddq $H4,$D0,$D0 # d0 += h3*s2 + + vmovdqa 0x80(%rsp),$H4 # s4^2 + vpmuludq $T1,$H2,$H1 # h1*r3 + vpmuludq $T0,$H2,$H2 # h0*r3 + vpaddq $H1,$D4,$D4 # d4 += h1*r3 + vpaddq $H2,$D3,$D3 # d3 += h0*r3 + vpmuludq $T4,$H3,$H0 # h4*s3 + vpmuludq $T3,$H3,$H1 # h3*s3 + vpaddq $H0,$D2,$D2 # d2 += h4*s3 + vmovdqu 16*0($inp),$H0 # load input + vpaddq $H1,$D1,$D1 # d1 += h3*s3 + vpmuludq $T2,$H3,$H3 # h2*s3 + vpmuludq $T2,$H4,$T2 # h2*s4 + vpaddq $H3,$D0,$D0 # d0 += h2*s3 + + vmovdqu 16*1($inp),$H1 # + vpaddq $T2,$D1,$D1 # d1 += h2*s4 + vpmuludq $T3,$H4,$T3 # h3*s4 + vpmuludq $T4,$H4,$T4 # h4*s4 + vpsrldq \$6,$H0,$H2 # splat input + vpaddq $T3,$D2,$D2 # d2 += h3*s4 + vpaddq $T4,$D3,$D3 # d3 += h4*s4 + vpsrldq \$6,$H1,$H3 # + vpmuludq 0x70(%rsp),$T0,$T4 # h0*r4 + vpmuludq $T1,$H4,$T0 # h1*s4 + vpunpckhqdq $H1,$H0,$H4 # 4 + vpaddq $T4,$D4,$D4 # d4 += h0*r4 + vmovdqa -0x90(%r11),$T4 # r0^4 + vpaddq $T0,$D0,$D0 # d0 += h1*s4 + + vpunpcklqdq $H1,$H0,$H0 # 0:1 + vpunpcklqdq $H3,$H2,$H3 # 2:3 + + #vpsrlq \$40,$H4,$H4 # 4 + vpsrldq \$`40/8`,$H4,$H4 # 4 + vpsrlq \$26,$H0,$H1 + vpand $MASK,$H0,$H0 # 0 + vpsrlq \$4,$H3,$H2 + vpand $MASK,$H1,$H1 # 1 + vpand 0(%rcx),$H4,$H4 # .Lmask24 + vpsrlq \$30,$H3,$H3 + vpand $MASK,$H2,$H2 # 2 + vpand $MASK,$H3,$H3 # 3 + vpor 32(%rcx),$H4,$H4 # padbit, yes, always + + vpaddq 0x00(%r11),$H0,$H0 # add hash value + vpaddq 0x10(%r11),$H1,$H1 + vpaddq 0x20(%r11),$H2,$H2 + vpaddq 0x30(%r11),$H3,$H3 + vpaddq 0x40(%r11),$H4,$H4 + + lea 16*2($inp),%rax + lea 16*4($inp),$inp + sub \$64,$len + cmovc %rax,$inp + + ################################################################ + # Now we accumulate (inp[0:1]+hash)*r^4 + ################################################################ + # d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4 + # d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4 + # d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4 + # d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4 + # d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4 + + vpmuludq $H0,$T4,$T0 # h0*r0 + vpmuludq $H1,$T4,$T1 # h1*r0 + vpaddq $T0,$D0,$D0 + vpaddq $T1,$D1,$D1 + vmovdqa -0x80(%r11),$T2 # r1^4 + vpmuludq $H2,$T4,$T0 # h2*r0 + vpmuludq $H3,$T4,$T1 # h3*r0 + vpaddq $T0,$D2,$D2 + vpaddq $T1,$D3,$D3 + vpmuludq $H4,$T4,$T4 # h4*r0 + vpmuludq -0x70(%r11),$H4,$T0 # h4*s1 + vpaddq $T4,$D4,$D4 + + vpaddq $T0,$D0,$D0 # d0 += h4*s1 + vpmuludq $H2,$T2,$T1 # h2*r1 + vpmuludq $H3,$T2,$T0 # h3*r1 + vpaddq $T1,$D3,$D3 # d3 += h2*r1 + vmovdqa -0x60(%r11),$T3 # r2^4 + vpaddq $T0,$D4,$D4 # d4 += h3*r1 + vpmuludq $H1,$T2,$T1 # h1*r1 + vpmuludq $H0,$T2,$T2 # h0*r1 + vpaddq $T1,$D2,$D2 # d2 += h1*r1 + vpaddq $T2,$D1,$D1 # d1 += h0*r1 + + vmovdqa -0x50(%r11),$T4 # s2^4 + vpmuludq $H2,$T3,$T0 # h2*r2 + vpmuludq $H1,$T3,$T1 # h1*r2 + vpaddq $T0,$D4,$D4 # d4 += h2*r2 + vpaddq $T1,$D3,$D3 # d3 += h1*r2 + vmovdqa -0x40(%r11),$T2 # r3^4 + vpmuludq $H0,$T3,$T3 # h0*r2 + vpmuludq $H4,$T4,$T0 # h4*s2 + vpaddq $T3,$D2,$D2 # d2 += h0*r2 + vpaddq $T0,$D1,$D1 # d1 += h4*s2 + vmovdqa -0x30(%r11),$T3 # s3^4 + vpmuludq $H3,$T4,$T4 # h3*s2 + vpmuludq $H1,$T2,$T1 # h1*r3 + vpaddq $T4,$D0,$D0 # d0 += h3*s2 + + vmovdqa -0x10(%r11),$T4 # s4^4 + vpaddq $T1,$D4,$D4 # d4 += h1*r3 + vpmuludq $H0,$T2,$T2 # h0*r3 + vpmuludq $H4,$T3,$T0 # h4*s3 + vpaddq $T2,$D3,$D3 # d3 += h0*r3 + vpaddq $T0,$D2,$D2 # d2 += h4*s3 + vmovdqu 16*2($inp),$T0 # load input + vpmuludq $H3,$T3,$T2 # h3*s3 + vpmuludq $H2,$T3,$T3 # h2*s3 + vpaddq $T2,$D1,$D1 # d1 += h3*s3 + vmovdqu 16*3($inp),$T1 # + vpaddq $T3,$D0,$D0 # d0 += h2*s3 + + vpmuludq $H2,$T4,$H2 # h2*s4 + vpmuludq $H3,$T4,$H3 # h3*s4 + vpsrldq \$6,$T0,$T2 # splat input + vpaddq $H2,$D1,$D1 # d1 += h2*s4 + vpmuludq $H4,$T4,$H4 # h4*s4 + vpsrldq \$6,$T1,$T3 # + vpaddq $H3,$D2,$H2 # h2 = d2 + h3*s4 + vpaddq $H4,$D3,$H3 # h3 = d3 + h4*s4 + vpmuludq -0x20(%r11),$H0,$H4 # h0*r4 + vpmuludq $H1,$T4,$H0 + vpunpckhqdq $T1,$T0,$T4 # 4 + vpaddq $H4,$D4,$H4 # h4 = d4 + h0*r4 + vpaddq $H0,$D0,$H0 # h0 = d0 + h1*s4 + + vpunpcklqdq $T1,$T0,$T0 # 0:1 + vpunpcklqdq $T3,$T2,$T3 # 2:3 + + #vpsrlq \$40,$T4,$T4 # 4 + vpsrldq \$`40/8`,$T4,$T4 # 4 + vpsrlq \$26,$T0,$T1 + vmovdqa 0x00(%rsp),$D4 # preload r0^2 + vpand $MASK,$T0,$T0 # 0 + vpsrlq \$4,$T3,$T2 + vpand $MASK,$T1,$T1 # 1 + vpand 0(%rcx),$T4,$T4 # .Lmask24 + vpsrlq \$30,$T3,$T3 + vpand $MASK,$T2,$T2 # 2 + vpand $MASK,$T3,$T3 # 3 + vpor 32(%rcx),$T4,$T4 # padbit, yes, always + + ################################################################ + # lazy reduction as discussed in "NEON crypto" by D.J. Bernstein + # and P. Schwabe + + vpsrlq \$26,$H3,$D3 + vpand $MASK,$H3,$H3 + vpaddq $D3,$H4,$H4 # h3 -> h4 + + vpsrlq \$26,$H0,$D0 + vpand $MASK,$H0,$H0 + vpaddq $D0,$D1,$H1 # h0 -> h1 + + vpsrlq \$26,$H4,$D0 + vpand $MASK,$H4,$H4 + + vpsrlq \$26,$H1,$D1 + vpand $MASK,$H1,$H1 + vpaddq $D1,$H2,$H2 # h1 -> h2 + + vpaddq $D0,$H0,$H0 + vpsllq \$2,$D0,$D0 + vpaddq $D0,$H0,$H0 # h4 -> h0 + + vpsrlq \$26,$H2,$D2 + vpand $MASK,$H2,$H2 + vpaddq $D2,$H3,$H3 # h2 -> h3 + + vpsrlq \$26,$H0,$D0 + vpand $MASK,$H0,$H0 + vpaddq $D0,$H1,$H1 # h0 -> h1 + + vpsrlq \$26,$H3,$D3 + vpand $MASK,$H3,$H3 + vpaddq $D3,$H4,$H4 # h3 -> h4 + + ja .Loop_avx + +.Lskip_loop_avx: + ################################################################ + # multiply (inp[0:1]+hash) or inp[2:3] by r^2:r^1 + + vpshufd \$0x10,$D4,$D4 # r0^n, xx12 -> x1x2 + add \$32,$len + jnz .Long_tail_avx + + vpaddq $H2,$T2,$T2 + vpaddq $H0,$T0,$T0 + vpaddq $H1,$T1,$T1 + vpaddq $H3,$T3,$T3 + vpaddq $H4,$T4,$T4 + +.Long_tail_avx: + vmovdqa $H2,0x20(%r11) + vmovdqa $H0,0x00(%r11) + vmovdqa $H1,0x10(%r11) + vmovdqa $H3,0x30(%r11) + vmovdqa $H4,0x40(%r11) + + # d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4 + # d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4 + # d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4 + # d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4 + # d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4 + + vpmuludq $T2,$D4,$D2 # d2 = h2*r0 + vpmuludq $T0,$D4,$D0 # d0 = h0*r0 + vpshufd \$0x10,`16*1-64`($ctx),$H2 # r1^n + vpmuludq $T1,$D4,$D1 # d1 = h1*r0 + vpmuludq $T3,$D4,$D3 # d3 = h3*r0 + vpmuludq $T4,$D4,$D4 # d4 = h4*r0 + + vpmuludq $T3,$H2,$H0 # h3*r1 + vpaddq $H0,$D4,$D4 # d4 += h3*r1 + vpshufd \$0x10,`16*2-64`($ctx),$H3 # s1^n + vpmuludq $T2,$H2,$H1 # h2*r1 + vpaddq $H1,$D3,$D3 # d3 += h2*r1 + vpshufd \$0x10,`16*3-64`($ctx),$H4 # r2^n + vpmuludq $T1,$H2,$H0 # h1*r1 + vpaddq $H0,$D2,$D2 # d2 += h1*r1 + vpmuludq $T0,$H2,$H2 # h0*r1 + vpaddq $H2,$D1,$D1 # d1 += h0*r1 + vpmuludq $T4,$H3,$H3 # h4*s1 + vpaddq $H3,$D0,$D0 # d0 += h4*s1 + + vpshufd \$0x10,`16*4-64`($ctx),$H2 # s2^n + vpmuludq $T2,$H4,$H1 # h2*r2 + vpaddq $H1,$D4,$D4 # d4 += h2*r2 + vpmuludq $T1,$H4,$H0 # h1*r2 + vpaddq $H0,$D3,$D3 # d3 += h1*r2 + vpshufd \$0x10,`16*5-64`($ctx),$H3 # r3^n + vpmuludq $T0,$H4,$H4 # h0*r2 + vpaddq $H4,$D2,$D2 # d2 += h0*r2 + vpmuludq $T4,$H2,$H1 # h4*s2 + vpaddq $H1,$D1,$D1 # d1 += h4*s2 + vpshufd \$0x10,`16*6-64`($ctx),$H4 # s3^n + vpmuludq $T3,$H2,$H2 # h3*s2 + vpaddq $H2,$D0,$D0 # d0 += h3*s2 + + vpmuludq $T1,$H3,$H0 # h1*r3 + vpaddq $H0,$D4,$D4 # d4 += h1*r3 + vpmuludq $T0,$H3,$H3 # h0*r3 + vpaddq $H3,$D3,$D3 # d3 += h0*r3 + vpshufd \$0x10,`16*7-64`($ctx),$H2 # r4^n + vpmuludq $T4,$H4,$H1 # h4*s3 + vpaddq $H1,$D2,$D2 # d2 += h4*s3 + vpshufd \$0x10,`16*8-64`($ctx),$H3 # s4^n + vpmuludq $T3,$H4,$H0 # h3*s3 + vpaddq $H0,$D1,$D1 # d1 += h3*s3 + vpmuludq $T2,$H4,$H4 # h2*s3 + vpaddq $H4,$D0,$D0 # d0 += h2*s3 + + vpmuludq $T0,$H2,$H2 # h0*r4 + vpaddq $H2,$D4,$D4 # h4 = d4 + h0*r4 + vpmuludq $T4,$H3,$H1 # h4*s4 + vpaddq $H1,$D3,$D3 # h3 = d3 + h4*s4 + vpmuludq $T3,$H3,$H0 # h3*s4 + vpaddq $H0,$D2,$D2 # h2 = d2 + h3*s4 + vpmuludq $T2,$H3,$H1 # h2*s4 + vpaddq $H1,$D1,$D1 # h1 = d1 + h2*s4 + vpmuludq $T1,$H3,$H3 # h1*s4 + vpaddq $H3,$D0,$D0 # h0 = d0 + h1*s4 + + jz .Lshort_tail_avx + + vmovdqu 16*0($inp),$H0 # load input + vmovdqu 16*1($inp),$H1 + + vpsrldq \$6,$H0,$H2 # splat input + vpsrldq \$6,$H1,$H3 + vpunpckhqdq $H1,$H0,$H4 # 4 + vpunpcklqdq $H1,$H0,$H0 # 0:1 + vpunpcklqdq $H3,$H2,$H3 # 2:3 + + vpsrlq \$40,$H4,$H4 # 4 + vpsrlq \$26,$H0,$H1 + vpand $MASK,$H0,$H0 # 0 + vpsrlq \$4,$H3,$H2 + vpand $MASK,$H1,$H1 # 1 + vpsrlq \$30,$H3,$H3 + vpand $MASK,$H2,$H2 # 2 + vpand $MASK,$H3,$H3 # 3 + vpor 32(%rcx),$H4,$H4 # padbit, yes, always + + vpshufd \$0x32,`16*0-64`($ctx),$T4 # r0^n, 34xx -> x3x4 + vpaddq 0x00(%r11),$H0,$H0 + vpaddq 0x10(%r11),$H1,$H1 + vpaddq 0x20(%r11),$H2,$H2 + vpaddq 0x30(%r11),$H3,$H3 + vpaddq 0x40(%r11),$H4,$H4 + + ################################################################ + # multiply (inp[0:1]+hash) by r^4:r^3 and accumulate + + vpmuludq $H0,$T4,$T0 # h0*r0 + vpaddq $T0,$D0,$D0 # d0 += h0*r0 + vpmuludq $H1,$T4,$T1 # h1*r0 + vpaddq $T1,$D1,$D1 # d1 += h1*r0 + vpmuludq $H2,$T4,$T0 # h2*r0 + vpaddq $T0,$D2,$D2 # d2 += h2*r0 + vpshufd \$0x32,`16*1-64`($ctx),$T2 # r1^n + vpmuludq $H3,$T4,$T1 # h3*r0 + vpaddq $T1,$D3,$D3 # d3 += h3*r0 + vpmuludq $H4,$T4,$T4 # h4*r0 + vpaddq $T4,$D4,$D4 # d4 += h4*r0 + + vpmuludq $H3,$T2,$T0 # h3*r1 + vpaddq $T0,$D4,$D4 # d4 += h3*r1 + vpshufd \$0x32,`16*2-64`($ctx),$T3 # s1 + vpmuludq $H2,$T2,$T1 # h2*r1 + vpaddq $T1,$D3,$D3 # d3 += h2*r1 + vpshufd \$0x32,`16*3-64`($ctx),$T4 # r2 + vpmuludq $H1,$T2,$T0 # h1*r1 + vpaddq $T0,$D2,$D2 # d2 += h1*r1 + vpmuludq $H0,$T2,$T2 # h0*r1 + vpaddq $T2,$D1,$D1 # d1 += h0*r1 + vpmuludq $H4,$T3,$T3 # h4*s1 + vpaddq $T3,$D0,$D0 # d0 += h4*s1 + + vpshufd \$0x32,`16*4-64`($ctx),$T2 # s2 + vpmuludq $H2,$T4,$T1 # h2*r2 + vpaddq $T1,$D4,$D4 # d4 += h2*r2 + vpmuludq $H1,$T4,$T0 # h1*r2 + vpaddq $T0,$D3,$D3 # d3 += h1*r2 + vpshufd \$0x32,`16*5-64`($ctx),$T3 # r3 + vpmuludq $H0,$T4,$T4 # h0*r2 + vpaddq $T4,$D2,$D2 # d2 += h0*r2 + vpmuludq $H4,$T2,$T1 # h4*s2 + vpaddq $T1,$D1,$D1 # d1 += h4*s2 + vpshufd \$0x32,`16*6-64`($ctx),$T4 # s3 + vpmuludq $H3,$T2,$T2 # h3*s2 + vpaddq $T2,$D0,$D0 # d0 += h3*s2 + + vpmuludq $H1,$T3,$T0 # h1*r3 + vpaddq $T0,$D4,$D4 # d4 += h1*r3 + vpmuludq $H0,$T3,$T3 # h0*r3 + vpaddq $T3,$D3,$D3 # d3 += h0*r3 + vpshufd \$0x32,`16*7-64`($ctx),$T2 # r4 + vpmuludq $H4,$T4,$T1 # h4*s3 + vpaddq $T1,$D2,$D2 # d2 += h4*s3 + vpshufd \$0x32,`16*8-64`($ctx),$T3 # s4 + vpmuludq $H3,$T4,$T0 # h3*s3 + vpaddq $T0,$D1,$D1 # d1 += h3*s3 + vpmuludq $H2,$T4,$T4 # h2*s3 + vpaddq $T4,$D0,$D0 # d0 += h2*s3 + + vpmuludq $H0,$T2,$T2 # h0*r4 + vpaddq $T2,$D4,$D4 # d4 += h0*r4 + vpmuludq $H4,$T3,$T1 # h4*s4 + vpaddq $T1,$D3,$D3 # d3 += h4*s4 + vpmuludq $H3,$T3,$T0 # h3*s4 + vpaddq $T0,$D2,$D2 # d2 += h3*s4 + vpmuludq $H2,$T3,$T1 # h2*s4 + vpaddq $T1,$D1,$D1 # d1 += h2*s4 + vpmuludq $H1,$T3,$T3 # h1*s4 + vpaddq $T3,$D0,$D0 # d0 += h1*s4 + +.Lshort_tail_avx: + ################################################################ + # horizontal addition + + vpsrldq \$8,$D4,$T4 + vpsrldq \$8,$D3,$T3 + vpsrldq \$8,$D1,$T1 + vpsrldq \$8,$D0,$T0 + vpsrldq \$8,$D2,$T2 + vpaddq $T3,$D3,$D3 + vpaddq $T4,$D4,$D4 + vpaddq $T0,$D0,$D0 + vpaddq $T1,$D1,$D1 + vpaddq $T2,$D2,$D2 + + ################################################################ + # lazy reduction + + vpsrlq \$26,$D3,$H3 + vpand $MASK,$D3,$D3 + vpaddq $H3,$D4,$D4 # h3 -> h4 + + vpsrlq \$26,$D0,$H0 + vpand $MASK,$D0,$D0 + vpaddq $H0,$D1,$D1 # h0 -> h1 + + vpsrlq \$26,$D4,$H4 + vpand $MASK,$D4,$D4 + + vpsrlq \$26,$D1,$H1 + vpand $MASK,$D1,$D1 + vpaddq $H1,$D2,$D2 # h1 -> h2 + + vpaddq $H4,$D0,$D0 + vpsllq \$2,$H4,$H4 + vpaddq $H4,$D0,$D0 # h4 -> h0 + + vpsrlq \$26,$D2,$H2 + vpand $MASK,$D2,$D2 + vpaddq $H2,$D3,$D3 # h2 -> h3 + + vpsrlq \$26,$D0,$H0 + vpand $MASK,$D0,$D0 + vpaddq $H0,$D1,$D1 # h0 -> h1 + + vpsrlq \$26,$D3,$H3 + vpand $MASK,$D3,$D3 + vpaddq $H3,$D4,$D4 # h3 -> h4 + + vmovd $D0,`4*0-48-64`($ctx) # save partially reduced + vmovd $D1,`4*1-48-64`($ctx) + vmovd $D2,`4*2-48-64`($ctx) + vmovd $D3,`4*3-48-64`($ctx) + vmovd $D4,`4*4-48-64`($ctx) +___ +$code.=<<___ if ($win64); + vmovdqa 0x50(%r11),%xmm6 + vmovdqa 0x60(%r11),%xmm7 + vmovdqa 0x70(%r11),%xmm8 + vmovdqa 0x80(%r11),%xmm9 + vmovdqa 0x90(%r11),%xmm10 + vmovdqa 0xa0(%r11),%xmm11 + vmovdqa 0xb0(%r11),%xmm12 + vmovdqa 0xc0(%r11),%xmm13 + vmovdqa 0xd0(%r11),%xmm14 + vmovdqa 0xe0(%r11),%xmm15 + lea 0xf8(%r11),%rsp +.Ldo_avx_epilogue: +___ +$code.=<<___ if (!$win64); + lea -8(%r10),%rsp +.cfi_def_cfa_register %rsp +___ +$code.=<<___; + vzeroupper + RET +.cfi_endproc +___ +&end_function("poly1305_blocks_avx"); + +&declare_function("poly1305_emit_avx", 32, 3); +$code.=<<___; + cmpl \$0,20($ctx) # is_base2_26? + je .Lemit + + mov 0($ctx),%eax # load hash value base 2^26 + mov 4($ctx),%ecx + mov 8($ctx),%r8d + mov 12($ctx),%r11d + mov 16($ctx),%r10d + + shl \$26,%rcx # base 2^26 -> base 2^64 + mov %r8,%r9 + shl \$52,%r8 + add %rcx,%rax + shr \$12,%r9 + add %rax,%r8 # h0 + adc \$0,%r9 + + shl \$14,%r11 + mov %r10,%rax + shr \$24,%r10 + add %r11,%r9 + shl \$40,%rax + add %rax,%r9 # h1 + adc \$0,%r10 # h2 + + mov %r10,%rax # could be partially reduced, so reduce + mov %r10,%rcx + and \$3,%r10 + shr \$2,%rax + and \$-4,%rcx + add %rcx,%rax + add %rax,%r8 + adc \$0,%r9 + adc \$0,%r10 + + mov %r8,%rax + add \$5,%r8 # compare to modulus + mov %r9,%rcx + adc \$0,%r9 + adc \$0,%r10 + shr \$2,%r10 # did 130-bit value overflow? + cmovnz %r8,%rax + cmovnz %r9,%rcx + + add 0($nonce),%rax # accumulate nonce + adc 8($nonce),%rcx + mov %rax,0($mac) # write result + mov %rcx,8($mac) + + RET +___ +&end_function("poly1305_emit_avx"); + +if ($avx>1) { + +my ($H0,$H1,$H2,$H3,$H4, $MASK, $T4,$T0,$T1,$T2,$T3, $D0,$D1,$D2,$D3,$D4) = + map("%ymm$_",(0..15)); +my $S4=$MASK; + +sub poly1305_blocks_avxN { + my ($avx512) = @_; + my $suffix = $avx512 ? "_avx512" : ""; +$code.=<<___; +.cfi_startproc + mov 20($ctx),%r8d # is_base2_26 + cmp \$128,$len + jae .Lblocks_avx2$suffix + test %r8d,%r8d + jz .Lblocks + +.Lblocks_avx2$suffix: + and \$-16,$len + jz .Lno_data_avx2$suffix + + vzeroupper + + test %r8d,%r8d + jz .Lbase2_64_avx2$suffix + + test \$63,$len + jz .Leven_avx2$suffix + + push %rbp +.cfi_push %rbp + mov %rsp,%rbp + push %rbx +.cfi_push %rbx + push %r12 +.cfi_push %r12 + push %r13 +.cfi_push %r13 + push %r14 +.cfi_push %r14 + push %r15 +.cfi_push %r15 +.Lblocks_avx2_body$suffix: + + mov $len,%r15 # reassign $len + + mov 0($ctx),$d1 # load hash value + mov 8($ctx),$d2 + mov 16($ctx),$h2#d + + mov 24($ctx),$r0 # load r + mov 32($ctx),$s1 + + ################################# base 2^26 -> base 2^64 + mov $d1#d,$h0#d + and \$`-1*(1<<31)`,$d1 + mov $d2,$r1 # borrow $r1 + mov $d2#d,$h1#d + and \$`-1*(1<<31)`,$d2 + + shr \$6,$d1 + shl \$52,$r1 + add $d1,$h0 + shr \$12,$h1 + shr \$18,$d2 + add $r1,$h0 + adc $d2,$h1 + + mov $h2,$d1 + shl \$40,$d1 + shr \$24,$h2 + add $d1,$h1 + adc \$0,$h2 # can be partially reduced... + + mov \$-4,$d2 # ... so reduce + mov $h2,$d1 + and $h2,$d2 + shr \$2,$d1 + and \$3,$h2 + add $d2,$d1 # =*5 + add $d1,$h0 + adc \$0,$h1 + adc \$0,$h2 + + mov $s1,$r1 + mov $s1,%rax + shr \$2,$s1 + add $r1,$s1 # s1 = r1 + (r1 >> 2) + +.Lbase2_26_pre_avx2$suffix: + add 0($inp),$h0 # accumulate input + adc 8($inp),$h1 + lea 16($inp),$inp + adc $padbit,$h2 + sub \$16,%r15 + + call __poly1305_block + mov $r1,%rax + + test \$63,%r15 + jnz .Lbase2_26_pre_avx2$suffix + + test $padbit,$padbit # if $padbit is zero, + jz .Lstore_base2_64_avx2$suffix # store hash in base 2^64 format + + ################################# base 2^64 -> base 2^26 + mov $h0,%rax + mov $h0,%rdx + shr \$52,$h0 + mov $h1,$r0 + mov $h1,$r1 + shr \$26,%rdx + and \$0x3ffffff,%rax # h[0] + shl \$12,$r0 + and \$0x3ffffff,%rdx # h[1] + shr \$14,$h1 + or $r0,$h0 + shl \$24,$h2 + and \$0x3ffffff,$h0 # h[2] + shr \$40,$r1 + and \$0x3ffffff,$h1 # h[3] + or $r1,$h2 # h[4] + + test %r15,%r15 + jz .Lstore_base2_26_avx2$suffix + + vmovd %rax#d,%x#$H0 + vmovd %rdx#d,%x#$H1 + vmovd $h0#d,%x#$H2 + vmovd $h1#d,%x#$H3 + vmovd $h2#d,%x#$H4 + jmp .Lproceed_avx2$suffix + +.align 32 +.Lstore_base2_64_avx2$suffix: + mov $h0,0($ctx) + mov $h1,8($ctx) + mov $h2,16($ctx) # note that is_base2_26 is zeroed + jmp .Ldone_avx2$suffix + +.align 16 +.Lstore_base2_26_avx2$suffix: + mov %rax#d,0($ctx) # store hash value base 2^26 + mov %rdx#d,4($ctx) + mov $h0#d,8($ctx) + mov $h1#d,12($ctx) + mov $h2#d,16($ctx) +.align 16 +.Ldone_avx2$suffix: + pop %r15 +.cfi_restore %r15 + pop %r14 +.cfi_restore %r14 + pop %r13 +.cfi_restore %r13 + pop %r12 +.cfi_restore %r12 + pop %rbx +.cfi_restore %rbx + pop %rbp +.cfi_restore %rbp +.Lno_data_avx2$suffix: +.Lblocks_avx2_epilogue$suffix: + RET +.cfi_endproc + +.align 32 +.Lbase2_64_avx2$suffix: +.cfi_startproc + push %rbp +.cfi_push %rbp + mov %rsp,%rbp + push %rbx +.cfi_push %rbx + push %r12 +.cfi_push %r12 + push %r13 +.cfi_push %r13 + push %r14 +.cfi_push %r14 + push %r15 +.cfi_push %r15 +.Lbase2_64_avx2_body$suffix: + + mov $len,%r15 # reassign $len + + mov 24($ctx),$r0 # load r + mov 32($ctx),$s1 + + mov 0($ctx),$h0 # load hash value + mov 8($ctx),$h1 + mov 16($ctx),$h2#d + + mov $s1,$r1 + mov $s1,%rax + shr \$2,$s1 + add $r1,$s1 # s1 = r1 + (r1 >> 2) + + test \$63,$len + jz .Linit_avx2$suffix + +.Lbase2_64_pre_avx2$suffix: + add 0($inp),$h0 # accumulate input + adc 8($inp),$h1 + lea 16($inp),$inp + adc $padbit,$h2 + sub \$16,%r15 + + call __poly1305_block + mov $r1,%rax + + test \$63,%r15 + jnz .Lbase2_64_pre_avx2$suffix + +.Linit_avx2$suffix: + ################################# base 2^64 -> base 2^26 + mov $h0,%rax + mov $h0,%rdx + shr \$52,$h0 + mov $h1,$d1 + mov $h1,$d2 + shr \$26,%rdx + and \$0x3ffffff,%rax # h[0] + shl \$12,$d1 + and \$0x3ffffff,%rdx # h[1] + shr \$14,$h1 + or $d1,$h0 + shl \$24,$h2 + and \$0x3ffffff,$h0 # h[2] + shr \$40,$d2 + and \$0x3ffffff,$h1 # h[3] + or $d2,$h2 # h[4] + + vmovd %rax#d,%x#$H0 + vmovd %rdx#d,%x#$H1 + vmovd $h0#d,%x#$H2 + vmovd $h1#d,%x#$H3 + vmovd $h2#d,%x#$H4 + movl \$1,20($ctx) # set is_base2_26 + + call __poly1305_init_avx + +.Lproceed_avx2$suffix: + mov %r15,$len # restore $len +___ +$code.=<<___ if (!$kernel); + mov OPENSSL_ia32cap_P+8(%rip),%r9d + mov \$`(1<<31|1<<30|1<<16)`,%r11d +___ +$code.=<<___; + pop %r15 +.cfi_restore %r15 + pop %r14 +.cfi_restore %r14 + pop %r13 +.cfi_restore %r13 + pop %r12 +.cfi_restore %r12 + pop %rbx +.cfi_restore %rbx + pop %rbp +.cfi_restore %rbp +.Lbase2_64_avx2_epilogue$suffix: + jmp .Ldo_avx2$suffix +.cfi_endproc + +.align 32 +.Leven_avx2$suffix: +.cfi_startproc +___ +$code.=<<___ if (!$kernel); + mov OPENSSL_ia32cap_P+8(%rip),%r9d +___ +$code.=<<___; + vmovd 4*0($ctx),%x#$H0 # load hash value base 2^26 + vmovd 4*1($ctx),%x#$H1 + vmovd 4*2($ctx),%x#$H2 + vmovd 4*3($ctx),%x#$H3 + vmovd 4*4($ctx),%x#$H4 + +.Ldo_avx2$suffix: +___ +$code.=<<___ if (!$kernel && $avx>2); + cmp \$512,$len + jb .Lskip_avx512 + and %r11d,%r9d + test \$`1<<16`,%r9d # check for AVX512F + jnz .Lblocks_avx512 +.Lskip_avx512$suffix: +___ +$code.=<<___ if ($avx > 2 && $avx512 && $kernel); + cmp \$512,$len + jae .Lblocks_avx512 +___ +$code.=<<___ if (!$win64); + lea 8(%rsp),%r10 +.cfi_def_cfa_register %r10 + sub \$0x128,%rsp +___ +$code.=<<___ if ($win64); + lea 8(%rsp),%r10 + sub \$0x1c8,%rsp + vmovdqa %xmm6,-0xb0(%r10) + vmovdqa %xmm7,-0xa0(%r10) + vmovdqa %xmm8,-0x90(%r10) + vmovdqa %xmm9,-0x80(%r10) + vmovdqa %xmm10,-0x70(%r10) + vmovdqa %xmm11,-0x60(%r10) + vmovdqa %xmm12,-0x50(%r10) + vmovdqa %xmm13,-0x40(%r10) + vmovdqa %xmm14,-0x30(%r10) + vmovdqa %xmm15,-0x20(%r10) +.Ldo_avx2_body$suffix: +___ +$code.=<<___; + lea .Lconst(%rip),%rcx + lea 48+64($ctx),$ctx # size optimization + vmovdqa 96(%rcx),$T0 # .Lpermd_avx2 + + # expand and copy pre-calculated table to stack + vmovdqu `16*0-64`($ctx),%x#$T2 + and \$-512,%rsp + vmovdqu `16*1-64`($ctx),%x#$T3 + vmovdqu `16*2-64`($ctx),%x#$T4 + vmovdqu `16*3-64`($ctx),%x#$D0 + vmovdqu `16*4-64`($ctx),%x#$D1 + vmovdqu `16*5-64`($ctx),%x#$D2 + lea 0x90(%rsp),%rax # size optimization + vmovdqu `16*6-64`($ctx),%x#$D3 + vpermd $T2,$T0,$T2 # 00003412 -> 14243444 + vmovdqu `16*7-64`($ctx),%x#$D4 + vpermd $T3,$T0,$T3 + vmovdqu `16*8-64`($ctx),%x#$MASK + vpermd $T4,$T0,$T4 + vmovdqa $T2,0x00(%rsp) + vpermd $D0,$T0,$D0 + vmovdqa $T3,0x20-0x90(%rax) + vpermd $D1,$T0,$D1 + vmovdqa $T4,0x40-0x90(%rax) + vpermd $D2,$T0,$D2 + vmovdqa $D0,0x60-0x90(%rax) + vpermd $D3,$T0,$D3 + vmovdqa $D1,0x80-0x90(%rax) + vpermd $D4,$T0,$D4 + vmovdqa $D2,0xa0-0x90(%rax) + vpermd $MASK,$T0,$MASK + vmovdqa $D3,0xc0-0x90(%rax) + vmovdqa $D4,0xe0-0x90(%rax) + vmovdqa $MASK,0x100-0x90(%rax) + vmovdqa 64(%rcx),$MASK # .Lmask26 + + ################################################################ + # load input + vmovdqu 16*0($inp),%x#$T0 + vmovdqu 16*1($inp),%x#$T1 + vinserti128 \$1,16*2($inp),$T0,$T0 + vinserti128 \$1,16*3($inp),$T1,$T1 + lea 16*4($inp),$inp + + vpsrldq \$6,$T0,$T2 # splat input + vpsrldq \$6,$T1,$T3 + vpunpckhqdq $T1,$T0,$T4 # 4 + vpunpcklqdq $T3,$T2,$T2 # 2:3 + vpunpcklqdq $T1,$T0,$T0 # 0:1 + + vpsrlq \$30,$T2,$T3 + vpsrlq \$4,$T2,$T2 + vpsrlq \$26,$T0,$T1 + vpsrlq \$40,$T4,$T4 # 4 + vpand $MASK,$T2,$T2 # 2 + vpand $MASK,$T0,$T0 # 0 + vpand $MASK,$T1,$T1 # 1 + vpand $MASK,$T3,$T3 # 3 + vpor 32(%rcx),$T4,$T4 # padbit, yes, always + + vpaddq $H2,$T2,$H2 # accumulate input + sub \$64,$len + jz .Ltail_avx2$suffix + jmp .Loop_avx2$suffix + +.align 32 +.Loop_avx2$suffix: + ################################################################ + # ((inp[0]*r^4+inp[4])*r^4+inp[ 8])*r^4 + # ((inp[1]*r^4+inp[5])*r^4+inp[ 9])*r^3 + # ((inp[2]*r^4+inp[6])*r^4+inp[10])*r^2 + # ((inp[3]*r^4+inp[7])*r^4+inp[11])*r^1 + # \________/\__________/ + ################################################################ + #vpaddq $H2,$T2,$H2 # accumulate input + vpaddq $H0,$T0,$H0 + vmovdqa `32*0`(%rsp),$T0 # r0^4 + vpaddq $H1,$T1,$H1 + vmovdqa `32*1`(%rsp),$T1 # r1^4 + vpaddq $H3,$T3,$H3 + vmovdqa `32*3`(%rsp),$T2 # r2^4 + vpaddq $H4,$T4,$H4 + vmovdqa `32*6-0x90`(%rax),$T3 # s3^4 + vmovdqa `32*8-0x90`(%rax),$S4 # s4^4 + + # d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4 + # d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4 + # d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4 + # d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4 + # d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4 + # + # however, as h2 is "chronologically" first one available pull + # corresponding operations up, so it's + # + # d4 = h2*r2 + h4*r0 + h3*r1 + h1*r3 + h0*r4 + # d3 = h2*r1 + h3*r0 + h1*r2 + h0*r3 + h4*5*r4 + # d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4 + # d1 = h2*5*r4 + h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + # d0 = h2*5*r3 + h0*r0 + h4*5*r1 + h3*5*r2 + h1*5*r4 + + vpmuludq $H2,$T0,$D2 # d2 = h2*r0 + vpmuludq $H2,$T1,$D3 # d3 = h2*r1 + vpmuludq $H2,$T2,$D4 # d4 = h2*r2 + vpmuludq $H2,$T3,$D0 # d0 = h2*s3 + vpmuludq $H2,$S4,$D1 # d1 = h2*s4 + + vpmuludq $H0,$T1,$T4 # h0*r1 + vpmuludq $H1,$T1,$H2 # h1*r1, borrow $H2 as temp + vpaddq $T4,$D1,$D1 # d1 += h0*r1 + vpaddq $H2,$D2,$D2 # d2 += h1*r1 + vpmuludq $H3,$T1,$T4 # h3*r1 + vpmuludq `32*2`(%rsp),$H4,$H2 # h4*s1 + vpaddq $T4,$D4,$D4 # d4 += h3*r1 + vpaddq $H2,$D0,$D0 # d0 += h4*s1 + vmovdqa `32*4-0x90`(%rax),$T1 # s2 + + vpmuludq $H0,$T0,$T4 # h0*r0 + vpmuludq $H1,$T0,$H2 # h1*r0 + vpaddq $T4,$D0,$D0 # d0 += h0*r0 + vpaddq $H2,$D1,$D1 # d1 += h1*r0 + vpmuludq $H3,$T0,$T4 # h3*r0 + vpmuludq $H4,$T0,$H2 # h4*r0 + vmovdqu 16*0($inp),%x#$T0 # load input + vpaddq $T4,$D3,$D3 # d3 += h3*r0 + vpaddq $H2,$D4,$D4 # d4 += h4*r0 + vinserti128 \$1,16*2($inp),$T0,$T0 + + vpmuludq $H3,$T1,$T4 # h3*s2 + vpmuludq $H4,$T1,$H2 # h4*s2 + vmovdqu 16*1($inp),%x#$T1 + vpaddq $T4,$D0,$D0 # d0 += h3*s2 + vpaddq $H2,$D1,$D1 # d1 += h4*s2 + vmovdqa `32*5-0x90`(%rax),$H2 # r3 + vpmuludq $H1,$T2,$T4 # h1*r2 + vpmuludq $H0,$T2,$T2 # h0*r2 + vpaddq $T4,$D3,$D3 # d3 += h1*r2 + vpaddq $T2,$D2,$D2 # d2 += h0*r2 + vinserti128 \$1,16*3($inp),$T1,$T1 + lea 16*4($inp),$inp + + vpmuludq $H1,$H2,$T4 # h1*r3 + vpmuludq $H0,$H2,$H2 # h0*r3 + vpsrldq \$6,$T0,$T2 # splat input + vpaddq $T4,$D4,$D4 # d4 += h1*r3 + vpaddq $H2,$D3,$D3 # d3 += h0*r3 + vpmuludq $H3,$T3,$T4 # h3*s3 + vpmuludq $H4,$T3,$H2 # h4*s3 + vpsrldq \$6,$T1,$T3 + vpaddq $T4,$D1,$D1 # d1 += h3*s3 + vpaddq $H2,$D2,$D2 # d2 += h4*s3 + vpunpckhqdq $T1,$T0,$T4 # 4 + + vpmuludq $H3,$S4,$H3 # h3*s4 + vpmuludq $H4,$S4,$H4 # h4*s4 + vpunpcklqdq $T1,$T0,$T0 # 0:1 + vpaddq $H3,$D2,$H2 # h2 = d2 + h3*r4 + vpaddq $H4,$D3,$H3 # h3 = d3 + h4*r4 + vpunpcklqdq $T3,$T2,$T3 # 2:3 + vpmuludq `32*7-0x90`(%rax),$H0,$H4 # h0*r4 + vpmuludq $H1,$S4,$H0 # h1*s4 + vmovdqa 64(%rcx),$MASK # .Lmask26 + vpaddq $H4,$D4,$H4 # h4 = d4 + h0*r4 + vpaddq $H0,$D0,$H0 # h0 = d0 + h1*s4 + + ################################################################ + # lazy reduction (interleaved with tail of input splat) + + vpsrlq \$26,$H3,$D3 + vpand $MASK,$H3,$H3 + vpaddq $D3,$H4,$H4 # h3 -> h4 + + vpsrlq \$26,$H0,$D0 + vpand $MASK,$H0,$H0 + vpaddq $D0,$D1,$H1 # h0 -> h1 + + vpsrlq \$26,$H4,$D4 + vpand $MASK,$H4,$H4 + + vpsrlq \$4,$T3,$T2 + + vpsrlq \$26,$H1,$D1 + vpand $MASK,$H1,$H1 + vpaddq $D1,$H2,$H2 # h1 -> h2 + + vpaddq $D4,$H0,$H0 + vpsllq \$2,$D4,$D4 + vpaddq $D4,$H0,$H0 # h4 -> h0 + + vpand $MASK,$T2,$T2 # 2 + vpsrlq \$26,$T0,$T1 + + vpsrlq \$26,$H2,$D2 + vpand $MASK,$H2,$H2 + vpaddq $D2,$H3,$H3 # h2 -> h3 + + vpaddq $T2,$H2,$H2 # modulo-scheduled + vpsrlq \$30,$T3,$T3 + + vpsrlq \$26,$H0,$D0 + vpand $MASK,$H0,$H0 + vpaddq $D0,$H1,$H1 # h0 -> h1 + + vpsrlq \$40,$T4,$T4 # 4 + + vpsrlq \$26,$H3,$D3 + vpand $MASK,$H3,$H3 + vpaddq $D3,$H4,$H4 # h3 -> h4 + + vpand $MASK,$T0,$T0 # 0 + vpand $MASK,$T1,$T1 # 1 + vpand $MASK,$T3,$T3 # 3 + vpor 32(%rcx),$T4,$T4 # padbit, yes, always + + sub \$64,$len + jnz .Loop_avx2$suffix + + .byte 0x66,0x90 +.Ltail_avx2$suffix: + ################################################################ + # while above multiplications were by r^4 in all lanes, in last + # iteration we multiply least significant lane by r^4 and most + # significant one by r, so copy of above except that references + # to the precomputed table are displaced by 4... + + #vpaddq $H2,$T2,$H2 # accumulate input + vpaddq $H0,$T0,$H0 + vmovdqu `32*0+4`(%rsp),$T0 # r0^4 + vpaddq $H1,$T1,$H1 + vmovdqu `32*1+4`(%rsp),$T1 # r1^4 + vpaddq $H3,$T3,$H3 + vmovdqu `32*3+4`(%rsp),$T2 # r2^4 + vpaddq $H4,$T4,$H4 + vmovdqu `32*6+4-0x90`(%rax),$T3 # s3^4 + vmovdqu `32*8+4-0x90`(%rax),$S4 # s4^4 + + vpmuludq $H2,$T0,$D2 # d2 = h2*r0 + vpmuludq $H2,$T1,$D3 # d3 = h2*r1 + vpmuludq $H2,$T2,$D4 # d4 = h2*r2 + vpmuludq $H2,$T3,$D0 # d0 = h2*s3 + vpmuludq $H2,$S4,$D1 # d1 = h2*s4 + + vpmuludq $H0,$T1,$T4 # h0*r1 + vpmuludq $H1,$T1,$H2 # h1*r1 + vpaddq $T4,$D1,$D1 # d1 += h0*r1 + vpaddq $H2,$D2,$D2 # d2 += h1*r1 + vpmuludq $H3,$T1,$T4 # h3*r1 + vpmuludq `32*2+4`(%rsp),$H4,$H2 # h4*s1 + vpaddq $T4,$D4,$D4 # d4 += h3*r1 + vpaddq $H2,$D0,$D0 # d0 += h4*s1 + + vpmuludq $H0,$T0,$T4 # h0*r0 + vpmuludq $H1,$T0,$H2 # h1*r0 + vpaddq $T4,$D0,$D0 # d0 += h0*r0 + vmovdqu `32*4+4-0x90`(%rax),$T1 # s2 + vpaddq $H2,$D1,$D1 # d1 += h1*r0 + vpmuludq $H3,$T0,$T4 # h3*r0 + vpmuludq $H4,$T0,$H2 # h4*r0 + vpaddq $T4,$D3,$D3 # d3 += h3*r0 + vpaddq $H2,$D4,$D4 # d4 += h4*r0 + + vpmuludq $H3,$T1,$T4 # h3*s2 + vpmuludq $H4,$T1,$H2 # h4*s2 + vpaddq $T4,$D0,$D0 # d0 += h3*s2 + vpaddq $H2,$D1,$D1 # d1 += h4*s2 + vmovdqu `32*5+4-0x90`(%rax),$H2 # r3 + vpmuludq $H1,$T2,$T4 # h1*r2 + vpmuludq $H0,$T2,$T2 # h0*r2 + vpaddq $T4,$D3,$D3 # d3 += h1*r2 + vpaddq $T2,$D2,$D2 # d2 += h0*r2 + + vpmuludq $H1,$H2,$T4 # h1*r3 + vpmuludq $H0,$H2,$H2 # h0*r3 + vpaddq $T4,$D4,$D4 # d4 += h1*r3 + vpaddq $H2,$D3,$D3 # d3 += h0*r3 + vpmuludq $H3,$T3,$T4 # h3*s3 + vpmuludq $H4,$T3,$H2 # h4*s3 + vpaddq $T4,$D1,$D1 # d1 += h3*s3 + vpaddq $H2,$D2,$D2 # d2 += h4*s3 + + vpmuludq $H3,$S4,$H3 # h3*s4 + vpmuludq $H4,$S4,$H4 # h4*s4 + vpaddq $H3,$D2,$H2 # h2 = d2 + h3*r4 + vpaddq $H4,$D3,$H3 # h3 = d3 + h4*r4 + vpmuludq `32*7+4-0x90`(%rax),$H0,$H4 # h0*r4 + vpmuludq $H1,$S4,$H0 # h1*s4 + vmovdqa 64(%rcx),$MASK # .Lmask26 + vpaddq $H4,$D4,$H4 # h4 = d4 + h0*r4 + vpaddq $H0,$D0,$H0 # h0 = d0 + h1*s4 + + ################################################################ + # horizontal addition + + vpsrldq \$8,$D1,$T1 + vpsrldq \$8,$H2,$T2 + vpsrldq \$8,$H3,$T3 + vpsrldq \$8,$H4,$T4 + vpsrldq \$8,$H0,$T0 + vpaddq $T1,$D1,$D1 + vpaddq $T2,$H2,$H2 + vpaddq $T3,$H3,$H3 + vpaddq $T4,$H4,$H4 + vpaddq $T0,$H0,$H0 + + vpermq \$0x2,$H3,$T3 + vpermq \$0x2,$H4,$T4 + vpermq \$0x2,$H0,$T0 + vpermq \$0x2,$D1,$T1 + vpermq \$0x2,$H2,$T2 + vpaddq $T3,$H3,$H3 + vpaddq $T4,$H4,$H4 + vpaddq $T0,$H0,$H0 + vpaddq $T1,$D1,$D1 + vpaddq $T2,$H2,$H2 + + ################################################################ + # lazy reduction + + vpsrlq \$26,$H3,$D3 + vpand $MASK,$H3,$H3 + vpaddq $D3,$H4,$H4 # h3 -> h4 + + vpsrlq \$26,$H0,$D0 + vpand $MASK,$H0,$H0 + vpaddq $D0,$D1,$H1 # h0 -> h1 + + vpsrlq \$26,$H4,$D4 + vpand $MASK,$H4,$H4 + + vpsrlq \$26,$H1,$D1 + vpand $MASK,$H1,$H1 + vpaddq $D1,$H2,$H2 # h1 -> h2 + + vpaddq $D4,$H0,$H0 + vpsllq \$2,$D4,$D4 + vpaddq $D4,$H0,$H0 # h4 -> h0 + + vpsrlq \$26,$H2,$D2 + vpand $MASK,$H2,$H2 + vpaddq $D2,$H3,$H3 # h2 -> h3 + + vpsrlq \$26,$H0,$D0 + vpand $MASK,$H0,$H0 + vpaddq $D0,$H1,$H1 # h0 -> h1 + + vpsrlq \$26,$H3,$D3 + vpand $MASK,$H3,$H3 + vpaddq $D3,$H4,$H4 # h3 -> h4 + + vmovd %x#$H0,`4*0-48-64`($ctx)# save partially reduced + vmovd %x#$H1,`4*1-48-64`($ctx) + vmovd %x#$H2,`4*2-48-64`($ctx) + vmovd %x#$H3,`4*3-48-64`($ctx) + vmovd %x#$H4,`4*4-48-64`($ctx) +___ +$code.=<<___ if ($win64); + vmovdqa -0xb0(%r10),%xmm6 + vmovdqa -0xa0(%r10),%xmm7 + vmovdqa -0x90(%r10),%xmm8 + vmovdqa -0x80(%r10),%xmm9 + vmovdqa -0x70(%r10),%xmm10 + vmovdqa -0x60(%r10),%xmm11 + vmovdqa -0x50(%r10),%xmm12 + vmovdqa -0x40(%r10),%xmm13 + vmovdqa -0x30(%r10),%xmm14 + vmovdqa -0x20(%r10),%xmm15 + lea -8(%r10),%rsp +.Ldo_avx2_epilogue$suffix: +___ +$code.=<<___ if (!$win64); + lea -8(%r10),%rsp +.cfi_def_cfa_register %rsp +___ +$code.=<<___; + vzeroupper + RET +.cfi_endproc +___ +if($avx > 2 && $avx512) { +my ($R0,$R1,$R2,$R3,$R4, $S1,$S2,$S3,$S4) = map("%zmm$_",(16..24)); +my ($M0,$M1,$M2,$M3,$M4) = map("%zmm$_",(25..29)); +my $PADBIT="%zmm30"; + +map(s/%y/%z/,($T4,$T0,$T1,$T2,$T3)); # switch to %zmm domain +map(s/%y/%z/,($D0,$D1,$D2,$D3,$D4)); +map(s/%y/%z/,($H0,$H1,$H2,$H3,$H4)); +map(s/%y/%z/,($MASK)); + +$code.=<<___; +.cfi_startproc +.Lblocks_avx512: + mov \$15,%eax + kmovw %eax,%k2 +___ +$code.=<<___ if (!$win64); + lea 8(%rsp),%r10 +.cfi_def_cfa_register %r10 + sub \$0x128,%rsp +___ +$code.=<<___ if ($win64); + lea 8(%rsp),%r10 + sub \$0x1c8,%rsp + vmovdqa %xmm6,-0xb0(%r10) + vmovdqa %xmm7,-0xa0(%r10) + vmovdqa %xmm8,-0x90(%r10) + vmovdqa %xmm9,-0x80(%r10) + vmovdqa %xmm10,-0x70(%r10) + vmovdqa %xmm11,-0x60(%r10) + vmovdqa %xmm12,-0x50(%r10) + vmovdqa %xmm13,-0x40(%r10) + vmovdqa %xmm14,-0x30(%r10) + vmovdqa %xmm15,-0x20(%r10) +.Ldo_avx512_body: +___ +$code.=<<___; + lea .Lconst(%rip),%rcx + lea 48+64($ctx),$ctx # size optimization + vmovdqa 96(%rcx),%y#$T2 # .Lpermd_avx2 + + # expand pre-calculated table + vmovdqu `16*0-64`($ctx),%x#$D0 # will become expanded ${R0} + and \$-512,%rsp + vmovdqu `16*1-64`($ctx),%x#$D1 # will become ... ${R1} + mov \$0x20,%rax + vmovdqu `16*2-64`($ctx),%x#$T0 # ... ${S1} + vmovdqu `16*3-64`($ctx),%x#$D2 # ... ${R2} + vmovdqu `16*4-64`($ctx),%x#$T1 # ... ${S2} + vmovdqu `16*5-64`($ctx),%x#$D3 # ... ${R3} + vmovdqu `16*6-64`($ctx),%x#$T3 # ... ${S3} + vmovdqu `16*7-64`($ctx),%x#$D4 # ... ${R4} + vmovdqu `16*8-64`($ctx),%x#$T4 # ... ${S4} + vpermd $D0,$T2,$R0 # 00003412 -> 14243444 + vpbroadcastq 64(%rcx),$MASK # .Lmask26 + vpermd $D1,$T2,$R1 + vpermd $T0,$T2,$S1 + vpermd $D2,$T2,$R2 + vmovdqa64 $R0,0x00(%rsp){%k2} # save in case $len%128 != 0 + vpsrlq \$32,$R0,$T0 # 14243444 -> 01020304 + vpermd $T1,$T2,$S2 + vmovdqu64 $R1,0x00(%rsp,%rax){%k2} + vpsrlq \$32,$R1,$T1 + vpermd $D3,$T2,$R3 + vmovdqa64 $S1,0x40(%rsp){%k2} + vpermd $T3,$T2,$S3 + vpermd $D4,$T2,$R4 + vmovdqu64 $R2,0x40(%rsp,%rax){%k2} + vpermd $T4,$T2,$S4 + vmovdqa64 $S2,0x80(%rsp){%k2} + vmovdqu64 $R3,0x80(%rsp,%rax){%k2} + vmovdqa64 $S3,0xc0(%rsp){%k2} + vmovdqu64 $R4,0xc0(%rsp,%rax){%k2} + vmovdqa64 $S4,0x100(%rsp){%k2} + + ################################################################ + # calculate 5th through 8th powers of the key + # + # d0 = r0'*r0 + r1'*5*r4 + r2'*5*r3 + r3'*5*r2 + r4'*5*r1 + # d1 = r0'*r1 + r1'*r0 + r2'*5*r4 + r3'*5*r3 + r4'*5*r2 + # d2 = r0'*r2 + r1'*r1 + r2'*r0 + r3'*5*r4 + r4'*5*r3 + # d3 = r0'*r3 + r1'*r2 + r2'*r1 + r3'*r0 + r4'*5*r4 + # d4 = r0'*r4 + r1'*r3 + r2'*r2 + r3'*r1 + r4'*r0 + + vpmuludq $T0,$R0,$D0 # d0 = r0'*r0 + vpmuludq $T0,$R1,$D1 # d1 = r0'*r1 + vpmuludq $T0,$R2,$D2 # d2 = r0'*r2 + vpmuludq $T0,$R3,$D3 # d3 = r0'*r3 + vpmuludq $T0,$R4,$D4 # d4 = r0'*r4 + vpsrlq \$32,$R2,$T2 + + vpmuludq $T1,$S4,$M0 + vpmuludq $T1,$R0,$M1 + vpmuludq $T1,$R1,$M2 + vpmuludq $T1,$R2,$M3 + vpmuludq $T1,$R3,$M4 + vpsrlq \$32,$R3,$T3 + vpaddq $M0,$D0,$D0 # d0 += r1'*5*r4 + vpaddq $M1,$D1,$D1 # d1 += r1'*r0 + vpaddq $M2,$D2,$D2 # d2 += r1'*r1 + vpaddq $M3,$D3,$D3 # d3 += r1'*r2 + vpaddq $M4,$D4,$D4 # d4 += r1'*r3 + + vpmuludq $T2,$S3,$M0 + vpmuludq $T2,$S4,$M1 + vpmuludq $T2,$R1,$M3 + vpmuludq $T2,$R2,$M4 + vpmuludq $T2,$R0,$M2 + vpsrlq \$32,$R4,$T4 + vpaddq $M0,$D0,$D0 # d0 += r2'*5*r3 + vpaddq $M1,$D1,$D1 # d1 += r2'*5*r4 + vpaddq $M3,$D3,$D3 # d3 += r2'*r1 + vpaddq $M4,$D4,$D4 # d4 += r2'*r2 + vpaddq $M2,$D2,$D2 # d2 += r2'*r0 + + vpmuludq $T3,$S2,$M0 + vpmuludq $T3,$R0,$M3 + vpmuludq $T3,$R1,$M4 + vpmuludq $T3,$S3,$M1 + vpmuludq $T3,$S4,$M2 + vpaddq $M0,$D0,$D0 # d0 += r3'*5*r2 + vpaddq $M3,$D3,$D3 # d3 += r3'*r0 + vpaddq $M4,$D4,$D4 # d4 += r3'*r1 + vpaddq $M1,$D1,$D1 # d1 += r3'*5*r3 + vpaddq $M2,$D2,$D2 # d2 += r3'*5*r4 + + vpmuludq $T4,$S4,$M3 + vpmuludq $T4,$R0,$M4 + vpmuludq $T4,$S1,$M0 + vpmuludq $T4,$S2,$M1 + vpmuludq $T4,$S3,$M2 + vpaddq $M3,$D3,$D3 # d3 += r2'*5*r4 + vpaddq $M4,$D4,$D4 # d4 += r2'*r0 + vpaddq $M0,$D0,$D0 # d0 += r2'*5*r1 + vpaddq $M1,$D1,$D1 # d1 += r2'*5*r2 + vpaddq $M2,$D2,$D2 # d2 += r2'*5*r3 + + ################################################################ + # load input + vmovdqu64 16*0($inp),%z#$T3 + vmovdqu64 16*4($inp),%z#$T4 + lea 16*8($inp),$inp + + ################################################################ + # lazy reduction + + vpsrlq \$26,$D3,$M3 + vpandq $MASK,$D3,$D3 + vpaddq $M3,$D4,$D4 # d3 -> d4 + + vpsrlq \$26,$D0,$M0 + vpandq $MASK,$D0,$D0 + vpaddq $M0,$D1,$D1 # d0 -> d1 + + vpsrlq \$26,$D4,$M4 + vpandq $MASK,$D4,$D4 + + vpsrlq \$26,$D1,$M1 + vpandq $MASK,$D1,$D1 + vpaddq $M1,$D2,$D2 # d1 -> d2 + + vpaddq $M4,$D0,$D0 + vpsllq \$2,$M4,$M4 + vpaddq $M4,$D0,$D0 # d4 -> d0 + + vpsrlq \$26,$D2,$M2 + vpandq $MASK,$D2,$D2 + vpaddq $M2,$D3,$D3 # d2 -> d3 + + vpsrlq \$26,$D0,$M0 + vpandq $MASK,$D0,$D0 + vpaddq $M0,$D1,$D1 # d0 -> d1 + + vpsrlq \$26,$D3,$M3 + vpandq $MASK,$D3,$D3 + vpaddq $M3,$D4,$D4 # d3 -> d4 + + ################################################################ + # at this point we have 14243444 in $R0-$S4 and 05060708 in + # $D0-$D4, ... + + vpunpcklqdq $T4,$T3,$T0 # transpose input + vpunpckhqdq $T4,$T3,$T4 + + # ... since input 64-bit lanes are ordered as 73625140, we could + # "vperm" it to 76543210 (here and in each loop iteration), *or* + # we could just flow along, hence the goal for $R0-$S4 is + # 1858286838784888 ... + + vmovdqa32 128(%rcx),$M0 # .Lpermd_avx512: + mov \$0x7777,%eax + kmovw %eax,%k1 + + vpermd $R0,$M0,$R0 # 14243444 -> 1---2---3---4--- + vpermd $R1,$M0,$R1 + vpermd $R2,$M0,$R2 + vpermd $R3,$M0,$R3 + vpermd $R4,$M0,$R4 + + vpermd $D0,$M0,${R0}{%k1} # 05060708 -> 1858286838784888 + vpermd $D1,$M0,${R1}{%k1} + vpermd $D2,$M0,${R2}{%k1} + vpermd $D3,$M0,${R3}{%k1} + vpermd $D4,$M0,${R4}{%k1} + + vpslld \$2,$R1,$S1 # *5 + vpslld \$2,$R2,$S2 + vpslld \$2,$R3,$S3 + vpslld \$2,$R4,$S4 + vpaddd $R1,$S1,$S1 + vpaddd $R2,$S2,$S2 + vpaddd $R3,$S3,$S3 + vpaddd $R4,$S4,$S4 + + vpbroadcastq 32(%rcx),$PADBIT # .L129 + + vpsrlq \$52,$T0,$T2 # splat input + vpsllq \$12,$T4,$T3 + vporq $T3,$T2,$T2 + vpsrlq \$26,$T0,$T1 + vpsrlq \$14,$T4,$T3 + vpsrlq \$40,$T4,$T4 # 4 + vpandq $MASK,$T2,$T2 # 2 + vpandq $MASK,$T0,$T0 # 0 + #vpandq $MASK,$T1,$T1 # 1 + #vpandq $MASK,$T3,$T3 # 3 + #vporq $PADBIT,$T4,$T4 # padbit, yes, always + + vpaddq $H2,$T2,$H2 # accumulate input + sub \$192,$len + jbe .Ltail_avx512 + jmp .Loop_avx512 + +.align 32 +.Loop_avx512: + ################################################################ + # ((inp[0]*r^8+inp[ 8])*r^8+inp[16])*r^8 + # ((inp[1]*r^8+inp[ 9])*r^8+inp[17])*r^7 + # ((inp[2]*r^8+inp[10])*r^8+inp[18])*r^6 + # ((inp[3]*r^8+inp[11])*r^8+inp[19])*r^5 + # ((inp[4]*r^8+inp[12])*r^8+inp[20])*r^4 + # ((inp[5]*r^8+inp[13])*r^8+inp[21])*r^3 + # ((inp[6]*r^8+inp[14])*r^8+inp[22])*r^2 + # ((inp[7]*r^8+inp[15])*r^8+inp[23])*r^1 + # \________/\___________/ + ################################################################ + #vpaddq $H2,$T2,$H2 # accumulate input + + # d4 = h4*r0 + h3*r1 + h2*r2 + h1*r3 + h0*r4 + # d3 = h3*r0 + h2*r1 + h1*r2 + h0*r3 + h4*5*r4 + # d2 = h2*r0 + h1*r1 + h0*r2 + h4*5*r3 + h3*5*r4 + # d1 = h1*r0 + h0*r1 + h4*5*r2 + h3*5*r3 + h2*5*r4 + # d0 = h0*r0 + h4*5*r1 + h3*5*r2 + h2*5*r3 + h1*5*r4 + # + # however, as h2 is "chronologically" first one available pull + # corresponding operations up, so it's + # + # d3 = h2*r1 + h0*r3 + h1*r2 + h3*r0 + h4*5*r4 + # d4 = h2*r2 + h0*r4 + h1*r3 + h3*r1 + h4*r0 + # d0 = h2*5*r3 + h0*r0 + h1*5*r4 + h3*5*r2 + h4*5*r1 + # d1 = h2*5*r4 + h0*r1 + h1*r0 + h3*5*r3 + h4*5*r2 + # d2 = h2*r0 + h0*r2 + h1*r1 + h3*5*r4 + h4*5*r3 + + vpmuludq $H2,$R1,$D3 # d3 = h2*r1 + vpaddq $H0,$T0,$H0 + vpmuludq $H2,$R2,$D4 # d4 = h2*r2 + vpandq $MASK,$T1,$T1 # 1 + vpmuludq $H2,$S3,$D0 # d0 = h2*s3 + vpandq $MASK,$T3,$T3 # 3 + vpmuludq $H2,$S4,$D1 # d1 = h2*s4 + vporq $PADBIT,$T4,$T4 # padbit, yes, always + vpmuludq $H2,$R0,$D2 # d2 = h2*r0 + vpaddq $H1,$T1,$H1 # accumulate input + vpaddq $H3,$T3,$H3 + vpaddq $H4,$T4,$H4 + + vmovdqu64 16*0($inp),$T3 # load input + vmovdqu64 16*4($inp),$T4 + lea 16*8($inp),$inp + vpmuludq $H0,$R3,$M3 + vpmuludq $H0,$R4,$M4 + vpmuludq $H0,$R0,$M0 + vpmuludq $H0,$R1,$M1 + vpaddq $M3,$D3,$D3 # d3 += h0*r3 + vpaddq $M4,$D4,$D4 # d4 += h0*r4 + vpaddq $M0,$D0,$D0 # d0 += h0*r0 + vpaddq $M1,$D1,$D1 # d1 += h0*r1 + + vpmuludq $H1,$R2,$M3 + vpmuludq $H1,$R3,$M4 + vpmuludq $H1,$S4,$M0 + vpmuludq $H0,$R2,$M2 + vpaddq $M3,$D3,$D3 # d3 += h1*r2 + vpaddq $M4,$D4,$D4 # d4 += h1*r3 + vpaddq $M0,$D0,$D0 # d0 += h1*s4 + vpaddq $M2,$D2,$D2 # d2 += h0*r2 + + vpunpcklqdq $T4,$T3,$T0 # transpose input + vpunpckhqdq $T4,$T3,$T4 + + vpmuludq $H3,$R0,$M3 + vpmuludq $H3,$R1,$M4 + vpmuludq $H1,$R0,$M1 + vpmuludq $H1,$R1,$M2 + vpaddq $M3,$D3,$D3 # d3 += h3*r0 + vpaddq $M4,$D4,$D4 # d4 += h3*r1 + vpaddq $M1,$D1,$D1 # d1 += h1*r0 + vpaddq $M2,$D2,$D2 # d2 += h1*r1 + + vpmuludq $H4,$S4,$M3 + vpmuludq $H4,$R0,$M4 + vpmuludq $H3,$S2,$M0 + vpmuludq $H3,$S3,$M1 + vpaddq $M3,$D3,$D3 # d3 += h4*s4 + vpmuludq $H3,$S4,$M2 + vpaddq $M4,$D4,$D4 # d4 += h4*r0 + vpaddq $M0,$D0,$D0 # d0 += h3*s2 + vpaddq $M1,$D1,$D1 # d1 += h3*s3 + vpaddq $M2,$D2,$D2 # d2 += h3*s4 + + vpmuludq $H4,$S1,$M0 + vpmuludq $H4,$S2,$M1 + vpmuludq $H4,$S3,$M2 + vpaddq $M0,$D0,$H0 # h0 = d0 + h4*s1 + vpaddq $M1,$D1,$H1 # h1 = d2 + h4*s2 + vpaddq $M2,$D2,$H2 # h2 = d3 + h4*s3 + + ################################################################ + # lazy reduction (interleaved with input splat) + + vpsrlq \$52,$T0,$T2 # splat input + vpsllq \$12,$T4,$T3 + + vpsrlq \$26,$D3,$H3 + vpandq $MASK,$D3,$D3 + vpaddq $H3,$D4,$H4 # h3 -> h4 + + vporq $T3,$T2,$T2 + + vpsrlq \$26,$H0,$D0 + vpandq $MASK,$H0,$H0 + vpaddq $D0,$H1,$H1 # h0 -> h1 + + vpandq $MASK,$T2,$T2 # 2 + + vpsrlq \$26,$H4,$D4 + vpandq $MASK,$H4,$H4 + + vpsrlq \$26,$H1,$D1 + vpandq $MASK,$H1,$H1 + vpaddq $D1,$H2,$H2 # h1 -> h2 + + vpaddq $D4,$H0,$H0 + vpsllq \$2,$D4,$D4 + vpaddq $D4,$H0,$H0 # h4 -> h0 + + vpaddq $T2,$H2,$H2 # modulo-scheduled + vpsrlq \$26,$T0,$T1 + + vpsrlq \$26,$H2,$D2 + vpandq $MASK,$H2,$H2 + vpaddq $D2,$D3,$H3 # h2 -> h3 + + vpsrlq \$14,$T4,$T3 + + vpsrlq \$26,$H0,$D0 + vpandq $MASK,$H0,$H0 + vpaddq $D0,$H1,$H1 # h0 -> h1 + + vpsrlq \$40,$T4,$T4 # 4 + + vpsrlq \$26,$H3,$D3 + vpandq $MASK,$H3,$H3 + vpaddq $D3,$H4,$H4 # h3 -> h4 + + vpandq $MASK,$T0,$T0 # 0 + #vpandq $MASK,$T1,$T1 # 1 + #vpandq $MASK,$T3,$T3 # 3 + #vporq $PADBIT,$T4,$T4 # padbit, yes, always + + sub \$128,$len + ja .Loop_avx512 + +.Ltail_avx512: + ################################################################ + # while above multiplications were by r^8 in all lanes, in last + # iteration we multiply least significant lane by r^8 and most + # significant one by r, that's why table gets shifted... + + vpsrlq \$32,$R0,$R0 # 0105020603070408 + vpsrlq \$32,$R1,$R1 + vpsrlq \$32,$R2,$R2 + vpsrlq \$32,$S3,$S3 + vpsrlq \$32,$S4,$S4 + vpsrlq \$32,$R3,$R3 + vpsrlq \$32,$R4,$R4 + vpsrlq \$32,$S1,$S1 + vpsrlq \$32,$S2,$S2 + + ################################################################ + # load either next or last 64 byte of input + lea ($inp,$len),$inp + + #vpaddq $H2,$T2,$H2 # accumulate input + vpaddq $H0,$T0,$H0 + + vpmuludq $H2,$R1,$D3 # d3 = h2*r1 + vpmuludq $H2,$R2,$D4 # d4 = h2*r2 + vpmuludq $H2,$S3,$D0 # d0 = h2*s3 + vpandq $MASK,$T1,$T1 # 1 + vpmuludq $H2,$S4,$D1 # d1 = h2*s4 + vpandq $MASK,$T3,$T3 # 3 + vpmuludq $H2,$R0,$D2 # d2 = h2*r0 + vporq $PADBIT,$T4,$T4 # padbit, yes, always + vpaddq $H1,$T1,$H1 # accumulate input + vpaddq $H3,$T3,$H3 + vpaddq $H4,$T4,$H4 + + vmovdqu 16*0($inp),%x#$T0 + vpmuludq $H0,$R3,$M3 + vpmuludq $H0,$R4,$M4 + vpmuludq $H0,$R0,$M0 + vpmuludq $H0,$R1,$M1 + vpaddq $M3,$D3,$D3 # d3 += h0*r3 + vpaddq $M4,$D4,$D4 # d4 += h0*r4 + vpaddq $M0,$D0,$D0 # d0 += h0*r0 + vpaddq $M1,$D1,$D1 # d1 += h0*r1 + + vmovdqu 16*1($inp),%x#$T1 + vpmuludq $H1,$R2,$M3 + vpmuludq $H1,$R3,$M4 + vpmuludq $H1,$S4,$M0 + vpmuludq $H0,$R2,$M2 + vpaddq $M3,$D3,$D3 # d3 += h1*r2 + vpaddq $M4,$D4,$D4 # d4 += h1*r3 + vpaddq $M0,$D0,$D0 # d0 += h1*s4 + vpaddq $M2,$D2,$D2 # d2 += h0*r2 + + vinserti128 \$1,16*2($inp),%y#$T0,%y#$T0 + vpmuludq $H3,$R0,$M3 + vpmuludq $H3,$R1,$M4 + vpmuludq $H1,$R0,$M1 + vpmuludq $H1,$R1,$M2 + vpaddq $M3,$D3,$D3 # d3 += h3*r0 + vpaddq $M4,$D4,$D4 # d4 += h3*r1 + vpaddq $M1,$D1,$D1 # d1 += h1*r0 + vpaddq $M2,$D2,$D2 # d2 += h1*r1 + + vinserti128 \$1,16*3($inp),%y#$T1,%y#$T1 + vpmuludq $H4,$S4,$M3 + vpmuludq $H4,$R0,$M4 + vpmuludq $H3,$S2,$M0 + vpmuludq $H3,$S3,$M1 + vpmuludq $H3,$S4,$M2 + vpaddq $M3,$D3,$H3 # h3 = d3 + h4*s4 + vpaddq $M4,$D4,$D4 # d4 += h4*r0 + vpaddq $M0,$D0,$D0 # d0 += h3*s2 + vpaddq $M1,$D1,$D1 # d1 += h3*s3 + vpaddq $M2,$D2,$D2 # d2 += h3*s4 + + vpmuludq $H4,$S1,$M0 + vpmuludq $H4,$S2,$M1 + vpmuludq $H4,$S3,$M2 + vpaddq $M0,$D0,$H0 # h0 = d0 + h4*s1 + vpaddq $M1,$D1,$H1 # h1 = d2 + h4*s2 + vpaddq $M2,$D2,$H2 # h2 = d3 + h4*s3 + + ################################################################ + # horizontal addition + + mov \$1,%eax + vpermq \$0xb1,$H3,$D3 + vpermq \$0xb1,$D4,$H4 + vpermq \$0xb1,$H0,$D0 + vpermq \$0xb1,$H1,$D1 + vpermq \$0xb1,$H2,$D2 + vpaddq $D3,$H3,$H3 + vpaddq $D4,$H4,$H4 + vpaddq $D0,$H0,$H0 + vpaddq $D1,$H1,$H1 + vpaddq $D2,$H2,$H2 + + kmovw %eax,%k3 + vpermq \$0x2,$H3,$D3 + vpermq \$0x2,$H4,$D4 + vpermq \$0x2,$H0,$D0 + vpermq \$0x2,$H1,$D1 + vpermq \$0x2,$H2,$D2 + vpaddq $D3,$H3,$H3 + vpaddq $D4,$H4,$H4 + vpaddq $D0,$H0,$H0 + vpaddq $D1,$H1,$H1 + vpaddq $D2,$H2,$H2 + + vextracti64x4 \$0x1,$H3,%y#$D3 + vextracti64x4 \$0x1,$H4,%y#$D4 + vextracti64x4 \$0x1,$H0,%y#$D0 + vextracti64x4 \$0x1,$H1,%y#$D1 + vextracti64x4 \$0x1,$H2,%y#$D2 + vpaddq $D3,$H3,${H3}{%k3}{z} # keep single qword in case + vpaddq $D4,$H4,${H4}{%k3}{z} # it's passed to .Ltail_avx2 + vpaddq $D0,$H0,${H0}{%k3}{z} + vpaddq $D1,$H1,${H1}{%k3}{z} + vpaddq $D2,$H2,${H2}{%k3}{z} +___ +map(s/%z/%y/,($T0,$T1,$T2,$T3,$T4, $PADBIT)); +map(s/%z/%y/,($H0,$H1,$H2,$H3,$H4, $D0,$D1,$D2,$D3,$D4, $MASK)); +$code.=<<___; + ################################################################ + # lazy reduction (interleaved with input splat) + + vpsrlq \$26,$H3,$D3 + vpand $MASK,$H3,$H3 + vpsrldq \$6,$T0,$T2 # splat input + vpsrldq \$6,$T1,$T3 + vpunpckhqdq $T1,$T0,$T4 # 4 + vpaddq $D3,$H4,$H4 # h3 -> h4 + + vpsrlq \$26,$H0,$D0 + vpand $MASK,$H0,$H0 + vpunpcklqdq $T3,$T2,$T2 # 2:3 + vpunpcklqdq $T1,$T0,$T0 # 0:1 + vpaddq $D0,$H1,$H1 # h0 -> h1 + + vpsrlq \$26,$H4,$D4 + vpand $MASK,$H4,$H4 + + vpsrlq \$26,$H1,$D1 + vpand $MASK,$H1,$H1 + vpsrlq \$30,$T2,$T3 + vpsrlq \$4,$T2,$T2 + vpaddq $D1,$H2,$H2 # h1 -> h2 + + vpaddq $D4,$H0,$H0 + vpsllq \$2,$D4,$D4 + vpsrlq \$26,$T0,$T1 + vpsrlq \$40,$T4,$T4 # 4 + vpaddq $D4,$H0,$H0 # h4 -> h0 + + vpsrlq \$26,$H2,$D2 + vpand $MASK,$H2,$H2 + vpand $MASK,$T2,$T2 # 2 + vpand $MASK,$T0,$T0 # 0 + vpaddq $D2,$H3,$H3 # h2 -> h3 + + vpsrlq \$26,$H0,$D0 + vpand $MASK,$H0,$H0 + vpaddq $H2,$T2,$H2 # accumulate input for .Ltail_avx2 + vpand $MASK,$T1,$T1 # 1 + vpaddq $D0,$H1,$H1 # h0 -> h1 + + vpsrlq \$26,$H3,$D3 + vpand $MASK,$H3,$H3 + vpand $MASK,$T3,$T3 # 3 + vpor 32(%rcx),$T4,$T4 # padbit, yes, always + vpaddq $D3,$H4,$H4 # h3 -> h4 + + lea 0x90(%rsp),%rax # size optimization for .Ltail_avx2 + add \$64,$len + jnz .Ltail_avx2$suffix + + vpsubq $T2,$H2,$H2 # undo input accumulation + vmovd %x#$H0,`4*0-48-64`($ctx)# save partially reduced + vmovd %x#$H1,`4*1-48-64`($ctx) + vmovd %x#$H2,`4*2-48-64`($ctx) + vmovd %x#$H3,`4*3-48-64`($ctx) + vmovd %x#$H4,`4*4-48-64`($ctx) + vzeroall +___ +$code.=<<___ if ($win64); + movdqa -0xb0(%r10),%xmm6 + movdqa -0xa0(%r10),%xmm7 + movdqa -0x90(%r10),%xmm8 + movdqa -0x80(%r10),%xmm9 + movdqa -0x70(%r10),%xmm10 + movdqa -0x60(%r10),%xmm11 + movdqa -0x50(%r10),%xmm12 + movdqa -0x40(%r10),%xmm13 + movdqa -0x30(%r10),%xmm14 + movdqa -0x20(%r10),%xmm15 + lea -8(%r10),%rsp +.Ldo_avx512_epilogue: +___ +$code.=<<___ if (!$win64); + lea -8(%r10),%rsp +.cfi_def_cfa_register %rsp +___ +$code.=<<___; + RET +.cfi_endproc +___ + +} + +} + +&declare_function("poly1305_blocks_avx2", 32, 4); +poly1305_blocks_avxN(0); +&end_function("poly1305_blocks_avx2"); + +####################################################################### +if ($avx>2) { +# On entry we have input length divisible by 64. But since inner loop +# processes 128 bytes per iteration, cases when length is not divisible +# by 128 are handled by passing tail 64 bytes to .Ltail_avx2. For this +# reason stack layout is kept identical to poly1305_blocks_avx2. If not +# for this tail, we wouldn't have to even allocate stack frame... + +&declare_function("poly1305_blocks_avx512", 32, 4); +poly1305_blocks_avxN(1); +&end_function("poly1305_blocks_avx512"); + +if (!$kernel && $avx>3) { +######################################################################## +# VPMADD52 version using 2^44 radix. +# +# One can argue that base 2^52 would be more natural. Well, even though +# some operations would be more natural, one has to recognize couple of +# things. Base 2^52 doesn't provide advantage over base 2^44 if you look +# at amount of multiply-n-accumulate operations. Secondly, it makes it +# impossible to pre-compute multiples of 5 [referred to as s[]/sN in +# reference implementations], which means that more such operations +# would have to be performed in inner loop, which in turn makes critical +# path longer. In other words, even though base 2^44 reduction might +# look less elegant, overall critical path is actually shorter... + +######################################################################## +# Layout of opaque area is following. +# +# unsigned __int64 h[3]; # current hash value base 2^44 +# unsigned __int64 s[2]; # key value*20 base 2^44 +# unsigned __int64 r[3]; # key value base 2^44 +# struct { unsigned __int64 r^1, r^3, r^2, r^4; } R[4]; +# # r^n positions reflect +# # placement in register, not +# # memory, R[3] is R[1]*20 + +$code.=<<___; +.type poly1305_init_base2_44,\@function,3 +.align 32 +poly1305_init_base2_44: + xor %eax,%eax + mov %rax,0($ctx) # initialize hash value + mov %rax,8($ctx) + mov %rax,16($ctx) + +.Linit_base2_44: + lea poly1305_blocks_vpmadd52(%rip),%r10 + lea poly1305_emit_base2_44(%rip),%r11 + + mov \$0x0ffffffc0fffffff,%rax + mov \$0x0ffffffc0ffffffc,%rcx + and 0($inp),%rax + mov \$0x00000fffffffffff,%r8 + and 8($inp),%rcx + mov \$0x00000fffffffffff,%r9 + and %rax,%r8 + shrd \$44,%rcx,%rax + mov %r8,40($ctx) # r0 + and %r9,%rax + shr \$24,%rcx + mov %rax,48($ctx) # r1 + lea (%rax,%rax,4),%rax # *5 + mov %rcx,56($ctx) # r2 + shl \$2,%rax # magic <<2 + lea (%rcx,%rcx,4),%rcx # *5 + shl \$2,%rcx # magic <<2 + mov %rax,24($ctx) # s1 + mov %rcx,32($ctx) # s2 + movq \$-1,64($ctx) # write impossible value +___ +$code.=<<___ if ($flavour !~ /elf32/); + mov %r10,0(%rdx) + mov %r11,8(%rdx) +___ +$code.=<<___ if ($flavour =~ /elf32/); + mov %r10d,0(%rdx) + mov %r11d,4(%rdx) +___ +$code.=<<___; + mov \$1,%eax + RET +.size poly1305_init_base2_44,.-poly1305_init_base2_44 +___ +{ +my ($H0,$H1,$H2,$r2r1r0,$r1r0s2,$r0s2s1,$Dlo,$Dhi) = map("%ymm$_",(0..5,16,17)); +my ($T0,$inp_permd,$inp_shift,$PAD) = map("%ymm$_",(18..21)); +my ($reduc_mask,$reduc_rght,$reduc_left) = map("%ymm$_",(22..25)); + +$code.=<<___; +.type poly1305_blocks_vpmadd52,\@function,4 +.align 32 +poly1305_blocks_vpmadd52: + shr \$4,$len + jz .Lno_data_vpmadd52 # too short + + shl \$40,$padbit + mov 64($ctx),%r8 # peek on power of the key + + # if powers of the key are not calculated yet, process up to 3 + # blocks with this single-block subroutine, otherwise ensure that + # length is divisible by 2 blocks and pass the rest down to next + # subroutine... + + mov \$3,%rax + mov \$1,%r10 + cmp \$4,$len # is input long + cmovae %r10,%rax + test %r8,%r8 # is power value impossible? + cmovns %r10,%rax + + and $len,%rax # is input of favourable length? + jz .Lblocks_vpmadd52_4x + + sub %rax,$len + mov \$7,%r10d + mov \$1,%r11d + kmovw %r10d,%k7 + lea .L2_44_inp_permd(%rip),%r10 + kmovw %r11d,%k1 + + vmovq $padbit,%x#$PAD + vmovdqa64 0(%r10),$inp_permd # .L2_44_inp_permd + vmovdqa64 32(%r10),$inp_shift # .L2_44_inp_shift + vpermq \$0xcf,$PAD,$PAD + vmovdqa64 64(%r10),$reduc_mask # .L2_44_mask + + vmovdqu64 0($ctx),${Dlo}{%k7}{z} # load hash value + vmovdqu64 40($ctx),${r2r1r0}{%k7}{z} # load keys + vmovdqu64 32($ctx),${r1r0s2}{%k7}{z} + vmovdqu64 24($ctx),${r0s2s1}{%k7}{z} + + vmovdqa64 96(%r10),$reduc_rght # .L2_44_shift_rgt + vmovdqa64 128(%r10),$reduc_left # .L2_44_shift_lft + + jmp .Loop_vpmadd52 + +.align 32 +.Loop_vpmadd52: + vmovdqu32 0($inp),%x#$T0 # load input as ----3210 + lea 16($inp),$inp + + vpermd $T0,$inp_permd,$T0 # ----3210 -> --322110 + vpsrlvq $inp_shift,$T0,$T0 + vpandq $reduc_mask,$T0,$T0 + vporq $PAD,$T0,$T0 + + vpaddq $T0,$Dlo,$Dlo # accumulate input + + vpermq \$0,$Dlo,${H0}{%k7}{z} # smash hash value + vpermq \$0b01010101,$Dlo,${H1}{%k7}{z} + vpermq \$0b10101010,$Dlo,${H2}{%k7}{z} + + vpxord $Dlo,$Dlo,$Dlo + vpxord $Dhi,$Dhi,$Dhi + + vpmadd52luq $r2r1r0,$H0,$Dlo + vpmadd52huq $r2r1r0,$H0,$Dhi + + vpmadd52luq $r1r0s2,$H1,$Dlo + vpmadd52huq $r1r0s2,$H1,$Dhi + + vpmadd52luq $r0s2s1,$H2,$Dlo + vpmadd52huq $r0s2s1,$H2,$Dhi + + vpsrlvq $reduc_rght,$Dlo,$T0 # 0 in topmost qword + vpsllvq $reduc_left,$Dhi,$Dhi # 0 in topmost qword + vpandq $reduc_mask,$Dlo,$Dlo + + vpaddq $T0,$Dhi,$Dhi + + vpermq \$0b10010011,$Dhi,$Dhi # 0 in lowest qword + + vpaddq $Dhi,$Dlo,$Dlo # note topmost qword :-) + + vpsrlvq $reduc_rght,$Dlo,$T0 # 0 in topmost word + vpandq $reduc_mask,$Dlo,$Dlo + + vpermq \$0b10010011,$T0,$T0 + + vpaddq $T0,$Dlo,$Dlo + + vpermq \$0b10010011,$Dlo,${T0}{%k1}{z} + + vpaddq $T0,$Dlo,$Dlo + vpsllq \$2,$T0,$T0 + + vpaddq $T0,$Dlo,$Dlo + + dec %rax # len-=16 + jnz .Loop_vpmadd52 + + vmovdqu64 $Dlo,0($ctx){%k7} # store hash value + + test $len,$len + jnz .Lblocks_vpmadd52_4x + +.Lno_data_vpmadd52: + RET +.size poly1305_blocks_vpmadd52,.-poly1305_blocks_vpmadd52 +___ +} +{ +######################################################################## +# As implied by its name 4x subroutine processes 4 blocks in parallel +# (but handles even 4*n+2 blocks lengths). It takes up to 4th key power +# and is handled in 256-bit %ymm registers. + +my ($H0,$H1,$H2,$R0,$R1,$R2,$S1,$S2) = map("%ymm$_",(0..5,16,17)); +my ($D0lo,$D0hi,$D1lo,$D1hi,$D2lo,$D2hi) = map("%ymm$_",(18..23)); +my ($T0,$T1,$T2,$T3,$mask44,$mask42,$tmp,$PAD) = map("%ymm$_",(24..31)); + +$code.=<<___; +.type poly1305_blocks_vpmadd52_4x,\@function,4 +.align 32 +poly1305_blocks_vpmadd52_4x: + shr \$4,$len + jz .Lno_data_vpmadd52_4x # too short + + shl \$40,$padbit + mov 64($ctx),%r8 # peek on power of the key + +.Lblocks_vpmadd52_4x: + vpbroadcastq $padbit,$PAD + + vmovdqa64 .Lx_mask44(%rip),$mask44 + mov \$5,%eax + vmovdqa64 .Lx_mask42(%rip),$mask42 + kmovw %eax,%k1 # used in 2x path + + test %r8,%r8 # is power value impossible? + js .Linit_vpmadd52 # if it is, then init R[4] + + vmovq 0($ctx),%x#$H0 # load current hash value + vmovq 8($ctx),%x#$H1 + vmovq 16($ctx),%x#$H2 + + test \$3,$len # is length 4*n+2? + jnz .Lblocks_vpmadd52_2x_do + +.Lblocks_vpmadd52_4x_do: + vpbroadcastq 64($ctx),$R0 # load 4th power of the key + vpbroadcastq 96($ctx),$R1 + vpbroadcastq 128($ctx),$R2 + vpbroadcastq 160($ctx),$S1 + +.Lblocks_vpmadd52_4x_key_loaded: + vpsllq \$2,$R2,$S2 # S2 = R2*5*4 + vpaddq $R2,$S2,$S2 + vpsllq \$2,$S2,$S2 + + test \$7,$len # is len 8*n? + jz .Lblocks_vpmadd52_8x + + vmovdqu64 16*0($inp),$T2 # load data + vmovdqu64 16*2($inp),$T3 + lea 16*4($inp),$inp + + vpunpcklqdq $T3,$T2,$T1 # transpose data + vpunpckhqdq $T3,$T2,$T3 + + # at this point 64-bit lanes are ordered as 3-1-2-0 + + vpsrlq \$24,$T3,$T2 # splat the data + vporq $PAD,$T2,$T2 + vpaddq $T2,$H2,$H2 # accumulate input + vpandq $mask44,$T1,$T0 + vpsrlq \$44,$T1,$T1 + vpsllq \$20,$T3,$T3 + vporq $T3,$T1,$T1 + vpandq $mask44,$T1,$T1 + + sub \$4,$len + jz .Ltail_vpmadd52_4x + jmp .Loop_vpmadd52_4x + ud2 + +.align 32 +.Linit_vpmadd52: + vmovq 24($ctx),%x#$S1 # load key + vmovq 56($ctx),%x#$H2 + vmovq 32($ctx),%x#$S2 + vmovq 40($ctx),%x#$R0 + vmovq 48($ctx),%x#$R1 + + vmovdqa $R0,$H0 + vmovdqa $R1,$H1 + vmovdqa $H2,$R2 + + mov \$2,%eax + +.Lmul_init_vpmadd52: + vpxorq $D0lo,$D0lo,$D0lo + vpmadd52luq $H2,$S1,$D0lo + vpxorq $D0hi,$D0hi,$D0hi + vpmadd52huq $H2,$S1,$D0hi + vpxorq $D1lo,$D1lo,$D1lo + vpmadd52luq $H2,$S2,$D1lo + vpxorq $D1hi,$D1hi,$D1hi + vpmadd52huq $H2,$S2,$D1hi + vpxorq $D2lo,$D2lo,$D2lo + vpmadd52luq $H2,$R0,$D2lo + vpxorq $D2hi,$D2hi,$D2hi + vpmadd52huq $H2,$R0,$D2hi + + vpmadd52luq $H0,$R0,$D0lo + vpmadd52huq $H0,$R0,$D0hi + vpmadd52luq $H0,$R1,$D1lo + vpmadd52huq $H0,$R1,$D1hi + vpmadd52luq $H0,$R2,$D2lo + vpmadd52huq $H0,$R2,$D2hi + + vpmadd52luq $H1,$S2,$D0lo + vpmadd52huq $H1,$S2,$D0hi + vpmadd52luq $H1,$R0,$D1lo + vpmadd52huq $H1,$R0,$D1hi + vpmadd52luq $H1,$R1,$D2lo + vpmadd52huq $H1,$R1,$D2hi + + ################################################################ + # partial reduction + vpsrlq \$44,$D0lo,$tmp + vpsllq \$8,$D0hi,$D0hi + vpandq $mask44,$D0lo,$H0 + vpaddq $tmp,$D0hi,$D0hi + + vpaddq $D0hi,$D1lo,$D1lo + + vpsrlq \$44,$D1lo,$tmp + vpsllq \$8,$D1hi,$D1hi + vpandq $mask44,$D1lo,$H1 + vpaddq $tmp,$D1hi,$D1hi + + vpaddq $D1hi,$D2lo,$D2lo + + vpsrlq \$42,$D2lo,$tmp + vpsllq \$10,$D2hi,$D2hi + vpandq $mask42,$D2lo,$H2 + vpaddq $tmp,$D2hi,$D2hi + + vpaddq $D2hi,$H0,$H0 + vpsllq \$2,$D2hi,$D2hi + + vpaddq $D2hi,$H0,$H0 + + vpsrlq \$44,$H0,$tmp # additional step + vpandq $mask44,$H0,$H0 + + vpaddq $tmp,$H1,$H1 + + dec %eax + jz .Ldone_init_vpmadd52 + + vpunpcklqdq $R1,$H1,$R1 # 1,2 + vpbroadcastq %x#$H1,%x#$H1 # 2,2 + vpunpcklqdq $R2,$H2,$R2 + vpbroadcastq %x#$H2,%x#$H2 + vpunpcklqdq $R0,$H0,$R0 + vpbroadcastq %x#$H0,%x#$H0 + + vpsllq \$2,$R1,$S1 # S1 = R1*5*4 + vpsllq \$2,$R2,$S2 # S2 = R2*5*4 + vpaddq $R1,$S1,$S1 + vpaddq $R2,$S2,$S2 + vpsllq \$2,$S1,$S1 + vpsllq \$2,$S2,$S2 + + jmp .Lmul_init_vpmadd52 + ud2 + +.align 32 +.Ldone_init_vpmadd52: + vinserti128 \$1,%x#$R1,$H1,$R1 # 1,2,3,4 + vinserti128 \$1,%x#$R2,$H2,$R2 + vinserti128 \$1,%x#$R0,$H0,$R0 + + vpermq \$0b11011000,$R1,$R1 # 1,3,2,4 + vpermq \$0b11011000,$R2,$R2 + vpermq \$0b11011000,$R0,$R0 + + vpsllq \$2,$R1,$S1 # S1 = R1*5*4 + vpaddq $R1,$S1,$S1 + vpsllq \$2,$S1,$S1 + + vmovq 0($ctx),%x#$H0 # load current hash value + vmovq 8($ctx),%x#$H1 + vmovq 16($ctx),%x#$H2 + + test \$3,$len # is length 4*n+2? + jnz .Ldone_init_vpmadd52_2x + + vmovdqu64 $R0,64($ctx) # save key powers + vpbroadcastq %x#$R0,$R0 # broadcast 4th power + vmovdqu64 $R1,96($ctx) + vpbroadcastq %x#$R1,$R1 + vmovdqu64 $R2,128($ctx) + vpbroadcastq %x#$R2,$R2 + vmovdqu64 $S1,160($ctx) + vpbroadcastq %x#$S1,$S1 + + jmp .Lblocks_vpmadd52_4x_key_loaded + ud2 + +.align 32 +.Ldone_init_vpmadd52_2x: + vmovdqu64 $R0,64($ctx) # save key powers + vpsrldq \$8,$R0,$R0 # 0-1-0-2 + vmovdqu64 $R1,96($ctx) + vpsrldq \$8,$R1,$R1 + vmovdqu64 $R2,128($ctx) + vpsrldq \$8,$R2,$R2 + vmovdqu64 $S1,160($ctx) + vpsrldq \$8,$S1,$S1 + jmp .Lblocks_vpmadd52_2x_key_loaded + ud2 + +.align 32 +.Lblocks_vpmadd52_2x_do: + vmovdqu64 128+8($ctx),${R2}{%k1}{z}# load 2nd and 1st key powers + vmovdqu64 160+8($ctx),${S1}{%k1}{z} + vmovdqu64 64+8($ctx),${R0}{%k1}{z} + vmovdqu64 96+8($ctx),${R1}{%k1}{z} + +.Lblocks_vpmadd52_2x_key_loaded: + vmovdqu64 16*0($inp),$T2 # load data + vpxorq $T3,$T3,$T3 + lea 16*2($inp),$inp + + vpunpcklqdq $T3,$T2,$T1 # transpose data + vpunpckhqdq $T3,$T2,$T3 + + # at this point 64-bit lanes are ordered as x-1-x-0 + + vpsrlq \$24,$T3,$T2 # splat the data + vporq $PAD,$T2,$T2 + vpaddq $T2,$H2,$H2 # accumulate input + vpandq $mask44,$T1,$T0 + vpsrlq \$44,$T1,$T1 + vpsllq \$20,$T3,$T3 + vporq $T3,$T1,$T1 + vpandq $mask44,$T1,$T1 + + jmp .Ltail_vpmadd52_2x + ud2 + +.align 32 +.Loop_vpmadd52_4x: + #vpaddq $T2,$H2,$H2 # accumulate input + vpaddq $T0,$H0,$H0 + vpaddq $T1,$H1,$H1 + + vpxorq $D0lo,$D0lo,$D0lo + vpmadd52luq $H2,$S1,$D0lo + vpxorq $D0hi,$D0hi,$D0hi + vpmadd52huq $H2,$S1,$D0hi + vpxorq $D1lo,$D1lo,$D1lo + vpmadd52luq $H2,$S2,$D1lo + vpxorq $D1hi,$D1hi,$D1hi + vpmadd52huq $H2,$S2,$D1hi + vpxorq $D2lo,$D2lo,$D2lo + vpmadd52luq $H2,$R0,$D2lo + vpxorq $D2hi,$D2hi,$D2hi + vpmadd52huq $H2,$R0,$D2hi + + vmovdqu64 16*0($inp),$T2 # load data + vmovdqu64 16*2($inp),$T3 + lea 16*4($inp),$inp + vpmadd52luq $H0,$R0,$D0lo + vpmadd52huq $H0,$R0,$D0hi + vpmadd52luq $H0,$R1,$D1lo + vpmadd52huq $H0,$R1,$D1hi + vpmadd52luq $H0,$R2,$D2lo + vpmadd52huq $H0,$R2,$D2hi + + vpunpcklqdq $T3,$T2,$T1 # transpose data + vpunpckhqdq $T3,$T2,$T3 + vpmadd52luq $H1,$S2,$D0lo + vpmadd52huq $H1,$S2,$D0hi + vpmadd52luq $H1,$R0,$D1lo + vpmadd52huq $H1,$R0,$D1hi + vpmadd52luq $H1,$R1,$D2lo + vpmadd52huq $H1,$R1,$D2hi + + ################################################################ + # partial reduction (interleaved with data splat) + vpsrlq \$44,$D0lo,$tmp + vpsllq \$8,$D0hi,$D0hi + vpandq $mask44,$D0lo,$H0 + vpaddq $tmp,$D0hi,$D0hi + + vpsrlq \$24,$T3,$T2 + vporq $PAD,$T2,$T2 + vpaddq $D0hi,$D1lo,$D1lo + + vpsrlq \$44,$D1lo,$tmp + vpsllq \$8,$D1hi,$D1hi + vpandq $mask44,$D1lo,$H1 + vpaddq $tmp,$D1hi,$D1hi + + vpandq $mask44,$T1,$T0 + vpsrlq \$44,$T1,$T1 + vpsllq \$20,$T3,$T3 + vpaddq $D1hi,$D2lo,$D2lo + + vpsrlq \$42,$D2lo,$tmp + vpsllq \$10,$D2hi,$D2hi + vpandq $mask42,$D2lo,$H2 + vpaddq $tmp,$D2hi,$D2hi + + vpaddq $T2,$H2,$H2 # accumulate input + vpaddq $D2hi,$H0,$H0 + vpsllq \$2,$D2hi,$D2hi + + vpaddq $D2hi,$H0,$H0 + vporq $T3,$T1,$T1 + vpandq $mask44,$T1,$T1 + + vpsrlq \$44,$H0,$tmp # additional step + vpandq $mask44,$H0,$H0 + + vpaddq $tmp,$H1,$H1 + + sub \$4,$len # len-=64 + jnz .Loop_vpmadd52_4x + +.Ltail_vpmadd52_4x: + vmovdqu64 128($ctx),$R2 # load all key powers + vmovdqu64 160($ctx),$S1 + vmovdqu64 64($ctx),$R0 + vmovdqu64 96($ctx),$R1 + +.Ltail_vpmadd52_2x: + vpsllq \$2,$R2,$S2 # S2 = R2*5*4 + vpaddq $R2,$S2,$S2 + vpsllq \$2,$S2,$S2 + + #vpaddq $T2,$H2,$H2 # accumulate input + vpaddq $T0,$H0,$H0 + vpaddq $T1,$H1,$H1 + + vpxorq $D0lo,$D0lo,$D0lo + vpmadd52luq $H2,$S1,$D0lo + vpxorq $D0hi,$D0hi,$D0hi + vpmadd52huq $H2,$S1,$D0hi + vpxorq $D1lo,$D1lo,$D1lo + vpmadd52luq $H2,$S2,$D1lo + vpxorq $D1hi,$D1hi,$D1hi + vpmadd52huq $H2,$S2,$D1hi + vpxorq $D2lo,$D2lo,$D2lo + vpmadd52luq $H2,$R0,$D2lo + vpxorq $D2hi,$D2hi,$D2hi + vpmadd52huq $H2,$R0,$D2hi + + vpmadd52luq $H0,$R0,$D0lo + vpmadd52huq $H0,$R0,$D0hi + vpmadd52luq $H0,$R1,$D1lo + vpmadd52huq $H0,$R1,$D1hi + vpmadd52luq $H0,$R2,$D2lo + vpmadd52huq $H0,$R2,$D2hi + + vpmadd52luq $H1,$S2,$D0lo + vpmadd52huq $H1,$S2,$D0hi + vpmadd52luq $H1,$R0,$D1lo + vpmadd52huq $H1,$R0,$D1hi + vpmadd52luq $H1,$R1,$D2lo + vpmadd52huq $H1,$R1,$D2hi + + ################################################################ + # horizontal addition + + mov \$1,%eax + kmovw %eax,%k1 + vpsrldq \$8,$D0lo,$T0 + vpsrldq \$8,$D0hi,$H0 + vpsrldq \$8,$D1lo,$T1 + vpsrldq \$8,$D1hi,$H1 + vpaddq $T0,$D0lo,$D0lo + vpaddq $H0,$D0hi,$D0hi + vpsrldq \$8,$D2lo,$T2 + vpsrldq \$8,$D2hi,$H2 + vpaddq $T1,$D1lo,$D1lo + vpaddq $H1,$D1hi,$D1hi + vpermq \$0x2,$D0lo,$T0 + vpermq \$0x2,$D0hi,$H0 + vpaddq $T2,$D2lo,$D2lo + vpaddq $H2,$D2hi,$D2hi + + vpermq \$0x2,$D1lo,$T1 + vpermq \$0x2,$D1hi,$H1 + vpaddq $T0,$D0lo,${D0lo}{%k1}{z} + vpaddq $H0,$D0hi,${D0hi}{%k1}{z} + vpermq \$0x2,$D2lo,$T2 + vpermq \$0x2,$D2hi,$H2 + vpaddq $T1,$D1lo,${D1lo}{%k1}{z} + vpaddq $H1,$D1hi,${D1hi}{%k1}{z} + vpaddq $T2,$D2lo,${D2lo}{%k1}{z} + vpaddq $H2,$D2hi,${D2hi}{%k1}{z} + + ################################################################ + # partial reduction + vpsrlq \$44,$D0lo,$tmp + vpsllq \$8,$D0hi,$D0hi + vpandq $mask44,$D0lo,$H0 + vpaddq $tmp,$D0hi,$D0hi + + vpaddq $D0hi,$D1lo,$D1lo + + vpsrlq \$44,$D1lo,$tmp + vpsllq \$8,$D1hi,$D1hi + vpandq $mask44,$D1lo,$H1 + vpaddq $tmp,$D1hi,$D1hi + + vpaddq $D1hi,$D2lo,$D2lo + + vpsrlq \$42,$D2lo,$tmp + vpsllq \$10,$D2hi,$D2hi + vpandq $mask42,$D2lo,$H2 + vpaddq $tmp,$D2hi,$D2hi + + vpaddq $D2hi,$H0,$H0 + vpsllq \$2,$D2hi,$D2hi + + vpaddq $D2hi,$H0,$H0 + + vpsrlq \$44,$H0,$tmp # additional step + vpandq $mask44,$H0,$H0 + + vpaddq $tmp,$H1,$H1 + # at this point $len is + # either 4*n+2 or 0... + sub \$2,$len # len-=32 + ja .Lblocks_vpmadd52_4x_do + + vmovq %x#$H0,0($ctx) + vmovq %x#$H1,8($ctx) + vmovq %x#$H2,16($ctx) + vzeroall + +.Lno_data_vpmadd52_4x: + RET +.size poly1305_blocks_vpmadd52_4x,.-poly1305_blocks_vpmadd52_4x +___ +} +{ +######################################################################## +# As implied by its name 8x subroutine processes 8 blocks in parallel... +# This is intermediate version, as it's used only in cases when input +# length is either 8*n, 8*n+1 or 8*n+2... + +my ($H0,$H1,$H2,$R0,$R1,$R2,$S1,$S2) = map("%ymm$_",(0..5,16,17)); +my ($D0lo,$D0hi,$D1lo,$D1hi,$D2lo,$D2hi) = map("%ymm$_",(18..23)); +my ($T0,$T1,$T2,$T3,$mask44,$mask42,$tmp,$PAD) = map("%ymm$_",(24..31)); +my ($RR0,$RR1,$RR2,$SS1,$SS2) = map("%ymm$_",(6..10)); + +$code.=<<___; +.type poly1305_blocks_vpmadd52_8x,\@function,4 +.align 32 +poly1305_blocks_vpmadd52_8x: + shr \$4,$len + jz .Lno_data_vpmadd52_8x # too short + + shl \$40,$padbit + mov 64($ctx),%r8 # peek on power of the key + + vmovdqa64 .Lx_mask44(%rip),$mask44 + vmovdqa64 .Lx_mask42(%rip),$mask42 + + test %r8,%r8 # is power value impossible? + js .Linit_vpmadd52 # if it is, then init R[4] + + vmovq 0($ctx),%x#$H0 # load current hash value + vmovq 8($ctx),%x#$H1 + vmovq 16($ctx),%x#$H2 + +.Lblocks_vpmadd52_8x: + ################################################################ + # fist we calculate more key powers + + vmovdqu64 128($ctx),$R2 # load 1-3-2-4 powers + vmovdqu64 160($ctx),$S1 + vmovdqu64 64($ctx),$R0 + vmovdqu64 96($ctx),$R1 + + vpsllq \$2,$R2,$S2 # S2 = R2*5*4 + vpaddq $R2,$S2,$S2 + vpsllq \$2,$S2,$S2 + + vpbroadcastq %x#$R2,$RR2 # broadcast 4th power + vpbroadcastq %x#$R0,$RR0 + vpbroadcastq %x#$R1,$RR1 + + vpxorq $D0lo,$D0lo,$D0lo + vpmadd52luq $RR2,$S1,$D0lo + vpxorq $D0hi,$D0hi,$D0hi + vpmadd52huq $RR2,$S1,$D0hi + vpxorq $D1lo,$D1lo,$D1lo + vpmadd52luq $RR2,$S2,$D1lo + vpxorq $D1hi,$D1hi,$D1hi + vpmadd52huq $RR2,$S2,$D1hi + vpxorq $D2lo,$D2lo,$D2lo + vpmadd52luq $RR2,$R0,$D2lo + vpxorq $D2hi,$D2hi,$D2hi + vpmadd52huq $RR2,$R0,$D2hi + + vpmadd52luq $RR0,$R0,$D0lo + vpmadd52huq $RR0,$R0,$D0hi + vpmadd52luq $RR0,$R1,$D1lo + vpmadd52huq $RR0,$R1,$D1hi + vpmadd52luq $RR0,$R2,$D2lo + vpmadd52huq $RR0,$R2,$D2hi + + vpmadd52luq $RR1,$S2,$D0lo + vpmadd52huq $RR1,$S2,$D0hi + vpmadd52luq $RR1,$R0,$D1lo + vpmadd52huq $RR1,$R0,$D1hi + vpmadd52luq $RR1,$R1,$D2lo + vpmadd52huq $RR1,$R1,$D2hi + + ################################################################ + # partial reduction + vpsrlq \$44,$D0lo,$tmp + vpsllq \$8,$D0hi,$D0hi + vpandq $mask44,$D0lo,$RR0 + vpaddq $tmp,$D0hi,$D0hi + + vpaddq $D0hi,$D1lo,$D1lo + + vpsrlq \$44,$D1lo,$tmp + vpsllq \$8,$D1hi,$D1hi + vpandq $mask44,$D1lo,$RR1 + vpaddq $tmp,$D1hi,$D1hi + + vpaddq $D1hi,$D2lo,$D2lo + + vpsrlq \$42,$D2lo,$tmp + vpsllq \$10,$D2hi,$D2hi + vpandq $mask42,$D2lo,$RR2 + vpaddq $tmp,$D2hi,$D2hi + + vpaddq $D2hi,$RR0,$RR0 + vpsllq \$2,$D2hi,$D2hi + + vpaddq $D2hi,$RR0,$RR0 + + vpsrlq \$44,$RR0,$tmp # additional step + vpandq $mask44,$RR0,$RR0 + + vpaddq $tmp,$RR1,$RR1 + + ################################################################ + # At this point Rx holds 1324 powers, RRx - 5768, and the goal + # is 15263748, which reflects how data is loaded... + + vpunpcklqdq $R2,$RR2,$T2 # 3748 + vpunpckhqdq $R2,$RR2,$R2 # 1526 + vpunpcklqdq $R0,$RR0,$T0 + vpunpckhqdq $R0,$RR0,$R0 + vpunpcklqdq $R1,$RR1,$T1 + vpunpckhqdq $R1,$RR1,$R1 +___ +######## switch to %zmm +map(s/%y/%z/, $H0,$H1,$H2,$R0,$R1,$R2,$S1,$S2); +map(s/%y/%z/, $D0lo,$D0hi,$D1lo,$D1hi,$D2lo,$D2hi); +map(s/%y/%z/, $T0,$T1,$T2,$T3,$mask44,$mask42,$tmp,$PAD); +map(s/%y/%z/, $RR0,$RR1,$RR2,$SS1,$SS2); + +$code.=<<___; + vshufi64x2 \$0x44,$R2,$T2,$RR2 # 15263748 + vshufi64x2 \$0x44,$R0,$T0,$RR0 + vshufi64x2 \$0x44,$R1,$T1,$RR1 + + vmovdqu64 16*0($inp),$T2 # load data + vmovdqu64 16*4($inp),$T3 + lea 16*8($inp),$inp + + vpsllq \$2,$RR2,$SS2 # S2 = R2*5*4 + vpsllq \$2,$RR1,$SS1 # S1 = R1*5*4 + vpaddq $RR2,$SS2,$SS2 + vpaddq $RR1,$SS1,$SS1 + vpsllq \$2,$SS2,$SS2 + vpsllq \$2,$SS1,$SS1 + + vpbroadcastq $padbit,$PAD + vpbroadcastq %x#$mask44,$mask44 + vpbroadcastq %x#$mask42,$mask42 + + vpbroadcastq %x#$SS1,$S1 # broadcast 8th power + vpbroadcastq %x#$SS2,$S2 + vpbroadcastq %x#$RR0,$R0 + vpbroadcastq %x#$RR1,$R1 + vpbroadcastq %x#$RR2,$R2 + + vpunpcklqdq $T3,$T2,$T1 # transpose data + vpunpckhqdq $T3,$T2,$T3 + + # at this point 64-bit lanes are ordered as 73625140 + + vpsrlq \$24,$T3,$T2 # splat the data + vporq $PAD,$T2,$T2 + vpaddq $T2,$H2,$H2 # accumulate input + vpandq $mask44,$T1,$T0 + vpsrlq \$44,$T1,$T1 + vpsllq \$20,$T3,$T3 + vporq $T3,$T1,$T1 + vpandq $mask44,$T1,$T1 + + sub \$8,$len + jz .Ltail_vpmadd52_8x + jmp .Loop_vpmadd52_8x + +.align 32 +.Loop_vpmadd52_8x: + #vpaddq $T2,$H2,$H2 # accumulate input + vpaddq $T0,$H0,$H0 + vpaddq $T1,$H1,$H1 + + vpxorq $D0lo,$D0lo,$D0lo + vpmadd52luq $H2,$S1,$D0lo + vpxorq $D0hi,$D0hi,$D0hi + vpmadd52huq $H2,$S1,$D0hi + vpxorq $D1lo,$D1lo,$D1lo + vpmadd52luq $H2,$S2,$D1lo + vpxorq $D1hi,$D1hi,$D1hi + vpmadd52huq $H2,$S2,$D1hi + vpxorq $D2lo,$D2lo,$D2lo + vpmadd52luq $H2,$R0,$D2lo + vpxorq $D2hi,$D2hi,$D2hi + vpmadd52huq $H2,$R0,$D2hi + + vmovdqu64 16*0($inp),$T2 # load data + vmovdqu64 16*4($inp),$T3 + lea 16*8($inp),$inp + vpmadd52luq $H0,$R0,$D0lo + vpmadd52huq $H0,$R0,$D0hi + vpmadd52luq $H0,$R1,$D1lo + vpmadd52huq $H0,$R1,$D1hi + vpmadd52luq $H0,$R2,$D2lo + vpmadd52huq $H0,$R2,$D2hi + + vpunpcklqdq $T3,$T2,$T1 # transpose data + vpunpckhqdq $T3,$T2,$T3 + vpmadd52luq $H1,$S2,$D0lo + vpmadd52huq $H1,$S2,$D0hi + vpmadd52luq $H1,$R0,$D1lo + vpmadd52huq $H1,$R0,$D1hi + vpmadd52luq $H1,$R1,$D2lo + vpmadd52huq $H1,$R1,$D2hi + + ################################################################ + # partial reduction (interleaved with data splat) + vpsrlq \$44,$D0lo,$tmp + vpsllq \$8,$D0hi,$D0hi + vpandq $mask44,$D0lo,$H0 + vpaddq $tmp,$D0hi,$D0hi + + vpsrlq \$24,$T3,$T2 + vporq $PAD,$T2,$T2 + vpaddq $D0hi,$D1lo,$D1lo + + vpsrlq \$44,$D1lo,$tmp + vpsllq \$8,$D1hi,$D1hi + vpandq $mask44,$D1lo,$H1 + vpaddq $tmp,$D1hi,$D1hi + + vpandq $mask44,$T1,$T0 + vpsrlq \$44,$T1,$T1 + vpsllq \$20,$T3,$T3 + vpaddq $D1hi,$D2lo,$D2lo + + vpsrlq \$42,$D2lo,$tmp + vpsllq \$10,$D2hi,$D2hi + vpandq $mask42,$D2lo,$H2 + vpaddq $tmp,$D2hi,$D2hi + + vpaddq $T2,$H2,$H2 # accumulate input + vpaddq $D2hi,$H0,$H0 + vpsllq \$2,$D2hi,$D2hi + + vpaddq $D2hi,$H0,$H0 + vporq $T3,$T1,$T1 + vpandq $mask44,$T1,$T1 + + vpsrlq \$44,$H0,$tmp # additional step + vpandq $mask44,$H0,$H0 + + vpaddq $tmp,$H1,$H1 + + sub \$8,$len # len-=128 + jnz .Loop_vpmadd52_8x + +.Ltail_vpmadd52_8x: + #vpaddq $T2,$H2,$H2 # accumulate input + vpaddq $T0,$H0,$H0 + vpaddq $T1,$H1,$H1 + + vpxorq $D0lo,$D0lo,$D0lo + vpmadd52luq $H2,$SS1,$D0lo + vpxorq $D0hi,$D0hi,$D0hi + vpmadd52huq $H2,$SS1,$D0hi + vpxorq $D1lo,$D1lo,$D1lo + vpmadd52luq $H2,$SS2,$D1lo + vpxorq $D1hi,$D1hi,$D1hi + vpmadd52huq $H2,$SS2,$D1hi + vpxorq $D2lo,$D2lo,$D2lo + vpmadd52luq $H2,$RR0,$D2lo + vpxorq $D2hi,$D2hi,$D2hi + vpmadd52huq $H2,$RR0,$D2hi + + vpmadd52luq $H0,$RR0,$D0lo + vpmadd52huq $H0,$RR0,$D0hi + vpmadd52luq $H0,$RR1,$D1lo + vpmadd52huq $H0,$RR1,$D1hi + vpmadd52luq $H0,$RR2,$D2lo + vpmadd52huq $H0,$RR2,$D2hi + + vpmadd52luq $H1,$SS2,$D0lo + vpmadd52huq $H1,$SS2,$D0hi + vpmadd52luq $H1,$RR0,$D1lo + vpmadd52huq $H1,$RR0,$D1hi + vpmadd52luq $H1,$RR1,$D2lo + vpmadd52huq $H1,$RR1,$D2hi + + ################################################################ + # horizontal addition + + mov \$1,%eax + kmovw %eax,%k1 + vpsrldq \$8,$D0lo,$T0 + vpsrldq \$8,$D0hi,$H0 + vpsrldq \$8,$D1lo,$T1 + vpsrldq \$8,$D1hi,$H1 + vpaddq $T0,$D0lo,$D0lo + vpaddq $H0,$D0hi,$D0hi + vpsrldq \$8,$D2lo,$T2 + vpsrldq \$8,$D2hi,$H2 + vpaddq $T1,$D1lo,$D1lo + vpaddq $H1,$D1hi,$D1hi + vpermq \$0x2,$D0lo,$T0 + vpermq \$0x2,$D0hi,$H0 + vpaddq $T2,$D2lo,$D2lo + vpaddq $H2,$D2hi,$D2hi + + vpermq \$0x2,$D1lo,$T1 + vpermq \$0x2,$D1hi,$H1 + vpaddq $T0,$D0lo,$D0lo + vpaddq $H0,$D0hi,$D0hi + vpermq \$0x2,$D2lo,$T2 + vpermq \$0x2,$D2hi,$H2 + vpaddq $T1,$D1lo,$D1lo + vpaddq $H1,$D1hi,$D1hi + vextracti64x4 \$1,$D0lo,%y#$T0 + vextracti64x4 \$1,$D0hi,%y#$H0 + vpaddq $T2,$D2lo,$D2lo + vpaddq $H2,$D2hi,$D2hi + + vextracti64x4 \$1,$D1lo,%y#$T1 + vextracti64x4 \$1,$D1hi,%y#$H1 + vextracti64x4 \$1,$D2lo,%y#$T2 + vextracti64x4 \$1,$D2hi,%y#$H2 +___ +######## switch back to %ymm +map(s/%z/%y/, $H0,$H1,$H2,$R0,$R1,$R2,$S1,$S2); +map(s/%z/%y/, $D0lo,$D0hi,$D1lo,$D1hi,$D2lo,$D2hi); +map(s/%z/%y/, $T0,$T1,$T2,$T3,$mask44,$mask42,$tmp,$PAD); + +$code.=<<___; + vpaddq $T0,$D0lo,${D0lo}{%k1}{z} + vpaddq $H0,$D0hi,${D0hi}{%k1}{z} + vpaddq $T1,$D1lo,${D1lo}{%k1}{z} + vpaddq $H1,$D1hi,${D1hi}{%k1}{z} + vpaddq $T2,$D2lo,${D2lo}{%k1}{z} + vpaddq $H2,$D2hi,${D2hi}{%k1}{z} + + ################################################################ + # partial reduction + vpsrlq \$44,$D0lo,$tmp + vpsllq \$8,$D0hi,$D0hi + vpandq $mask44,$D0lo,$H0 + vpaddq $tmp,$D0hi,$D0hi + + vpaddq $D0hi,$D1lo,$D1lo + + vpsrlq \$44,$D1lo,$tmp + vpsllq \$8,$D1hi,$D1hi + vpandq $mask44,$D1lo,$H1 + vpaddq $tmp,$D1hi,$D1hi + + vpaddq $D1hi,$D2lo,$D2lo + + vpsrlq \$42,$D2lo,$tmp + vpsllq \$10,$D2hi,$D2hi + vpandq $mask42,$D2lo,$H2 + vpaddq $tmp,$D2hi,$D2hi + + vpaddq $D2hi,$H0,$H0 + vpsllq \$2,$D2hi,$D2hi + + vpaddq $D2hi,$H0,$H0 + + vpsrlq \$44,$H0,$tmp # additional step + vpandq $mask44,$H0,$H0 + + vpaddq $tmp,$H1,$H1 + + ################################################################ + + vmovq %x#$H0,0($ctx) + vmovq %x#$H1,8($ctx) + vmovq %x#$H2,16($ctx) + vzeroall + +.Lno_data_vpmadd52_8x: + RET +.size poly1305_blocks_vpmadd52_8x,.-poly1305_blocks_vpmadd52_8x +___ +} +$code.=<<___; +.type poly1305_emit_base2_44,\@function,3 +.align 32 +poly1305_emit_base2_44: + mov 0($ctx),%r8 # load hash value + mov 8($ctx),%r9 + mov 16($ctx),%r10 + + mov %r9,%rax + shr \$20,%r9 + shl \$44,%rax + mov %r10,%rcx + shr \$40,%r10 + shl \$24,%rcx + + add %rax,%r8 + adc %rcx,%r9 + adc \$0,%r10 + + mov %r8,%rax + add \$5,%r8 # compare to modulus + mov %r9,%rcx + adc \$0,%r9 + adc \$0,%r10 + shr \$2,%r10 # did 130-bit value overflow? + cmovnz %r8,%rax + cmovnz %r9,%rcx + + add 0($nonce),%rax # accumulate nonce + adc 8($nonce),%rcx + mov %rax,0($mac) # write result + mov %rcx,8($mac) + + RET +.size poly1305_emit_base2_44,.-poly1305_emit_base2_44 +___ +} } } +} + +if (!$kernel) +{ # chacha20-poly1305 helpers +my ($out,$inp,$otp,$len)=$win64 ? ("%rcx","%rdx","%r8", "%r9") : # Win64 order + ("%rdi","%rsi","%rdx","%rcx"); # Unix order +$code.=<<___; +.globl xor128_encrypt_n_pad +.type xor128_encrypt_n_pad,\@abi-omnipotent +.align 16 +xor128_encrypt_n_pad: + sub $otp,$inp + sub $otp,$out + mov $len,%r10 # put len aside + shr \$4,$len # len / 16 + jz .Ltail_enc + nop +.Loop_enc_xmm: + movdqu ($inp,$otp),%xmm0 + pxor ($otp),%xmm0 + movdqu %xmm0,($out,$otp) + movdqa %xmm0,($otp) + lea 16($otp),$otp + dec $len + jnz .Loop_enc_xmm + + and \$15,%r10 # len % 16 + jz .Ldone_enc + +.Ltail_enc: + mov \$16,$len + sub %r10,$len + xor %eax,%eax +.Loop_enc_byte: + mov ($inp,$otp),%al + xor ($otp),%al + mov %al,($out,$otp) + mov %al,($otp) + lea 1($otp),$otp + dec %r10 + jnz .Loop_enc_byte + + xor %eax,%eax +.Loop_enc_pad: + mov %al,($otp) + lea 1($otp),$otp + dec $len + jnz .Loop_enc_pad + +.Ldone_enc: + mov $otp,%rax + RET +.size xor128_encrypt_n_pad,.-xor128_encrypt_n_pad + +.globl xor128_decrypt_n_pad +.type xor128_decrypt_n_pad,\@abi-omnipotent +.align 16 +xor128_decrypt_n_pad: + sub $otp,$inp + sub $otp,$out + mov $len,%r10 # put len aside + shr \$4,$len # len / 16 + jz .Ltail_dec + nop +.Loop_dec_xmm: + movdqu ($inp,$otp),%xmm0 + movdqa ($otp),%xmm1 + pxor %xmm0,%xmm1 + movdqu %xmm1,($out,$otp) + movdqa %xmm0,($otp) + lea 16($otp),$otp + dec $len + jnz .Loop_dec_xmm + + pxor %xmm1,%xmm1 + and \$15,%r10 # len % 16 + jz .Ldone_dec + +.Ltail_dec: + mov \$16,$len + sub %r10,$len + xor %eax,%eax + xor %r11d,%r11d +.Loop_dec_byte: + mov ($inp,$otp),%r11b + mov ($otp),%al + xor %r11b,%al + mov %al,($out,$otp) + mov %r11b,($otp) + lea 1($otp),$otp + dec %r10 + jnz .Loop_dec_byte + + xor %eax,%eax +.Loop_dec_pad: + mov %al,($otp) + lea 1($otp),$otp + dec $len + jnz .Loop_dec_pad + +.Ldone_dec: + mov $otp,%rax + RET +.size xor128_decrypt_n_pad,.-xor128_decrypt_n_pad +___ +} + +# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, +# CONTEXT *context,DISPATCHER_CONTEXT *disp) +if ($win64) { +$rec="%rcx"; +$frame="%rdx"; +$context="%r8"; +$disp="%r9"; + +$code.=<<___; +.extern __imp_RtlVirtualUnwind +.type se_handler,\@abi-omnipotent +.align 16 +se_handler: + push %rsi + push %rdi + push %rbx + push %rbp + push %r12 + push %r13 + push %r14 + push %r15 + pushfq + sub \$64,%rsp + + mov 120($context),%rax # pull context->Rax + mov 248($context),%rbx # pull context->Rip + + mov 8($disp),%rsi # disp->ImageBase + mov 56($disp),%r11 # disp->HandlerData + + mov 0(%r11),%r10d # HandlerData[0] + lea (%rsi,%r10),%r10 # prologue label + cmp %r10,%rbx # context->Rip<.Lprologue + jb .Lcommon_seh_tail + + mov 152($context),%rax # pull context->Rsp + + mov 4(%r11),%r10d # HandlerData[1] + lea (%rsi,%r10),%r10 # epilogue label + cmp %r10,%rbx # context->Rip>=.Lepilogue + jae .Lcommon_seh_tail + + lea 48(%rax),%rax + + mov -8(%rax),%rbx + mov -16(%rax),%rbp + mov -24(%rax),%r12 + mov -32(%rax),%r13 + mov -40(%rax),%r14 + mov -48(%rax),%r15 + mov %rbx,144($context) # restore context->Rbx + mov %rbp,160($context) # restore context->Rbp + mov %r12,216($context) # restore context->R12 + mov %r13,224($context) # restore context->R13 + mov %r14,232($context) # restore context->R14 + mov %r15,240($context) # restore context->R14 + + jmp .Lcommon_seh_tail +.size se_handler,.-se_handler + +.type avx_handler,\@abi-omnipotent +.align 16 +avx_handler: + push %rsi + push %rdi + push %rbx + push %rbp + push %r12 + push %r13 + push %r14 + push %r15 + pushfq + sub \$64,%rsp + + mov 120($context),%rax # pull context->Rax + mov 248($context),%rbx # pull context->Rip + + mov 8($disp),%rsi # disp->ImageBase + mov 56($disp),%r11 # disp->HandlerData + + mov 0(%r11),%r10d # HandlerData[0] + lea (%rsi,%r10),%r10 # prologue label + cmp %r10,%rbx # context->Rip<prologue label + jb .Lcommon_seh_tail + + mov 152($context),%rax # pull context->Rsp + + mov 4(%r11),%r10d # HandlerData[1] + lea (%rsi,%r10),%r10 # epilogue label + cmp %r10,%rbx # context->Rip>=epilogue label + jae .Lcommon_seh_tail + + mov 208($context),%rax # pull context->R11 + + lea 0x50(%rax),%rsi + lea 0xf8(%rax),%rax + lea 512($context),%rdi # &context.Xmm6 + mov \$20,%ecx + .long 0xa548f3fc # cld; rep movsq + +.Lcommon_seh_tail: + mov 8(%rax),%rdi + mov 16(%rax),%rsi + mov %rax,152($context) # restore context->Rsp + mov %rsi,168($context) # restore context->Rsi + mov %rdi,176($context) # restore context->Rdi + + mov 40($disp),%rdi # disp->ContextRecord + mov $context,%rsi # context + mov \$154,%ecx # sizeof(CONTEXT) + .long 0xa548f3fc # cld; rep movsq + + mov $disp,%rsi + xor %ecx,%ecx # arg1, UNW_FLAG_NHANDLER + mov 8(%rsi),%rdx # arg2, disp->ImageBase + mov 0(%rsi),%r8 # arg3, disp->ControlPc + mov 16(%rsi),%r9 # arg4, disp->FunctionEntry + mov 40(%rsi),%r10 # disp->ContextRecord + lea 56(%rsi),%r11 # &disp->HandlerData + lea 24(%rsi),%r12 # &disp->EstablisherFrame + mov %r10,32(%rsp) # arg5 + mov %r11,40(%rsp) # arg6 + mov %r12,48(%rsp) # arg7 + mov %rcx,56(%rsp) # arg8, (NULL) + call *__imp_RtlVirtualUnwind(%rip) + + mov \$1,%eax # ExceptionContinueSearch + add \$64,%rsp + popfq + pop %r15 + pop %r14 + pop %r13 + pop %r12 + pop %rbp + pop %rbx + pop %rdi + pop %rsi + RET +.size avx_handler,.-avx_handler + +.section .pdata +.align 4 + .rva .LSEH_begin_poly1305_block_init_arch + .rva .LSEH_end_poly1305_block_init_arch + .rva .LSEH_info_poly1305_block_init_arch + + .rva .LSEH_begin_poly1305_blocks_x86_64 + .rva .LSEH_end_poly1305_blocks_x86_64 + .rva .LSEH_info_poly1305_blocks_x86_64 + + .rva .LSEH_begin_poly1305_emit_x86_64 + .rva .LSEH_end_poly1305_emit_x86_64 + .rva .LSEH_info_poly1305_emit_x86_64 +___ +$code.=<<___ if ($avx); + .rva .LSEH_begin_poly1305_blocks_avx + .rva .Lbase2_64_avx + .rva .LSEH_info_poly1305_blocks_avx_1 + + .rva .Lbase2_64_avx + .rva .Leven_avx + .rva .LSEH_info_poly1305_blocks_avx_2 + + .rva .Leven_avx + .rva .LSEH_end_poly1305_blocks_avx + .rva .LSEH_info_poly1305_blocks_avx_3 + + .rva .LSEH_begin_poly1305_emit_avx + .rva .LSEH_end_poly1305_emit_avx + .rva .LSEH_info_poly1305_emit_avx +___ +$code.=<<___ if ($avx>1); + .rva .LSEH_begin_poly1305_blocks_avx2 + .rva .Lbase2_64_avx2 + .rva .LSEH_info_poly1305_blocks_avx2_1 + + .rva .Lbase2_64_avx2 + .rva .Leven_avx2 + .rva .LSEH_info_poly1305_blocks_avx2_2 + + .rva .Leven_avx2 + .rva .LSEH_end_poly1305_blocks_avx2 + .rva .LSEH_info_poly1305_blocks_avx2_3 +___ +$code.=<<___ if ($avx>2); + .rva .LSEH_begin_poly1305_blocks_avx512 + .rva .LSEH_end_poly1305_blocks_avx512 + .rva .LSEH_info_poly1305_blocks_avx512 +___ +$code.=<<___; +.section .xdata +.align 8 +.LSEH_info_poly1305_block_init_arch: + .byte 9,0,0,0 + .rva se_handler + .rva .LSEH_begin_poly1305_block_init_arch,.LSEH_begin_poly1305_block_init_arch + +.LSEH_info_poly1305_blocks_x86_64: + .byte 9,0,0,0 + .rva se_handler + .rva .Lblocks_body,.Lblocks_epilogue + +.LSEH_info_poly1305_emit_x86_64: + .byte 9,0,0,0 + .rva se_handler + .rva .LSEH_begin_poly1305_emit_x86_64,.LSEH_begin_poly1305_emit_x86_64 +___ +$code.=<<___ if ($avx); +.LSEH_info_poly1305_blocks_avx_1: + .byte 9,0,0,0 + .rva se_handler + .rva .Lblocks_avx_body,.Lblocks_avx_epilogue # HandlerData[] + +.LSEH_info_poly1305_blocks_avx_2: + .byte 9,0,0,0 + .rva se_handler + .rva .Lbase2_64_avx_body,.Lbase2_64_avx_epilogue # HandlerData[] + +.LSEH_info_poly1305_blocks_avx_3: + .byte 9,0,0,0 + .rva avx_handler + .rva .Ldo_avx_body,.Ldo_avx_epilogue # HandlerData[] + +.LSEH_info_poly1305_emit_avx: + .byte 9,0,0,0 + .rva se_handler + .rva .LSEH_begin_poly1305_emit_avx,.LSEH_begin_poly1305_emit_avx +___ +$code.=<<___ if ($avx>1); +.LSEH_info_poly1305_blocks_avx2_1: + .byte 9,0,0,0 + .rva se_handler + .rva .Lblocks_avx2_body,.Lblocks_avx2_epilogue # HandlerData[] + +.LSEH_info_poly1305_blocks_avx2_2: + .byte 9,0,0,0 + .rva se_handler + .rva .Lbase2_64_avx2_body,.Lbase2_64_avx2_epilogue # HandlerData[] + +.LSEH_info_poly1305_blocks_avx2_3: + .byte 9,0,0,0 + .rva avx_handler + .rva .Ldo_avx2_body,.Ldo_avx2_epilogue # HandlerData[] +___ +$code.=<<___ if ($avx>2); +.LSEH_info_poly1305_blocks_avx512: + .byte 9,0,0,0 + .rva avx_handler + .rva .Ldo_avx512_body,.Ldo_avx512_epilogue # HandlerData[] +___ +} + +open SELF,$0; +while(<SELF>) { + next if (/^#!/); + last if (!s/^#/\/\// and !/^$/); + print; +} +close SELF; + +foreach (split('\n',$code)) { + s/\`([^\`]*)\`/eval($1)/ge; + s/%r([a-z]+)#d/%e$1/g; + s/%r([0-9]+)#d/%r$1d/g; + s/%x#%[yz]/%x/g or s/%y#%z/%y/g or s/%z#%[yz]/%z/g; + + if ($kernel) { + s/(^\.type.*),[0-9]+$/\1/; + s/(^\.type.*),\@abi-omnipotent+$/\1,\@function/; + next if /^\.cfi.*/; + } + + print $_,"\n"; +} +close STDOUT; diff --git a/arch/x86/lib/crypto/poly1305_glue.c b/arch/x86/lib/crypto/poly1305_glue.c new file mode 100644 index 000000000000..b7e78a583e07 --- /dev/null +++ b/arch/x86/lib/crypto/poly1305_glue.c @@ -0,0 +1,129 @@ +// SPDX-License-Identifier: GPL-2.0 OR MIT +/* + * Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved. + */ + +#include <asm/cpu_device_id.h> +#include <asm/fpu/api.h> +#include <crypto/internal/poly1305.h> +#include <linux/jump_label.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/sizes.h> +#include <linux/unaligned.h> + +struct poly1305_arch_internal { + union { + struct { + u32 h[5]; + u32 is_base2_26; + }; + u64 hs[3]; + }; + u64 r[2]; + u64 pad; + struct { u32 r2, r1, r4, r3; } rn[9]; +}; + +asmlinkage void poly1305_block_init_arch( + struct poly1305_block_state *state, + const u8 raw_key[POLY1305_BLOCK_SIZE]); +EXPORT_SYMBOL_GPL(poly1305_block_init_arch); +asmlinkage void poly1305_blocks_x86_64(struct poly1305_arch_internal *ctx, + const u8 *inp, + const size_t len, const u32 padbit); +asmlinkage void poly1305_emit_x86_64(const struct poly1305_state *ctx, + u8 mac[POLY1305_DIGEST_SIZE], + const u32 nonce[4]); +asmlinkage void poly1305_emit_avx(const struct poly1305_state *ctx, + u8 mac[POLY1305_DIGEST_SIZE], + const u32 nonce[4]); +asmlinkage void poly1305_blocks_avx(struct poly1305_arch_internal *ctx, + const u8 *inp, const size_t len, + const u32 padbit); +asmlinkage void poly1305_blocks_avx2(struct poly1305_arch_internal *ctx, + const u8 *inp, const size_t len, + const u32 padbit); +asmlinkage void poly1305_blocks_avx512(struct poly1305_arch_internal *ctx, + const u8 *inp, + const size_t len, const u32 padbit); + +static __ro_after_init DEFINE_STATIC_KEY_FALSE(poly1305_use_avx); +static __ro_after_init DEFINE_STATIC_KEY_FALSE(poly1305_use_avx2); +static __ro_after_init DEFINE_STATIC_KEY_FALSE(poly1305_use_avx512); + +void poly1305_blocks_arch(struct poly1305_block_state *state, const u8 *inp, + unsigned int len, u32 padbit) +{ + struct poly1305_arch_internal *ctx = + container_of(&state->h.h, struct poly1305_arch_internal, h); + + /* SIMD disables preemption, so relax after processing each page. */ + BUILD_BUG_ON(SZ_4K < POLY1305_BLOCK_SIZE || + SZ_4K % POLY1305_BLOCK_SIZE); + + if (!static_branch_likely(&poly1305_use_avx)) { + poly1305_blocks_x86_64(ctx, inp, len, padbit); + return; + } + + do { + const unsigned int bytes = min(len, SZ_4K); + + kernel_fpu_begin(); + if (static_branch_likely(&poly1305_use_avx512)) + poly1305_blocks_avx512(ctx, inp, bytes, padbit); + else if (static_branch_likely(&poly1305_use_avx2)) + poly1305_blocks_avx2(ctx, inp, bytes, padbit); + else + poly1305_blocks_avx(ctx, inp, bytes, padbit); + kernel_fpu_end(); + + len -= bytes; + inp += bytes; + } while (len); +} +EXPORT_SYMBOL_GPL(poly1305_blocks_arch); + +void poly1305_emit_arch(const struct poly1305_state *ctx, + u8 mac[POLY1305_DIGEST_SIZE], const u32 nonce[4]) +{ + if (!static_branch_likely(&poly1305_use_avx)) + poly1305_emit_x86_64(ctx, mac, nonce); + else + poly1305_emit_avx(ctx, mac, nonce); +} +EXPORT_SYMBOL_GPL(poly1305_emit_arch); + +bool poly1305_is_arch_optimized(void) +{ + return static_key_enabled(&poly1305_use_avx); +} +EXPORT_SYMBOL(poly1305_is_arch_optimized); + +static int __init poly1305_simd_mod_init(void) +{ + if (boot_cpu_has(X86_FEATURE_AVX) && + cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, NULL)) + static_branch_enable(&poly1305_use_avx); + if (boot_cpu_has(X86_FEATURE_AVX) && boot_cpu_has(X86_FEATURE_AVX2) && + cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, NULL)) + static_branch_enable(&poly1305_use_avx2); + if (boot_cpu_has(X86_FEATURE_AVX) && boot_cpu_has(X86_FEATURE_AVX2) && + boot_cpu_has(X86_FEATURE_AVX512F) && + cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM | XFEATURE_MASK_AVX512, NULL) && + /* Skylake downclocks unacceptably much when using zmm, but later generations are fast. */ + boot_cpu_data.x86_vfm != INTEL_SKYLAKE_X) + static_branch_enable(&poly1305_use_avx512); + return 0; +} +subsys_initcall(poly1305_simd_mod_init); + +static void __exit poly1305_simd_mod_exit(void) +{ +} +module_exit(poly1305_simd_mod_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Jason A. Donenfeld <Jason@zx2c4.com>"); +MODULE_DESCRIPTION("Poly1305 authenticator"); diff --git a/arch/x86/lib/crypto/sha256-avx-asm.S b/arch/x86/lib/crypto/sha256-avx-asm.S new file mode 100644 index 000000000000..0d7b2c3e45d9 --- /dev/null +++ b/arch/x86/lib/crypto/sha256-avx-asm.S @@ -0,0 +1,499 @@ +######################################################################## +# Implement fast SHA-256 with AVX1 instructions. (x86_64) +# +# Copyright (C) 2013 Intel Corporation. +# +# Authors: +# James Guilford <james.guilford@intel.com> +# Kirk Yap <kirk.s.yap@intel.com> +# Tim Chen <tim.c.chen@linux.intel.com> +# +# This software is available to you under a choice of one of two +# licenses. You may choose to be licensed under the terms of the GNU +# General Public License (GPL) Version 2, available from the file +# COPYING in the main directory of this source tree, or the +# OpenIB.org BSD license below: +# +# Redistribution and use in source and binary forms, with or +# without modification, are permitted provided that the following +# conditions are met: +# +# - Redistributions of source code must retain the above +# copyright notice, this list of conditions and the following +# disclaimer. +# +# - Redistributions in binary form must reproduce the above +# copyright notice, this list of conditions and the following +# disclaimer in the documentation and/or other materials +# provided with the distribution. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS +# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. +######################################################################## +# +# This code is described in an Intel White-Paper: +# "Fast SHA-256 Implementations on Intel Architecture Processors" +# +# To find it, surf to http://www.intel.com/p/en_US/embedded +# and search for that title. +# +######################################################################## +# This code schedules 1 block at a time, with 4 lanes per block +######################################################################## + +#include <linux/linkage.h> +#include <linux/objtool.h> + +## assume buffers not aligned +#define VMOVDQ vmovdqu + +################################ Define Macros + +# addm [mem], reg +# Add reg to mem using reg-mem add and store +.macro addm p1 p2 + add \p1, \p2 + mov \p2, \p1 +.endm + + +.macro MY_ROR p1 p2 + shld $(32-(\p1)), \p2, \p2 +.endm + +################################ + +# COPY_XMM_AND_BSWAP xmm, [mem], byte_flip_mask +# Load xmm with mem and byte swap each dword +.macro COPY_XMM_AND_BSWAP p1 p2 p3 + VMOVDQ \p2, \p1 + vpshufb \p3, \p1, \p1 +.endm + +################################ + +X0 = %xmm4 +X1 = %xmm5 +X2 = %xmm6 +X3 = %xmm7 + +XTMP0 = %xmm0 +XTMP1 = %xmm1 +XTMP2 = %xmm2 +XTMP3 = %xmm3 +XTMP4 = %xmm8 +XFER = %xmm9 +XTMP5 = %xmm11 + +SHUF_00BA = %xmm10 # shuffle xBxA -> 00BA +SHUF_DC00 = %xmm12 # shuffle xDxC -> DC00 +BYTE_FLIP_MASK = %xmm13 + +NUM_BLKS = %rdx # 3rd arg +INP = %rsi # 2nd arg +CTX = %rdi # 1st arg + +SRND = %rsi # clobbers INP +c = %ecx +d = %r8d +e = %edx +TBL = %r12 +a = %eax +b = %ebx + +f = %r9d +g = %r10d +h = %r11d + +y0 = %r13d +y1 = %r14d +y2 = %r15d + + +_INP_END_SIZE = 8 +_INP_SIZE = 8 +_XFER_SIZE = 16 +_XMM_SAVE_SIZE = 0 + +_INP_END = 0 +_INP = _INP_END + _INP_END_SIZE +_XFER = _INP + _INP_SIZE +_XMM_SAVE = _XFER + _XFER_SIZE +STACK_SIZE = _XMM_SAVE + _XMM_SAVE_SIZE + +# rotate_Xs +# Rotate values of symbols X0...X3 +.macro rotate_Xs +X_ = X0 +X0 = X1 +X1 = X2 +X2 = X3 +X3 = X_ +.endm + +# ROTATE_ARGS +# Rotate values of symbols a...h +.macro ROTATE_ARGS +TMP_ = h +h = g +g = f +f = e +e = d +d = c +c = b +b = a +a = TMP_ +.endm + +.macro FOUR_ROUNDS_AND_SCHED + ## compute s0 four at a time and s1 two at a time + ## compute W[-16] + W[-7] 4 at a time + + mov e, y0 # y0 = e + MY_ROR (25-11), y0 # y0 = e >> (25-11) + mov a, y1 # y1 = a + vpalignr $4, X2, X3, XTMP0 # XTMP0 = W[-7] + MY_ROR (22-13), y1 # y1 = a >> (22-13) + xor e, y0 # y0 = e ^ (e >> (25-11)) + mov f, y2 # y2 = f + MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6)) + xor a, y1 # y1 = a ^ (a >> (22-13) + xor g, y2 # y2 = f^g + vpaddd X0, XTMP0, XTMP0 # XTMP0 = W[-7] + W[-16] + xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) + and e, y2 # y2 = (f^g)&e + MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2)) + ## compute s0 + vpalignr $4, X0, X1, XTMP1 # XTMP1 = W[-15] + xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) + MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) + xor g, y2 # y2 = CH = ((f^g)&e)^g + MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) + add y0, y2 # y2 = S1 + CH + add _XFER(%rsp), y2 # y2 = k + w + S1 + CH + mov a, y0 # y0 = a + add y2, h # h = h + S1 + CH + k + w + mov a, y2 # y2 = a + vpsrld $7, XTMP1, XTMP2 + or c, y0 # y0 = a|c + add h, d # d = d + h + S1 + CH + k + w + and c, y2 # y2 = a&c + vpslld $(32-7), XTMP1, XTMP3 + and b, y0 # y0 = (a|c)&b + add y1, h # h = h + S1 + CH + k + w + S0 + vpor XTMP2, XTMP3, XTMP3 # XTMP1 = W[-15] MY_ROR 7 + or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c) + add y0, h # h = h + S1 + CH + k + w + S0 + MAJ + ROTATE_ARGS + mov e, y0 # y0 = e + mov a, y1 # y1 = a + MY_ROR (25-11), y0 # y0 = e >> (25-11) + xor e, y0 # y0 = e ^ (e >> (25-11)) + mov f, y2 # y2 = f + MY_ROR (22-13), y1 # y1 = a >> (22-13) + vpsrld $18, XTMP1, XTMP2 # + xor a, y1 # y1 = a ^ (a >> (22-13) + MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6)) + xor g, y2 # y2 = f^g + vpsrld $3, XTMP1, XTMP4 # XTMP4 = W[-15] >> 3 + MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2)) + xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) + and e, y2 # y2 = (f^g)&e + MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) + vpslld $(32-18), XTMP1, XTMP1 + xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) + xor g, y2 # y2 = CH = ((f^g)&e)^g + vpxor XTMP1, XTMP3, XTMP3 # + add y0, y2 # y2 = S1 + CH + add (1*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH + MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) + vpxor XTMP2, XTMP3, XTMP3 # XTMP1 = W[-15] MY_ROR 7 ^ W[-15] MY_ROR + mov a, y0 # y0 = a + add y2, h # h = h + S1 + CH + k + w + mov a, y2 # y2 = a + vpxor XTMP4, XTMP3, XTMP1 # XTMP1 = s0 + or c, y0 # y0 = a|c + add h, d # d = d + h + S1 + CH + k + w + and c, y2 # y2 = a&c + ## compute low s1 + vpshufd $0b11111010, X3, XTMP2 # XTMP2 = W[-2] {BBAA} + and b, y0 # y0 = (a|c)&b + add y1, h # h = h + S1 + CH + k + w + S0 + vpaddd XTMP1, XTMP0, XTMP0 # XTMP0 = W[-16] + W[-7] + s0 + or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c) + add y0, h # h = h + S1 + CH + k + w + S0 + MAJ + ROTATE_ARGS + mov e, y0 # y0 = e + mov a, y1 # y1 = a + MY_ROR (25-11), y0 # y0 = e >> (25-11) + xor e, y0 # y0 = e ^ (e >> (25-11)) + MY_ROR (22-13), y1 # y1 = a >> (22-13) + mov f, y2 # y2 = f + xor a, y1 # y1 = a ^ (a >> (22-13) + MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6)) + vpsrld $10, XTMP2, XTMP4 # XTMP4 = W[-2] >> 10 {BBAA} + xor g, y2 # y2 = f^g + vpsrlq $19, XTMP2, XTMP3 # XTMP3 = W[-2] MY_ROR 19 {xBxA} + xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) + and e, y2 # y2 = (f^g)&e + vpsrlq $17, XTMP2, XTMP2 # XTMP2 = W[-2] MY_ROR 17 {xBxA} + MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2)) + xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) + xor g, y2 # y2 = CH = ((f^g)&e)^g + MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) + vpxor XTMP3, XTMP2, XTMP2 # + add y0, y2 # y2 = S1 + CH + MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) + add (2*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH + vpxor XTMP2, XTMP4, XTMP4 # XTMP4 = s1 {xBxA} + mov a, y0 # y0 = a + add y2, h # h = h + S1 + CH + k + w + mov a, y2 # y2 = a + vpshufb SHUF_00BA, XTMP4, XTMP4 # XTMP4 = s1 {00BA} + or c, y0 # y0 = a|c + add h, d # d = d + h + S1 + CH + k + w + and c, y2 # y2 = a&c + vpaddd XTMP4, XTMP0, XTMP0 # XTMP0 = {..., ..., W[1], W[0]} + and b, y0 # y0 = (a|c)&b + add y1, h # h = h + S1 + CH + k + w + S0 + ## compute high s1 + vpshufd $0b01010000, XTMP0, XTMP2 # XTMP2 = W[-2] {DDCC} + or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c) + add y0, h # h = h + S1 + CH + k + w + S0 + MAJ + ROTATE_ARGS + mov e, y0 # y0 = e + MY_ROR (25-11), y0 # y0 = e >> (25-11) + mov a, y1 # y1 = a + MY_ROR (22-13), y1 # y1 = a >> (22-13) + xor e, y0 # y0 = e ^ (e >> (25-11)) + mov f, y2 # y2 = f + MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6)) + vpsrld $10, XTMP2, XTMP5 # XTMP5 = W[-2] >> 10 {DDCC} + xor a, y1 # y1 = a ^ (a >> (22-13) + xor g, y2 # y2 = f^g + vpsrlq $19, XTMP2, XTMP3 # XTMP3 = W[-2] MY_ROR 19 {xDxC} + xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) + and e, y2 # y2 = (f^g)&e + MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2)) + vpsrlq $17, XTMP2, XTMP2 # XTMP2 = W[-2] MY_ROR 17 {xDxC} + xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) + MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) + xor g, y2 # y2 = CH = ((f^g)&e)^g + vpxor XTMP3, XTMP2, XTMP2 + MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) + add y0, y2 # y2 = S1 + CH + add (3*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH + vpxor XTMP2, XTMP5, XTMP5 # XTMP5 = s1 {xDxC} + mov a, y0 # y0 = a + add y2, h # h = h + S1 + CH + k + w + mov a, y2 # y2 = a + vpshufb SHUF_DC00, XTMP5, XTMP5 # XTMP5 = s1 {DC00} + or c, y0 # y0 = a|c + add h, d # d = d + h + S1 + CH + k + w + and c, y2 # y2 = a&c + vpaddd XTMP0, XTMP5, X0 # X0 = {W[3], W[2], W[1], W[0]} + and b, y0 # y0 = (a|c)&b + add y1, h # h = h + S1 + CH + k + w + S0 + or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c) + add y0, h # h = h + S1 + CH + k + w + S0 + MAJ + ROTATE_ARGS + rotate_Xs +.endm + +## input is [rsp + _XFER + %1 * 4] +.macro DO_ROUND round + mov e, y0 # y0 = e + MY_ROR (25-11), y0 # y0 = e >> (25-11) + mov a, y1 # y1 = a + xor e, y0 # y0 = e ^ (e >> (25-11)) + MY_ROR (22-13), y1 # y1 = a >> (22-13) + mov f, y2 # y2 = f + xor a, y1 # y1 = a ^ (a >> (22-13) + MY_ROR (11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6)) + xor g, y2 # y2 = f^g + xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) + MY_ROR (13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2)) + and e, y2 # y2 = (f^g)&e + xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) + MY_ROR 6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) + xor g, y2 # y2 = CH = ((f^g)&e)^g + add y0, y2 # y2 = S1 + CH + MY_ROR 2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) + offset = \round * 4 + _XFER # + add offset(%rsp), y2 # y2 = k + w + S1 + CH + mov a, y0 # y0 = a + add y2, h # h = h + S1 + CH + k + w + mov a, y2 # y2 = a + or c, y0 # y0 = a|c + add h, d # d = d + h + S1 + CH + k + w + and c, y2 # y2 = a&c + and b, y0 # y0 = (a|c)&b + add y1, h # h = h + S1 + CH + k + w + S0 + or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c) + add y0, h # h = h + S1 + CH + k + w + S0 + MAJ + ROTATE_ARGS +.endm + +######################################################################## +## void sha256_transform_avx(u32 state[SHA256_STATE_WORDS], +## const u8 *data, size_t nblocks); +######################################################################## +.text +SYM_FUNC_START(sha256_transform_avx) + ANNOTATE_NOENDBR # since this is called only via static_call + + pushq %rbx + pushq %r12 + pushq %r13 + pushq %r14 + pushq %r15 + pushq %rbp + movq %rsp, %rbp + + subq $STACK_SIZE, %rsp # allocate stack space + and $~15, %rsp # align stack pointer + + shl $6, NUM_BLKS # convert to bytes + jz .Ldone_hash + add INP, NUM_BLKS # pointer to end of data + mov NUM_BLKS, _INP_END(%rsp) + + ## load initial digest + mov 4*0(CTX), a + mov 4*1(CTX), b + mov 4*2(CTX), c + mov 4*3(CTX), d + mov 4*4(CTX), e + mov 4*5(CTX), f + mov 4*6(CTX), g + mov 4*7(CTX), h + + vmovdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), BYTE_FLIP_MASK + vmovdqa _SHUF_00BA(%rip), SHUF_00BA + vmovdqa _SHUF_DC00(%rip), SHUF_DC00 +.Lloop0: + lea K256(%rip), TBL + + ## byte swap first 16 dwords + COPY_XMM_AND_BSWAP X0, 0*16(INP), BYTE_FLIP_MASK + COPY_XMM_AND_BSWAP X1, 1*16(INP), BYTE_FLIP_MASK + COPY_XMM_AND_BSWAP X2, 2*16(INP), BYTE_FLIP_MASK + COPY_XMM_AND_BSWAP X3, 3*16(INP), BYTE_FLIP_MASK + + mov INP, _INP(%rsp) + + ## schedule 48 input dwords, by doing 3 rounds of 16 each + mov $3, SRND +.align 16 +.Lloop1: + vpaddd (TBL), X0, XFER + vmovdqa XFER, _XFER(%rsp) + FOUR_ROUNDS_AND_SCHED + + vpaddd 1*16(TBL), X0, XFER + vmovdqa XFER, _XFER(%rsp) + FOUR_ROUNDS_AND_SCHED + + vpaddd 2*16(TBL), X0, XFER + vmovdqa XFER, _XFER(%rsp) + FOUR_ROUNDS_AND_SCHED + + vpaddd 3*16(TBL), X0, XFER + vmovdqa XFER, _XFER(%rsp) + add $4*16, TBL + FOUR_ROUNDS_AND_SCHED + + sub $1, SRND + jne .Lloop1 + + mov $2, SRND +.Lloop2: + vpaddd (TBL), X0, XFER + vmovdqa XFER, _XFER(%rsp) + DO_ROUND 0 + DO_ROUND 1 + DO_ROUND 2 + DO_ROUND 3 + + vpaddd 1*16(TBL), X1, XFER + vmovdqa XFER, _XFER(%rsp) + add $2*16, TBL + DO_ROUND 0 + DO_ROUND 1 + DO_ROUND 2 + DO_ROUND 3 + + vmovdqa X2, X0 + vmovdqa X3, X1 + + sub $1, SRND + jne .Lloop2 + + addm (4*0)(CTX),a + addm (4*1)(CTX),b + addm (4*2)(CTX),c + addm (4*3)(CTX),d + addm (4*4)(CTX),e + addm (4*5)(CTX),f + addm (4*6)(CTX),g + addm (4*7)(CTX),h + + mov _INP(%rsp), INP + add $64, INP + cmp _INP_END(%rsp), INP + jne .Lloop0 + +.Ldone_hash: + + mov %rbp, %rsp + popq %rbp + popq %r15 + popq %r14 + popq %r13 + popq %r12 + popq %rbx + RET +SYM_FUNC_END(sha256_transform_avx) + +.section .rodata.cst256.K256, "aM", @progbits, 256 +.align 64 +K256: + .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 + .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 + .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 + .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 + .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc + .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da + .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 + .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 + .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 + .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 + .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 + .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 + .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 + .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 + .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 + .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 + +.section .rodata.cst16.PSHUFFLE_BYTE_FLIP_MASK, "aM", @progbits, 16 +.align 16 +PSHUFFLE_BYTE_FLIP_MASK: + .octa 0x0c0d0e0f08090a0b0405060700010203 + +.section .rodata.cst16._SHUF_00BA, "aM", @progbits, 16 +.align 16 +# shuffle xBxA -> 00BA +_SHUF_00BA: + .octa 0xFFFFFFFFFFFFFFFF0b0a090803020100 + +.section .rodata.cst16._SHUF_DC00, "aM", @progbits, 16 +.align 16 +# shuffle xDxC -> DC00 +_SHUF_DC00: + .octa 0x0b0a090803020100FFFFFFFFFFFFFFFF diff --git a/arch/x86/lib/crypto/sha256-avx2-asm.S b/arch/x86/lib/crypto/sha256-avx2-asm.S new file mode 100644 index 000000000000..25d3380321ec --- /dev/null +++ b/arch/x86/lib/crypto/sha256-avx2-asm.S @@ -0,0 +1,774 @@ +######################################################################## +# Implement fast SHA-256 with AVX2 instructions. (x86_64) +# +# Copyright (C) 2013 Intel Corporation. +# +# Authors: +# James Guilford <james.guilford@intel.com> +# Kirk Yap <kirk.s.yap@intel.com> +# Tim Chen <tim.c.chen@linux.intel.com> +# +# This software is available to you under a choice of one of two +# licenses. You may choose to be licensed under the terms of the GNU +# General Public License (GPL) Version 2, available from the file +# COPYING in the main directory of this source tree, or the +# OpenIB.org BSD license below: +# +# Redistribution and use in source and binary forms, with or +# without modification, are permitted provided that the following +# conditions are met: +# +# - Redistributions of source code must retain the above +# copyright notice, this list of conditions and the following +# disclaimer. +# +# - Redistributions in binary form must reproduce the above +# copyright notice, this list of conditions and the following +# disclaimer in the documentation and/or other materials +# provided with the distribution. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS +# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. +# +######################################################################## +# +# This code is described in an Intel White-Paper: +# "Fast SHA-256 Implementations on Intel Architecture Processors" +# +# To find it, surf to http://www.intel.com/p/en_US/embedded +# and search for that title. +# +######################################################################## +# This code schedules 2 blocks at a time, with 4 lanes per block +######################################################################## + +#include <linux/linkage.h> +#include <linux/objtool.h> + +## assume buffers not aligned +#define VMOVDQ vmovdqu + +################################ Define Macros + +# addm [mem], reg +# Add reg to mem using reg-mem add and store +.macro addm p1 p2 + add \p1, \p2 + mov \p2, \p1 +.endm + +################################ + +X0 = %ymm4 +X1 = %ymm5 +X2 = %ymm6 +X3 = %ymm7 + +# XMM versions of above +XWORD0 = %xmm4 +XWORD1 = %xmm5 +XWORD2 = %xmm6 +XWORD3 = %xmm7 + +XTMP0 = %ymm0 +XTMP1 = %ymm1 +XTMP2 = %ymm2 +XTMP3 = %ymm3 +XTMP4 = %ymm8 +XFER = %ymm9 +XTMP5 = %ymm11 + +SHUF_00BA = %ymm10 # shuffle xBxA -> 00BA +SHUF_DC00 = %ymm12 # shuffle xDxC -> DC00 +BYTE_FLIP_MASK = %ymm13 + +X_BYTE_FLIP_MASK = %xmm13 # XMM version of BYTE_FLIP_MASK + +NUM_BLKS = %rdx # 3rd arg +INP = %rsi # 2nd arg +CTX = %rdi # 1st arg +c = %ecx +d = %r8d +e = %edx # clobbers NUM_BLKS +y3 = %esi # clobbers INP + +SRND = CTX # SRND is same register as CTX + +a = %eax +b = %ebx +f = %r9d +g = %r10d +h = %r11d +old_h = %r11d + +T1 = %r12d +y0 = %r13d +y1 = %r14d +y2 = %r15d + + +_XFER_SIZE = 2*64*4 # 2 blocks, 64 rounds, 4 bytes/round +_XMM_SAVE_SIZE = 0 +_INP_END_SIZE = 8 +_INP_SIZE = 8 +_CTX_SIZE = 8 + +_XFER = 0 +_XMM_SAVE = _XFER + _XFER_SIZE +_INP_END = _XMM_SAVE + _XMM_SAVE_SIZE +_INP = _INP_END + _INP_END_SIZE +_CTX = _INP + _INP_SIZE +STACK_SIZE = _CTX + _CTX_SIZE + +# rotate_Xs +# Rotate values of symbols X0...X3 +.macro rotate_Xs + X_ = X0 + X0 = X1 + X1 = X2 + X2 = X3 + X3 = X_ +.endm + +# ROTATE_ARGS +# Rotate values of symbols a...h +.macro ROTATE_ARGS + old_h = h + TMP_ = h + h = g + g = f + f = e + e = d + d = c + c = b + b = a + a = TMP_ +.endm + +.macro FOUR_ROUNDS_AND_SCHED disp +################################### RND N + 0 ############################ + + mov a, y3 # y3 = a # MAJA + rorx $25, e, y0 # y0 = e >> 25 # S1A + rorx $11, e, y1 # y1 = e >> 11 # S1B + + addl \disp(%rsp, SRND), h # h = k + w + h # -- + or c, y3 # y3 = a|c # MAJA + vpalignr $4, X2, X3, XTMP0 # XTMP0 = W[-7] + mov f, y2 # y2 = f # CH + rorx $13, a, T1 # T1 = a >> 13 # S0B + + xor y1, y0 # y0 = (e>>25) ^ (e>>11) # S1 + xor g, y2 # y2 = f^g # CH + vpaddd X0, XTMP0, XTMP0 # XTMP0 = W[-7] + W[-16]# y1 = (e >> 6)# S1 + rorx $6, e, y1 # y1 = (e >> 6) # S1 + + and e, y2 # y2 = (f^g)&e # CH + xor y1, y0 # y0 = (e>>25) ^ (e>>11) ^ (e>>6) # S1 + rorx $22, a, y1 # y1 = a >> 22 # S0A + add h, d # d = k + w + h + d # -- + + and b, y3 # y3 = (a|c)&b # MAJA + vpalignr $4, X0, X1, XTMP1 # XTMP1 = W[-15] + xor T1, y1 # y1 = (a>>22) ^ (a>>13) # S0 + rorx $2, a, T1 # T1 = (a >> 2) # S0 + + xor g, y2 # y2 = CH = ((f^g)&e)^g # CH + vpsrld $7, XTMP1, XTMP2 + xor T1, y1 # y1 = (a>>22) ^ (a>>13) ^ (a>>2) # S0 + mov a, T1 # T1 = a # MAJB + and c, T1 # T1 = a&c # MAJB + + add y0, y2 # y2 = S1 + CH # -- + vpslld $(32-7), XTMP1, XTMP3 + or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ + add y1, h # h = k + w + h + S0 # -- + + add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- + vpor XTMP2, XTMP3, XTMP3 # XTMP3 = W[-15] ror 7 + + vpsrld $18, XTMP1, XTMP2 + add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- + add y3, h # h = t1 + S0 + MAJ # -- + + + ROTATE_ARGS + +################################### RND N + 1 ############################ + + mov a, y3 # y3 = a # MAJA + rorx $25, e, y0 # y0 = e >> 25 # S1A + rorx $11, e, y1 # y1 = e >> 11 # S1B + offset = \disp + 1*4 + addl offset(%rsp, SRND), h # h = k + w + h # -- + or c, y3 # y3 = a|c # MAJA + + + vpsrld $3, XTMP1, XTMP4 # XTMP4 = W[-15] >> 3 + mov f, y2 # y2 = f # CH + rorx $13, a, T1 # T1 = a >> 13 # S0B + xor y1, y0 # y0 = (e>>25) ^ (e>>11) # S1 + xor g, y2 # y2 = f^g # CH + + + rorx $6, e, y1 # y1 = (e >> 6) # S1 + xor y1, y0 # y0 = (e>>25) ^ (e>>11) ^ (e>>6) # S1 + rorx $22, a, y1 # y1 = a >> 22 # S0A + and e, y2 # y2 = (f^g)&e # CH + add h, d # d = k + w + h + d # -- + + vpslld $(32-18), XTMP1, XTMP1 + and b, y3 # y3 = (a|c)&b # MAJA + xor T1, y1 # y1 = (a>>22) ^ (a>>13) # S0 + + vpxor XTMP1, XTMP3, XTMP3 + rorx $2, a, T1 # T1 = (a >> 2) # S0 + xor g, y2 # y2 = CH = ((f^g)&e)^g # CH + + vpxor XTMP2, XTMP3, XTMP3 # XTMP3 = W[-15] ror 7 ^ W[-15] ror 18 + xor T1, y1 # y1 = (a>>22) ^ (a>>13) ^ (a>>2) # S0 + mov a, T1 # T1 = a # MAJB + and c, T1 # T1 = a&c # MAJB + add y0, y2 # y2 = S1 + CH # -- + + vpxor XTMP4, XTMP3, XTMP1 # XTMP1 = s0 + vpshufd $0b11111010, X3, XTMP2 # XTMP2 = W[-2] {BBAA} + or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ + add y1, h # h = k + w + h + S0 # -- + + vpaddd XTMP1, XTMP0, XTMP0 # XTMP0 = W[-16] + W[-7] + s0 + add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- + add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- + add y3, h # h = t1 + S0 + MAJ # -- + + vpsrld $10, XTMP2, XTMP4 # XTMP4 = W[-2] >> 10 {BBAA} + + + ROTATE_ARGS + +################################### RND N + 2 ############################ + + mov a, y3 # y3 = a # MAJA + rorx $25, e, y0 # y0 = e >> 25 # S1A + offset = \disp + 2*4 + addl offset(%rsp, SRND), h # h = k + w + h # -- + + vpsrlq $19, XTMP2, XTMP3 # XTMP3 = W[-2] ror 19 {xBxA} + rorx $11, e, y1 # y1 = e >> 11 # S1B + or c, y3 # y3 = a|c # MAJA + mov f, y2 # y2 = f # CH + xor g, y2 # y2 = f^g # CH + + rorx $13, a, T1 # T1 = a >> 13 # S0B + xor y1, y0 # y0 = (e>>25) ^ (e>>11) # S1 + vpsrlq $17, XTMP2, XTMP2 # XTMP2 = W[-2] ror 17 {xBxA} + and e, y2 # y2 = (f^g)&e # CH + + rorx $6, e, y1 # y1 = (e >> 6) # S1 + vpxor XTMP3, XTMP2, XTMP2 + add h, d # d = k + w + h + d # -- + and b, y3 # y3 = (a|c)&b # MAJA + + xor y1, y0 # y0 = (e>>25) ^ (e>>11) ^ (e>>6) # S1 + rorx $22, a, y1 # y1 = a >> 22 # S0A + vpxor XTMP2, XTMP4, XTMP4 # XTMP4 = s1 {xBxA} + xor g, y2 # y2 = CH = ((f^g)&e)^g # CH + + vpshufb SHUF_00BA, XTMP4, XTMP4 # XTMP4 = s1 {00BA} + xor T1, y1 # y1 = (a>>22) ^ (a>>13) # S0 + rorx $2, a ,T1 # T1 = (a >> 2) # S0 + vpaddd XTMP4, XTMP0, XTMP0 # XTMP0 = {..., ..., W[1], W[0]} + + xor T1, y1 # y1 = (a>>22) ^ (a>>13) ^ (a>>2) # S0 + mov a, T1 # T1 = a # MAJB + and c, T1 # T1 = a&c # MAJB + add y0, y2 # y2 = S1 + CH # -- + vpshufd $0b01010000, XTMP0, XTMP2 # XTMP2 = W[-2] {DDCC} + + or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ + add y1,h # h = k + w + h + S0 # -- + add y2,d # d = k + w + h + d + S1 + CH = d + t1 # -- + add y2,h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- + + add y3,h # h = t1 + S0 + MAJ # -- + + + ROTATE_ARGS + +################################### RND N + 3 ############################ + + mov a, y3 # y3 = a # MAJA + rorx $25, e, y0 # y0 = e >> 25 # S1A + rorx $11, e, y1 # y1 = e >> 11 # S1B + offset = \disp + 3*4 + addl offset(%rsp, SRND), h # h = k + w + h # -- + or c, y3 # y3 = a|c # MAJA + + + vpsrld $10, XTMP2, XTMP5 # XTMP5 = W[-2] >> 10 {DDCC} + mov f, y2 # y2 = f # CH + rorx $13, a, T1 # T1 = a >> 13 # S0B + xor y1, y0 # y0 = (e>>25) ^ (e>>11) # S1 + xor g, y2 # y2 = f^g # CH + + + vpsrlq $19, XTMP2, XTMP3 # XTMP3 = W[-2] ror 19 {xDxC} + rorx $6, e, y1 # y1 = (e >> 6) # S1 + and e, y2 # y2 = (f^g)&e # CH + add h, d # d = k + w + h + d # -- + and b, y3 # y3 = (a|c)&b # MAJA + + vpsrlq $17, XTMP2, XTMP2 # XTMP2 = W[-2] ror 17 {xDxC} + xor y1, y0 # y0 = (e>>25) ^ (e>>11) ^ (e>>6) # S1 + xor g, y2 # y2 = CH = ((f^g)&e)^g # CH + + vpxor XTMP3, XTMP2, XTMP2 + rorx $22, a, y1 # y1 = a >> 22 # S0A + add y0, y2 # y2 = S1 + CH # -- + + vpxor XTMP2, XTMP5, XTMP5 # XTMP5 = s1 {xDxC} + xor T1, y1 # y1 = (a>>22) ^ (a>>13) # S0 + add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- + + rorx $2, a, T1 # T1 = (a >> 2) # S0 + vpshufb SHUF_DC00, XTMP5, XTMP5 # XTMP5 = s1 {DC00} + + vpaddd XTMP0, XTMP5, X0 # X0 = {W[3], W[2], W[1], W[0]} + xor T1, y1 # y1 = (a>>22) ^ (a>>13) ^ (a>>2) # S0 + mov a, T1 # T1 = a # MAJB + and c, T1 # T1 = a&c # MAJB + or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ + + add y1, h # h = k + w + h + S0 # -- + add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- + add y3, h # h = t1 + S0 + MAJ # -- + + ROTATE_ARGS + rotate_Xs +.endm + +.macro DO_4ROUNDS disp +################################### RND N + 0 ########################### + + mov f, y2 # y2 = f # CH + rorx $25, e, y0 # y0 = e >> 25 # S1A + rorx $11, e, y1 # y1 = e >> 11 # S1B + xor g, y2 # y2 = f^g # CH + + xor y1, y0 # y0 = (e>>25) ^ (e>>11) # S1 + rorx $6, e, y1 # y1 = (e >> 6) # S1 + and e, y2 # y2 = (f^g)&e # CH + + xor y1, y0 # y0 = (e>>25) ^ (e>>11) ^ (e>>6) # S1 + rorx $13, a, T1 # T1 = a >> 13 # S0B + xor g, y2 # y2 = CH = ((f^g)&e)^g # CH + rorx $22, a, y1 # y1 = a >> 22 # S0A + mov a, y3 # y3 = a # MAJA + + xor T1, y1 # y1 = (a>>22) ^ (a>>13) # S0 + rorx $2, a, T1 # T1 = (a >> 2) # S0 + addl \disp(%rsp, SRND), h # h = k + w + h # -- + or c, y3 # y3 = a|c # MAJA + + xor T1, y1 # y1 = (a>>22) ^ (a>>13) ^ (a>>2) # S0 + mov a, T1 # T1 = a # MAJB + and b, y3 # y3 = (a|c)&b # MAJA + and c, T1 # T1 = a&c # MAJB + add y0, y2 # y2 = S1 + CH # -- + + + add h, d # d = k + w + h + d # -- + or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ + add y1, h # h = k + w + h + S0 # -- + add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- + + ROTATE_ARGS + +################################### RND N + 1 ########################### + + add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- + mov f, y2 # y2 = f # CH + rorx $25, e, y0 # y0 = e >> 25 # S1A + rorx $11, e, y1 # y1 = e >> 11 # S1B + xor g, y2 # y2 = f^g # CH + + xor y1, y0 # y0 = (e>>25) ^ (e>>11) # S1 + rorx $6, e, y1 # y1 = (e >> 6) # S1 + and e, y2 # y2 = (f^g)&e # CH + add y3, old_h # h = t1 + S0 + MAJ # -- + + xor y1, y0 # y0 = (e>>25) ^ (e>>11) ^ (e>>6) # S1 + rorx $13, a, T1 # T1 = a >> 13 # S0B + xor g, y2 # y2 = CH = ((f^g)&e)^g # CH + rorx $22, a, y1 # y1 = a >> 22 # S0A + mov a, y3 # y3 = a # MAJA + + xor T1, y1 # y1 = (a>>22) ^ (a>>13) # S0 + rorx $2, a, T1 # T1 = (a >> 2) # S0 + offset = 4*1 + \disp + addl offset(%rsp, SRND), h # h = k + w + h # -- + or c, y3 # y3 = a|c # MAJA + + xor T1, y1 # y1 = (a>>22) ^ (a>>13) ^ (a>>2) # S0 + mov a, T1 # T1 = a # MAJB + and b, y3 # y3 = (a|c)&b # MAJA + and c, T1 # T1 = a&c # MAJB + add y0, y2 # y2 = S1 + CH # -- + + + add h, d # d = k + w + h + d # -- + or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ + add y1, h # h = k + w + h + S0 # -- + + add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- + + ROTATE_ARGS + +################################### RND N + 2 ############################## + + add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- + mov f, y2 # y2 = f # CH + rorx $25, e, y0 # y0 = e >> 25 # S1A + rorx $11, e, y1 # y1 = e >> 11 # S1B + xor g, y2 # y2 = f^g # CH + + xor y1, y0 # y0 = (e>>25) ^ (e>>11) # S1 + rorx $6, e, y1 # y1 = (e >> 6) # S1 + and e, y2 # y2 = (f^g)&e # CH + add y3, old_h # h = t1 + S0 + MAJ # -- + + xor y1, y0 # y0 = (e>>25) ^ (e>>11) ^ (e>>6) # S1 + rorx $13, a, T1 # T1 = a >> 13 # S0B + xor g, y2 # y2 = CH = ((f^g)&e)^g # CH + rorx $22, a, y1 # y1 = a >> 22 # S0A + mov a, y3 # y3 = a # MAJA + + xor T1, y1 # y1 = (a>>22) ^ (a>>13) # S0 + rorx $2, a, T1 # T1 = (a >> 2) # S0 + offset = 4*2 + \disp + addl offset(%rsp, SRND), h # h = k + w + h # -- + or c, y3 # y3 = a|c # MAJA + + xor T1, y1 # y1 = (a>>22) ^ (a>>13) ^ (a>>2) # S0 + mov a, T1 # T1 = a # MAJB + and b, y3 # y3 = (a|c)&b # MAJA + and c, T1 # T1 = a&c # MAJB + add y0, y2 # y2 = S1 + CH # -- + + + add h, d # d = k + w + h + d # -- + or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ + add y1, h # h = k + w + h + S0 # -- + + add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- + + ROTATE_ARGS + +################################### RND N + 3 ########################### + + add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- + mov f, y2 # y2 = f # CH + rorx $25, e, y0 # y0 = e >> 25 # S1A + rorx $11, e, y1 # y1 = e >> 11 # S1B + xor g, y2 # y2 = f^g # CH + + xor y1, y0 # y0 = (e>>25) ^ (e>>11) # S1 + rorx $6, e, y1 # y1 = (e >> 6) # S1 + and e, y2 # y2 = (f^g)&e # CH + add y3, old_h # h = t1 + S0 + MAJ # -- + + xor y1, y0 # y0 = (e>>25) ^ (e>>11) ^ (e>>6) # S1 + rorx $13, a, T1 # T1 = a >> 13 # S0B + xor g, y2 # y2 = CH = ((f^g)&e)^g # CH + rorx $22, a, y1 # y1 = a >> 22 # S0A + mov a, y3 # y3 = a # MAJA + + xor T1, y1 # y1 = (a>>22) ^ (a>>13) # S0 + rorx $2, a, T1 # T1 = (a >> 2) # S0 + offset = 4*3 + \disp + addl offset(%rsp, SRND), h # h = k + w + h # -- + or c, y3 # y3 = a|c # MAJA + + xor T1, y1 # y1 = (a>>22) ^ (a>>13) ^ (a>>2) # S0 + mov a, T1 # T1 = a # MAJB + and b, y3 # y3 = (a|c)&b # MAJA + and c, T1 # T1 = a&c # MAJB + add y0, y2 # y2 = S1 + CH # -- + + + add h, d # d = k + w + h + d # -- + or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ + add y1, h # h = k + w + h + S0 # -- + + add y2, d # d = k + w + h + d + S1 + CH = d + t1 # -- + + + add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# -- + + add y3, h # h = t1 + S0 + MAJ # -- + + ROTATE_ARGS + +.endm + +######################################################################## +## void sha256_transform_rorx(u32 state[SHA256_STATE_WORDS], +## const u8 *data, size_t nblocks); +######################################################################## +.text +SYM_FUNC_START(sha256_transform_rorx) + ANNOTATE_NOENDBR # since this is called only via static_call + + pushq %rbx + pushq %r12 + pushq %r13 + pushq %r14 + pushq %r15 + + push %rbp + mov %rsp, %rbp + + subq $STACK_SIZE, %rsp + and $-32, %rsp # align rsp to 32 byte boundary + + shl $6, NUM_BLKS # convert to bytes + jz .Ldone_hash + lea -64(INP, NUM_BLKS), NUM_BLKS # pointer to last block + mov NUM_BLKS, _INP_END(%rsp) + + cmp NUM_BLKS, INP + je .Lonly_one_block + + ## load initial digest + mov (CTX), a + mov 4*1(CTX), b + mov 4*2(CTX), c + mov 4*3(CTX), d + mov 4*4(CTX), e + mov 4*5(CTX), f + mov 4*6(CTX), g + mov 4*7(CTX), h + + vmovdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), BYTE_FLIP_MASK + vmovdqa _SHUF_00BA(%rip), SHUF_00BA + vmovdqa _SHUF_DC00(%rip), SHUF_DC00 + + mov CTX, _CTX(%rsp) + +.Lloop0: + ## Load first 16 dwords from two blocks + VMOVDQ 0*32(INP),XTMP0 + VMOVDQ 1*32(INP),XTMP1 + VMOVDQ 2*32(INP),XTMP2 + VMOVDQ 3*32(INP),XTMP3 + + ## byte swap data + vpshufb BYTE_FLIP_MASK, XTMP0, XTMP0 + vpshufb BYTE_FLIP_MASK, XTMP1, XTMP1 + vpshufb BYTE_FLIP_MASK, XTMP2, XTMP2 + vpshufb BYTE_FLIP_MASK, XTMP3, XTMP3 + + ## transpose data into high/low halves + vperm2i128 $0x20, XTMP2, XTMP0, X0 + vperm2i128 $0x31, XTMP2, XTMP0, X1 + vperm2i128 $0x20, XTMP3, XTMP1, X2 + vperm2i128 $0x31, XTMP3, XTMP1, X3 + +.Llast_block_enter: + add $64, INP + mov INP, _INP(%rsp) + + ## schedule 48 input dwords, by doing 3 rounds of 12 each + xor SRND, SRND + +.align 16 +.Lloop1: + leaq K256+0*32(%rip), INP ## reuse INP as scratch reg + vpaddd (INP, SRND), X0, XFER + vmovdqa XFER, 0*32+_XFER(%rsp, SRND) + FOUR_ROUNDS_AND_SCHED (_XFER + 0*32) + + leaq K256+1*32(%rip), INP + vpaddd (INP, SRND), X0, XFER + vmovdqa XFER, 1*32+_XFER(%rsp, SRND) + FOUR_ROUNDS_AND_SCHED (_XFER + 1*32) + + leaq K256+2*32(%rip), INP + vpaddd (INP, SRND), X0, XFER + vmovdqa XFER, 2*32+_XFER(%rsp, SRND) + FOUR_ROUNDS_AND_SCHED (_XFER + 2*32) + + leaq K256+3*32(%rip), INP + vpaddd (INP, SRND), X0, XFER + vmovdqa XFER, 3*32+_XFER(%rsp, SRND) + FOUR_ROUNDS_AND_SCHED (_XFER + 3*32) + + add $4*32, SRND + cmp $3*4*32, SRND + jb .Lloop1 + +.Lloop2: + ## Do last 16 rounds with no scheduling + leaq K256+0*32(%rip), INP + vpaddd (INP, SRND), X0, XFER + vmovdqa XFER, 0*32+_XFER(%rsp, SRND) + DO_4ROUNDS (_XFER + 0*32) + + leaq K256+1*32(%rip), INP + vpaddd (INP, SRND), X1, XFER + vmovdqa XFER, 1*32+_XFER(%rsp, SRND) + DO_4ROUNDS (_XFER + 1*32) + add $2*32, SRND + + vmovdqa X2, X0 + vmovdqa X3, X1 + + cmp $4*4*32, SRND + jb .Lloop2 + + mov _CTX(%rsp), CTX + mov _INP(%rsp), INP + + addm (4*0)(CTX),a + addm (4*1)(CTX),b + addm (4*2)(CTX),c + addm (4*3)(CTX),d + addm (4*4)(CTX),e + addm (4*5)(CTX),f + addm (4*6)(CTX),g + addm (4*7)(CTX),h + + cmp _INP_END(%rsp), INP + ja .Ldone_hash + + #### Do second block using previously scheduled results + xor SRND, SRND +.align 16 +.Lloop3: + DO_4ROUNDS (_XFER + 0*32 + 16) + DO_4ROUNDS (_XFER + 1*32 + 16) + add $2*32, SRND + cmp $4*4*32, SRND + jb .Lloop3 + + mov _CTX(%rsp), CTX + mov _INP(%rsp), INP + add $64, INP + + addm (4*0)(CTX),a + addm (4*1)(CTX),b + addm (4*2)(CTX),c + addm (4*3)(CTX),d + addm (4*4)(CTX),e + addm (4*5)(CTX),f + addm (4*6)(CTX),g + addm (4*7)(CTX),h + + cmp _INP_END(%rsp), INP + jb .Lloop0 + ja .Ldone_hash + +.Ldo_last_block: + VMOVDQ 0*16(INP),XWORD0 + VMOVDQ 1*16(INP),XWORD1 + VMOVDQ 2*16(INP),XWORD2 + VMOVDQ 3*16(INP),XWORD3 + + vpshufb X_BYTE_FLIP_MASK, XWORD0, XWORD0 + vpshufb X_BYTE_FLIP_MASK, XWORD1, XWORD1 + vpshufb X_BYTE_FLIP_MASK, XWORD2, XWORD2 + vpshufb X_BYTE_FLIP_MASK, XWORD3, XWORD3 + + jmp .Llast_block_enter + +.Lonly_one_block: + + ## load initial digest + mov (4*0)(CTX),a + mov (4*1)(CTX),b + mov (4*2)(CTX),c + mov (4*3)(CTX),d + mov (4*4)(CTX),e + mov (4*5)(CTX),f + mov (4*6)(CTX),g + mov (4*7)(CTX),h + + vmovdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), BYTE_FLIP_MASK + vmovdqa _SHUF_00BA(%rip), SHUF_00BA + vmovdqa _SHUF_DC00(%rip), SHUF_DC00 + + mov CTX, _CTX(%rsp) + jmp .Ldo_last_block + +.Ldone_hash: + + mov %rbp, %rsp + pop %rbp + + popq %r15 + popq %r14 + popq %r13 + popq %r12 + popq %rbx + vzeroupper + RET +SYM_FUNC_END(sha256_transform_rorx) + +.section .rodata.cst512.K256, "aM", @progbits, 512 +.align 64 +K256: + .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 + .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 + .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 + .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 + .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 + .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 + .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 + .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 + .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc + .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc + .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da + .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da + .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 + .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 + .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 + .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 + .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 + .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 + .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 + .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 + .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 + .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 + .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 + .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 + .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 + .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 + .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 + .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 + .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 + .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 + .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 + .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 + +.section .rodata.cst32.PSHUFFLE_BYTE_FLIP_MASK, "aM", @progbits, 32 +.align 32 +PSHUFFLE_BYTE_FLIP_MASK: + .octa 0x0c0d0e0f08090a0b0405060700010203,0x0c0d0e0f08090a0b0405060700010203 + +# shuffle xBxA -> 00BA +.section .rodata.cst32._SHUF_00BA, "aM", @progbits, 32 +.align 32 +_SHUF_00BA: + .octa 0xFFFFFFFFFFFFFFFF0b0a090803020100,0xFFFFFFFFFFFFFFFF0b0a090803020100 + +# shuffle xDxC -> DC00 +.section .rodata.cst32._SHUF_DC00, "aM", @progbits, 32 +.align 32 +_SHUF_DC00: + .octa 0x0b0a090803020100FFFFFFFFFFFFFFFF,0x0b0a090803020100FFFFFFFFFFFFFFFF diff --git a/arch/x86/lib/crypto/sha256-ni-asm.S b/arch/x86/lib/crypto/sha256-ni-asm.S new file mode 100644 index 000000000000..d3548206cf3d --- /dev/null +++ b/arch/x86/lib/crypto/sha256-ni-asm.S @@ -0,0 +1,196 @@ +/* + * Intel SHA Extensions optimized implementation of a SHA-256 update function + * + * This file is provided under a dual BSD/GPLv2 license. When using or + * redistributing this file, you may do so under either license. + * + * GPL LICENSE SUMMARY + * + * Copyright(c) 2015 Intel Corporation. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of version 2 of the GNU General Public License as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + * + * Contact Information: + * Sean Gulley <sean.m.gulley@intel.com> + * Tim Chen <tim.c.chen@linux.intel.com> + * + * BSD LICENSE + * + * Copyright(c) 2015 Intel Corporation. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + */ + +#include <linux/linkage.h> +#include <linux/objtool.h> + +#define STATE_PTR %rdi /* 1st arg */ +#define DATA_PTR %rsi /* 2nd arg */ +#define NUM_BLKS %rdx /* 3rd arg */ + +#define SHA256CONSTANTS %rax + +#define MSG %xmm0 /* sha256rnds2 implicit operand */ +#define STATE0 %xmm1 +#define STATE1 %xmm2 +#define MSG0 %xmm3 +#define MSG1 %xmm4 +#define MSG2 %xmm5 +#define MSG3 %xmm6 +#define TMP %xmm7 + +#define SHUF_MASK %xmm8 + +#define ABEF_SAVE %xmm9 +#define CDGH_SAVE %xmm10 + +.macro do_4rounds i, m0, m1, m2, m3 +.if \i < 16 + movdqu \i*4(DATA_PTR), \m0 + pshufb SHUF_MASK, \m0 +.endif + movdqa (\i-32)*4(SHA256CONSTANTS), MSG + paddd \m0, MSG + sha256rnds2 STATE0, STATE1 +.if \i >= 12 && \i < 60 + movdqa \m0, TMP + palignr $4, \m3, TMP + paddd TMP, \m1 + sha256msg2 \m0, \m1 +.endif + punpckhqdq MSG, MSG + sha256rnds2 STATE1, STATE0 +.if \i >= 4 && \i < 52 + sha256msg1 \m0, \m3 +.endif +.endm + +/* + * Intel SHA Extensions optimized implementation of a SHA-256 block function + * + * This function takes a pointer to the current SHA-256 state, a pointer to the + * input data, and the number of 64-byte blocks to process. Once all blocks + * have been processed, the state is updated with the new state. This function + * only processes complete blocks. State initialization, buffering of partial + * blocks, and digest finalization is expected to be handled elsewhere. + * + * void sha256_ni_transform(u32 state[SHA256_STATE_WORDS], + * const u8 *data, size_t nblocks); + */ +.text +SYM_FUNC_START(sha256_ni_transform) + ANNOTATE_NOENDBR # since this is called only via static_call + + shl $6, NUM_BLKS /* convert to bytes */ + jz .Ldone_hash + add DATA_PTR, NUM_BLKS /* pointer to end of data */ + + /* + * load initial hash values + * Need to reorder these appropriately + * DCBA, HGFE -> ABEF, CDGH + */ + movdqu 0*16(STATE_PTR), STATE0 /* DCBA */ + movdqu 1*16(STATE_PTR), STATE1 /* HGFE */ + + movdqa STATE0, TMP + punpcklqdq STATE1, STATE0 /* FEBA */ + punpckhqdq TMP, STATE1 /* DCHG */ + pshufd $0x1B, STATE0, STATE0 /* ABEF */ + pshufd $0xB1, STATE1, STATE1 /* CDGH */ + + movdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), SHUF_MASK + lea K256+32*4(%rip), SHA256CONSTANTS + +.Lloop0: + /* Save hash values for addition after rounds */ + movdqa STATE0, ABEF_SAVE + movdqa STATE1, CDGH_SAVE + +.irp i, 0, 16, 32, 48 + do_4rounds (\i + 0), MSG0, MSG1, MSG2, MSG3 + do_4rounds (\i + 4), MSG1, MSG2, MSG3, MSG0 + do_4rounds (\i + 8), MSG2, MSG3, MSG0, MSG1 + do_4rounds (\i + 12), MSG3, MSG0, MSG1, MSG2 +.endr + + /* Add current hash values with previously saved */ + paddd ABEF_SAVE, STATE0 + paddd CDGH_SAVE, STATE1 + + /* Increment data pointer and loop if more to process */ + add $64, DATA_PTR + cmp NUM_BLKS, DATA_PTR + jne .Lloop0 + + /* Write hash values back in the correct order */ + movdqa STATE0, TMP + punpcklqdq STATE1, STATE0 /* GHEF */ + punpckhqdq TMP, STATE1 /* ABCD */ + pshufd $0xB1, STATE0, STATE0 /* HGFE */ + pshufd $0x1B, STATE1, STATE1 /* DCBA */ + + movdqu STATE1, 0*16(STATE_PTR) + movdqu STATE0, 1*16(STATE_PTR) + +.Ldone_hash: + + RET +SYM_FUNC_END(sha256_ni_transform) + +.section .rodata.cst256.K256, "aM", @progbits, 256 +.align 64 +K256: + .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 + .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 + .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 + .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 + .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc + .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da + .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 + .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 + .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 + .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 + .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 + .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 + .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 + .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 + .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 + .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 + +.section .rodata.cst16.PSHUFFLE_BYTE_FLIP_MASK, "aM", @progbits, 16 +.align 16 +PSHUFFLE_BYTE_FLIP_MASK: + .octa 0x0c0d0e0f08090a0b0405060700010203 diff --git a/arch/x86/lib/crypto/sha256-ssse3-asm.S b/arch/x86/lib/crypto/sha256-ssse3-asm.S new file mode 100644 index 000000000000..7f24a4cdcb25 --- /dev/null +++ b/arch/x86/lib/crypto/sha256-ssse3-asm.S @@ -0,0 +1,511 @@ +######################################################################## +# Implement fast SHA-256 with SSSE3 instructions. (x86_64) +# +# Copyright (C) 2013 Intel Corporation. +# +# Authors: +# James Guilford <james.guilford@intel.com> +# Kirk Yap <kirk.s.yap@intel.com> +# Tim Chen <tim.c.chen@linux.intel.com> +# +# This software is available to you under a choice of one of two +# licenses. You may choose to be licensed under the terms of the GNU +# General Public License (GPL) Version 2, available from the file +# COPYING in the main directory of this source tree, or the +# OpenIB.org BSD license below: +# +# Redistribution and use in source and binary forms, with or +# without modification, are permitted provided that the following +# conditions are met: +# +# - Redistributions of source code must retain the above +# copyright notice, this list of conditions and the following +# disclaimer. +# +# - Redistributions in binary form must reproduce the above +# copyright notice, this list of conditions and the following +# disclaimer in the documentation and/or other materials +# provided with the distribution. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS +# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. +# +######################################################################## +# +# This code is described in an Intel White-Paper: +# "Fast SHA-256 Implementations on Intel Architecture Processors" +# +# To find it, surf to http://www.intel.com/p/en_US/embedded +# and search for that title. +# +######################################################################## + +#include <linux/linkage.h> +#include <linux/objtool.h> + +## assume buffers not aligned +#define MOVDQ movdqu + +################################ Define Macros + +# addm [mem], reg +# Add reg to mem using reg-mem add and store +.macro addm p1 p2 + add \p1, \p2 + mov \p2, \p1 +.endm + +################################ + +# COPY_XMM_AND_BSWAP xmm, [mem], byte_flip_mask +# Load xmm with mem and byte swap each dword +.macro COPY_XMM_AND_BSWAP p1 p2 p3 + MOVDQ \p2, \p1 + pshufb \p3, \p1 +.endm + +################################ + +X0 = %xmm4 +X1 = %xmm5 +X2 = %xmm6 +X3 = %xmm7 + +XTMP0 = %xmm0 +XTMP1 = %xmm1 +XTMP2 = %xmm2 +XTMP3 = %xmm3 +XTMP4 = %xmm8 +XFER = %xmm9 + +SHUF_00BA = %xmm10 # shuffle xBxA -> 00BA +SHUF_DC00 = %xmm11 # shuffle xDxC -> DC00 +BYTE_FLIP_MASK = %xmm12 + +NUM_BLKS = %rdx # 3rd arg +INP = %rsi # 2nd arg +CTX = %rdi # 1st arg + +SRND = %rsi # clobbers INP +c = %ecx +d = %r8d +e = %edx +TBL = %r12 +a = %eax +b = %ebx + +f = %r9d +g = %r10d +h = %r11d + +y0 = %r13d +y1 = %r14d +y2 = %r15d + + + +_INP_END_SIZE = 8 +_INP_SIZE = 8 +_XFER_SIZE = 16 +_XMM_SAVE_SIZE = 0 + +_INP_END = 0 +_INP = _INP_END + _INP_END_SIZE +_XFER = _INP + _INP_SIZE +_XMM_SAVE = _XFER + _XFER_SIZE +STACK_SIZE = _XMM_SAVE + _XMM_SAVE_SIZE + +# rotate_Xs +# Rotate values of symbols X0...X3 +.macro rotate_Xs +X_ = X0 +X0 = X1 +X1 = X2 +X2 = X3 +X3 = X_ +.endm + +# ROTATE_ARGS +# Rotate values of symbols a...h +.macro ROTATE_ARGS +TMP_ = h +h = g +g = f +f = e +e = d +d = c +c = b +b = a +a = TMP_ +.endm + +.macro FOUR_ROUNDS_AND_SCHED + ## compute s0 four at a time and s1 two at a time + ## compute W[-16] + W[-7] 4 at a time + movdqa X3, XTMP0 + mov e, y0 # y0 = e + ror $(25-11), y0 # y0 = e >> (25-11) + mov a, y1 # y1 = a + palignr $4, X2, XTMP0 # XTMP0 = W[-7] + ror $(22-13), y1 # y1 = a >> (22-13) + xor e, y0 # y0 = e ^ (e >> (25-11)) + mov f, y2 # y2 = f + ror $(11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6)) + movdqa X1, XTMP1 + xor a, y1 # y1 = a ^ (a >> (22-13) + xor g, y2 # y2 = f^g + paddd X0, XTMP0 # XTMP0 = W[-7] + W[-16] + xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) + and e, y2 # y2 = (f^g)&e + ror $(13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2)) + ## compute s0 + palignr $4, X0, XTMP1 # XTMP1 = W[-15] + xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) + ror $6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) + xor g, y2 # y2 = CH = ((f^g)&e)^g + movdqa XTMP1, XTMP2 # XTMP2 = W[-15] + ror $2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) + add y0, y2 # y2 = S1 + CH + add _XFER(%rsp) , y2 # y2 = k + w + S1 + CH + movdqa XTMP1, XTMP3 # XTMP3 = W[-15] + mov a, y0 # y0 = a + add y2, h # h = h + S1 + CH + k + w + mov a, y2 # y2 = a + pslld $(32-7), XTMP1 # + or c, y0 # y0 = a|c + add h, d # d = d + h + S1 + CH + k + w + and c, y2 # y2 = a&c + psrld $7, XTMP2 # + and b, y0 # y0 = (a|c)&b + add y1, h # h = h + S1 + CH + k + w + S0 + por XTMP2, XTMP1 # XTMP1 = W[-15] ror 7 + or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c) + add y0, h # h = h + S1 + CH + k + w + S0 + MAJ + # + ROTATE_ARGS # + movdqa XTMP3, XTMP2 # XTMP2 = W[-15] + mov e, y0 # y0 = e + mov a, y1 # y1 = a + movdqa XTMP3, XTMP4 # XTMP4 = W[-15] + ror $(25-11), y0 # y0 = e >> (25-11) + xor e, y0 # y0 = e ^ (e >> (25-11)) + mov f, y2 # y2 = f + ror $(22-13), y1 # y1 = a >> (22-13) + pslld $(32-18), XTMP3 # + xor a, y1 # y1 = a ^ (a >> (22-13) + ror $(11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6)) + xor g, y2 # y2 = f^g + psrld $18, XTMP2 # + ror $(13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2)) + xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) + and e, y2 # y2 = (f^g)&e + ror $6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) + pxor XTMP3, XTMP1 + xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) + xor g, y2 # y2 = CH = ((f^g)&e)^g + psrld $3, XTMP4 # XTMP4 = W[-15] >> 3 + add y0, y2 # y2 = S1 + CH + add (1*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH + ror $2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) + pxor XTMP2, XTMP1 # XTMP1 = W[-15] ror 7 ^ W[-15] ror 18 + mov a, y0 # y0 = a + add y2, h # h = h + S1 + CH + k + w + mov a, y2 # y2 = a + pxor XTMP4, XTMP1 # XTMP1 = s0 + or c, y0 # y0 = a|c + add h, d # d = d + h + S1 + CH + k + w + and c, y2 # y2 = a&c + ## compute low s1 + pshufd $0b11111010, X3, XTMP2 # XTMP2 = W[-2] {BBAA} + and b, y0 # y0 = (a|c)&b + add y1, h # h = h + S1 + CH + k + w + S0 + paddd XTMP1, XTMP0 # XTMP0 = W[-16] + W[-7] + s0 + or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c) + add y0, h # h = h + S1 + CH + k + w + S0 + MAJ + + ROTATE_ARGS + movdqa XTMP2, XTMP3 # XTMP3 = W[-2] {BBAA} + mov e, y0 # y0 = e + mov a, y1 # y1 = a + ror $(25-11), y0 # y0 = e >> (25-11) + movdqa XTMP2, XTMP4 # XTMP4 = W[-2] {BBAA} + xor e, y0 # y0 = e ^ (e >> (25-11)) + ror $(22-13), y1 # y1 = a >> (22-13) + mov f, y2 # y2 = f + xor a, y1 # y1 = a ^ (a >> (22-13) + ror $(11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6)) + psrlq $17, XTMP2 # XTMP2 = W[-2] ror 17 {xBxA} + xor g, y2 # y2 = f^g + psrlq $19, XTMP3 # XTMP3 = W[-2] ror 19 {xBxA} + xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) + and e, y2 # y2 = (f^g)&e + psrld $10, XTMP4 # XTMP4 = W[-2] >> 10 {BBAA} + ror $(13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2)) + xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) + xor g, y2 # y2 = CH = ((f^g)&e)^g + ror $6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) + pxor XTMP3, XTMP2 + add y0, y2 # y2 = S1 + CH + ror $2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) + add (2*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH + pxor XTMP2, XTMP4 # XTMP4 = s1 {xBxA} + mov a, y0 # y0 = a + add y2, h # h = h + S1 + CH + k + w + mov a, y2 # y2 = a + pshufb SHUF_00BA, XTMP4 # XTMP4 = s1 {00BA} + or c, y0 # y0 = a|c + add h, d # d = d + h + S1 + CH + k + w + and c, y2 # y2 = a&c + paddd XTMP4, XTMP0 # XTMP0 = {..., ..., W[1], W[0]} + and b, y0 # y0 = (a|c)&b + add y1, h # h = h + S1 + CH + k + w + S0 + ## compute high s1 + pshufd $0b01010000, XTMP0, XTMP2 # XTMP2 = W[-2] {BBAA} + or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c) + add y0, h # h = h + S1 + CH + k + w + S0 + MAJ + # + ROTATE_ARGS # + movdqa XTMP2, XTMP3 # XTMP3 = W[-2] {DDCC} + mov e, y0 # y0 = e + ror $(25-11), y0 # y0 = e >> (25-11) + mov a, y1 # y1 = a + movdqa XTMP2, X0 # X0 = W[-2] {DDCC} + ror $(22-13), y1 # y1 = a >> (22-13) + xor e, y0 # y0 = e ^ (e >> (25-11)) + mov f, y2 # y2 = f + ror $(11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6)) + psrlq $17, XTMP2 # XTMP2 = W[-2] ror 17 {xDxC} + xor a, y1 # y1 = a ^ (a >> (22-13) + xor g, y2 # y2 = f^g + psrlq $19, XTMP3 # XTMP3 = W[-2] ror 19 {xDxC} + xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25 + and e, y2 # y2 = (f^g)&e + ror $(13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2)) + psrld $10, X0 # X0 = W[-2] >> 10 {DDCC} + xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22 + ror $6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>2 + xor g, y2 # y2 = CH = ((f^g)&e)^g + pxor XTMP3, XTMP2 # + ror $2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>2 + add y0, y2 # y2 = S1 + CH + add (3*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH + pxor XTMP2, X0 # X0 = s1 {xDxC} + mov a, y0 # y0 = a + add y2, h # h = h + S1 + CH + k + w + mov a, y2 # y2 = a + pshufb SHUF_DC00, X0 # X0 = s1 {DC00} + or c, y0 # y0 = a|c + add h, d # d = d + h + S1 + CH + k + w + and c, y2 # y2 = a&c + paddd XTMP0, X0 # X0 = {W[3], W[2], W[1], W[0]} + and b, y0 # y0 = (a|c)&b + add y1, h # h = h + S1 + CH + k + w + S0 + or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c) + add y0, h # h = h + S1 + CH + k + w + S0 + MAJ + + ROTATE_ARGS + rotate_Xs +.endm + +## input is [rsp + _XFER + %1 * 4] +.macro DO_ROUND round + mov e, y0 # y0 = e + ror $(25-11), y0 # y0 = e >> (25-11) + mov a, y1 # y1 = a + xor e, y0 # y0 = e ^ (e >> (25-11)) + ror $(22-13), y1 # y1 = a >> (22-13) + mov f, y2 # y2 = f + xor a, y1 # y1 = a ^ (a >> (22-13) + ror $(11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6)) + xor g, y2 # y2 = f^g + xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) + ror $(13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2)) + and e, y2 # y2 = (f^g)&e + xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) + ror $6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) + xor g, y2 # y2 = CH = ((f^g)&e)^g + add y0, y2 # y2 = S1 + CH + ror $2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) + offset = \round * 4 + _XFER + add offset(%rsp), y2 # y2 = k + w + S1 + CH + mov a, y0 # y0 = a + add y2, h # h = h + S1 + CH + k + w + mov a, y2 # y2 = a + or c, y0 # y0 = a|c + add h, d # d = d + h + S1 + CH + k + w + and c, y2 # y2 = a&c + and b, y0 # y0 = (a|c)&b + add y1, h # h = h + S1 + CH + k + w + S0 + or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c) + add y0, h # h = h + S1 + CH + k + w + S0 + MAJ + ROTATE_ARGS +.endm + +######################################################################## +## void sha256_transform_ssse3(u32 state[SHA256_STATE_WORDS], +## const u8 *data, size_t nblocks); +######################################################################## +.text +SYM_FUNC_START(sha256_transform_ssse3) + ANNOTATE_NOENDBR # since this is called only via static_call + + pushq %rbx + pushq %r12 + pushq %r13 + pushq %r14 + pushq %r15 + pushq %rbp + mov %rsp, %rbp + + subq $STACK_SIZE, %rsp + and $~15, %rsp + + shl $6, NUM_BLKS # convert to bytes + jz .Ldone_hash + add INP, NUM_BLKS + mov NUM_BLKS, _INP_END(%rsp) # pointer to end of data + + ## load initial digest + mov 4*0(CTX), a + mov 4*1(CTX), b + mov 4*2(CTX), c + mov 4*3(CTX), d + mov 4*4(CTX), e + mov 4*5(CTX), f + mov 4*6(CTX), g + mov 4*7(CTX), h + + movdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), BYTE_FLIP_MASK + movdqa _SHUF_00BA(%rip), SHUF_00BA + movdqa _SHUF_DC00(%rip), SHUF_DC00 + +.Lloop0: + lea K256(%rip), TBL + + ## byte swap first 16 dwords + COPY_XMM_AND_BSWAP X0, 0*16(INP), BYTE_FLIP_MASK + COPY_XMM_AND_BSWAP X1, 1*16(INP), BYTE_FLIP_MASK + COPY_XMM_AND_BSWAP X2, 2*16(INP), BYTE_FLIP_MASK + COPY_XMM_AND_BSWAP X3, 3*16(INP), BYTE_FLIP_MASK + + mov INP, _INP(%rsp) + + ## schedule 48 input dwords, by doing 3 rounds of 16 each + mov $3, SRND +.align 16 +.Lloop1: + movdqa (TBL), XFER + paddd X0, XFER + movdqa XFER, _XFER(%rsp) + FOUR_ROUNDS_AND_SCHED + + movdqa 1*16(TBL), XFER + paddd X0, XFER + movdqa XFER, _XFER(%rsp) + FOUR_ROUNDS_AND_SCHED + + movdqa 2*16(TBL), XFER + paddd X0, XFER + movdqa XFER, _XFER(%rsp) + FOUR_ROUNDS_AND_SCHED + + movdqa 3*16(TBL), XFER + paddd X0, XFER + movdqa XFER, _XFER(%rsp) + add $4*16, TBL + FOUR_ROUNDS_AND_SCHED + + sub $1, SRND + jne .Lloop1 + + mov $2, SRND +.Lloop2: + paddd (TBL), X0 + movdqa X0, _XFER(%rsp) + DO_ROUND 0 + DO_ROUND 1 + DO_ROUND 2 + DO_ROUND 3 + paddd 1*16(TBL), X1 + movdqa X1, _XFER(%rsp) + add $2*16, TBL + DO_ROUND 0 + DO_ROUND 1 + DO_ROUND 2 + DO_ROUND 3 + + movdqa X2, X0 + movdqa X3, X1 + + sub $1, SRND + jne .Lloop2 + + addm (4*0)(CTX),a + addm (4*1)(CTX),b + addm (4*2)(CTX),c + addm (4*3)(CTX),d + addm (4*4)(CTX),e + addm (4*5)(CTX),f + addm (4*6)(CTX),g + addm (4*7)(CTX),h + + mov _INP(%rsp), INP + add $64, INP + cmp _INP_END(%rsp), INP + jne .Lloop0 + +.Ldone_hash: + + mov %rbp, %rsp + popq %rbp + popq %r15 + popq %r14 + popq %r13 + popq %r12 + popq %rbx + + RET +SYM_FUNC_END(sha256_transform_ssse3) + +.section .rodata.cst256.K256, "aM", @progbits, 256 +.align 64 +K256: + .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 + .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 + .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 + .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 + .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc + .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da + .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 + .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 + .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 + .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 + .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 + .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 + .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 + .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 + .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 + .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 + +.section .rodata.cst16.PSHUFFLE_BYTE_FLIP_MASK, "aM", @progbits, 16 +.align 16 +PSHUFFLE_BYTE_FLIP_MASK: + .octa 0x0c0d0e0f08090a0b0405060700010203 + +.section .rodata.cst16._SHUF_00BA, "aM", @progbits, 16 +.align 16 +# shuffle xBxA -> 00BA +_SHUF_00BA: + .octa 0xFFFFFFFFFFFFFFFF0b0a090803020100 + +.section .rodata.cst16._SHUF_DC00, "aM", @progbits, 16 +.align 16 +# shuffle xDxC -> DC00 +_SHUF_DC00: + .octa 0x0b0a090803020100FFFFFFFFFFFFFFFF diff --git a/arch/x86/lib/crypto/sha256.c b/arch/x86/lib/crypto/sha256.c new file mode 100644 index 000000000000..80380f8fdcee --- /dev/null +++ b/arch/x86/lib/crypto/sha256.c @@ -0,0 +1,80 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * SHA-256 optimized for x86_64 + * + * Copyright 2025 Google LLC + */ +#include <asm/fpu/api.h> +#include <crypto/internal/sha2.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/static_call.h> + +asmlinkage void sha256_transform_ssse3(u32 state[SHA256_STATE_WORDS], + const u8 *data, size_t nblocks); +asmlinkage void sha256_transform_avx(u32 state[SHA256_STATE_WORDS], + const u8 *data, size_t nblocks); +asmlinkage void sha256_transform_rorx(u32 state[SHA256_STATE_WORDS], + const u8 *data, size_t nblocks); +asmlinkage void sha256_ni_transform(u32 state[SHA256_STATE_WORDS], + const u8 *data, size_t nblocks); + +static __ro_after_init DEFINE_STATIC_KEY_FALSE(have_sha256_x86); + +DEFINE_STATIC_CALL(sha256_blocks_x86, sha256_transform_ssse3); + +void sha256_blocks_simd(u32 state[SHA256_STATE_WORDS], + const u8 *data, size_t nblocks) +{ + if (static_branch_likely(&have_sha256_x86)) { + kernel_fpu_begin(); + static_call(sha256_blocks_x86)(state, data, nblocks); + kernel_fpu_end(); + } else { + sha256_blocks_generic(state, data, nblocks); + } +} +EXPORT_SYMBOL_GPL(sha256_blocks_simd); + +void sha256_blocks_arch(u32 state[SHA256_STATE_WORDS], + const u8 *data, size_t nblocks) +{ + sha256_blocks_generic(state, data, nblocks); +} +EXPORT_SYMBOL_GPL(sha256_blocks_arch); + +bool sha256_is_arch_optimized(void) +{ + return static_key_enabled(&have_sha256_x86); +} +EXPORT_SYMBOL_GPL(sha256_is_arch_optimized); + +static int __init sha256_x86_mod_init(void) +{ + if (boot_cpu_has(X86_FEATURE_SHA_NI)) { + static_call_update(sha256_blocks_x86, sha256_ni_transform); + } else if (cpu_has_xfeatures(XFEATURE_MASK_SSE | + XFEATURE_MASK_YMM, NULL) && + boot_cpu_has(X86_FEATURE_AVX)) { + if (boot_cpu_has(X86_FEATURE_AVX2) && + boot_cpu_has(X86_FEATURE_BMI2)) + static_call_update(sha256_blocks_x86, + sha256_transform_rorx); + else + static_call_update(sha256_blocks_x86, + sha256_transform_avx); + } else if (!boot_cpu_has(X86_FEATURE_SSSE3)) { + return 0; + } + static_branch_enable(&have_sha256_x86); + return 0; +} +subsys_initcall(sha256_x86_mod_init); + +static void __exit sha256_x86_mod_exit(void) +{ +} +module_exit(sha256_x86_mod_exit); + +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("SHA-256 optimized for x86_64"); diff --git a/arch/x86/lib/delay.c b/arch/x86/lib/delay.c index 23f81ca3f06b..eb2d2e1cbddd 100644 --- a/arch/x86/lib/delay.c +++ b/arch/x86/lib/delay.c @@ -75,7 +75,7 @@ static void delay_tsc(u64 cycles) /* Allow RT tasks to run */ preempt_enable(); - rep_nop(); + native_pause(); preempt_disable(); /* @@ -131,7 +131,7 @@ static void delay_halt_mwaitx(u64 unused, u64 cycles) * Use cpu_tss_rw as a cacheline-aligned, seldom accessed per-cpu * variable as the monitor target. */ - __monitorx(raw_cpu_ptr(&cpu_tss_rw), 0, 0); + __monitorx(raw_cpu_ptr(&cpu_tss_rw), 0, 0); /* * AMD, like Intel, supports the EAX hint and EAX=0xf means, do not diff --git a/arch/x86/lib/getuser.S b/arch/x86/lib/getuser.S index 89ecd57c9d42..9d5654b8a72a 100644 --- a/arch/x86/lib/getuser.S +++ b/arch/x86/lib/getuser.S @@ -28,22 +28,20 @@ #include <linux/export.h> #include <linux/linkage.h> +#include <linux/objtool.h> #include <asm/page_types.h> #include <asm/errno.h> #include <asm/asm-offsets.h> #include <asm/thread_info.h> #include <asm/asm.h> #include <asm/smap.h> +#include <asm/runtime-const.h> #define ASM_BARRIER_NOSPEC ALTERNATIVE "", "lfence", X86_FEATURE_LFENCE_RDTSC .macro check_range size:req .if IS_ENABLED(CONFIG_X86_64) - movq $0x0123456789abcdef,%rdx - 1: - .pushsection runtime_ptr_USER_PTR_MAX,"a" - .long 1b - 8 - . - .popsection + RUNTIME_CONST_PTR USER_PTR_MAX, rdx cmp %rdx, %rax cmova %rdx, %rax .else @@ -62,6 +60,7 @@ .text SYM_FUNC_START(__get_user_1) + ANNOTATE_NOENDBR check_range size=1 ASM_STAC UACCESS movzbl (%_ASM_AX),%edx @@ -72,6 +71,7 @@ SYM_FUNC_END(__get_user_1) EXPORT_SYMBOL(__get_user_1) SYM_FUNC_START(__get_user_2) + ANNOTATE_NOENDBR check_range size=2 ASM_STAC UACCESS movzwl (%_ASM_AX),%edx @@ -82,6 +82,7 @@ SYM_FUNC_END(__get_user_2) EXPORT_SYMBOL(__get_user_2) SYM_FUNC_START(__get_user_4) + ANNOTATE_NOENDBR check_range size=4 ASM_STAC UACCESS movl (%_ASM_AX),%edx @@ -92,6 +93,7 @@ SYM_FUNC_END(__get_user_4) EXPORT_SYMBOL(__get_user_4) SYM_FUNC_START(__get_user_8) + ANNOTATE_NOENDBR #ifndef CONFIG_X86_64 xor %ecx,%ecx #endif @@ -111,6 +113,7 @@ EXPORT_SYMBOL(__get_user_8) /* .. and the same for __get_user, just without the range checks */ SYM_FUNC_START(__get_user_nocheck_1) + ANNOTATE_NOENDBR ASM_STAC ASM_BARRIER_NOSPEC UACCESS movzbl (%_ASM_AX),%edx @@ -121,6 +124,7 @@ SYM_FUNC_END(__get_user_nocheck_1) EXPORT_SYMBOL(__get_user_nocheck_1) SYM_FUNC_START(__get_user_nocheck_2) + ANNOTATE_NOENDBR ASM_STAC ASM_BARRIER_NOSPEC UACCESS movzwl (%_ASM_AX),%edx @@ -131,6 +135,7 @@ SYM_FUNC_END(__get_user_nocheck_2) EXPORT_SYMBOL(__get_user_nocheck_2) SYM_FUNC_START(__get_user_nocheck_4) + ANNOTATE_NOENDBR ASM_STAC ASM_BARRIER_NOSPEC UACCESS movl (%_ASM_AX),%edx @@ -141,6 +146,7 @@ SYM_FUNC_END(__get_user_nocheck_4) EXPORT_SYMBOL(__get_user_nocheck_4) SYM_FUNC_START(__get_user_nocheck_8) + ANNOTATE_NOENDBR ASM_STAC ASM_BARRIER_NOSPEC #ifdef CONFIG_X86_64 diff --git a/arch/x86/lib/hweight.S b/arch/x86/lib/hweight.S index 774bdf3e6f0a..edbeb3ecad38 100644 --- a/arch/x86/lib/hweight.S +++ b/arch/x86/lib/hweight.S @@ -1,6 +1,7 @@ /* SPDX-License-Identifier: GPL-2.0 */ #include <linux/export.h> #include <linux/linkage.h> +#include <linux/objtool.h> #include <asm/asm.h> @@ -9,6 +10,7 @@ * %rdi: w */ SYM_FUNC_START(__sw_hweight32) + ANNOTATE_NOENDBR #ifdef CONFIG_X86_64 movl %edi, %eax # w @@ -42,6 +44,7 @@ EXPORT_SYMBOL(__sw_hweight32) */ #ifdef CONFIG_X86_64 SYM_FUNC_START(__sw_hweight64) + ANNOTATE_NOENDBR pushq %rdi pushq %rdx diff --git a/arch/x86/lib/insn-eval.c b/arch/x86/lib/insn-eval.c index 98631c0e7a11..4e385cbfd444 100644 --- a/arch/x86/lib/insn-eval.c +++ b/arch/x86/lib/insn-eval.c @@ -13,6 +13,7 @@ #include <asm/insn.h> #include <asm/insn-eval.h> #include <asm/ldt.h> +#include <asm/msr.h> #include <asm/vm86.h> #undef pr_fmt @@ -631,14 +632,21 @@ static bool get_desc(struct desc_struct *out, unsigned short sel) /* Bits [15:3] contain the index of the desired entry. */ sel >>= 3; - mutex_lock(¤t->active_mm->context.lock); - ldt = current->active_mm->context.ldt; + /* + * If we're not in a valid context with a real (not just lazy) + * user mm, then don't even try. + */ + if (!nmi_uaccess_okay()) + return false; + + mutex_lock(¤t->mm->context.lock); + ldt = current->mm->context.ldt; if (ldt && sel < ldt->nr_entries) { *out = ldt->entries[sel]; success = true; } - mutex_unlock(¤t->active_mm->context.lock); + mutex_unlock(¤t->mm->context.lock); return success; } @@ -702,16 +710,16 @@ unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx) unsigned long base; if (seg_reg_idx == INAT_SEG_REG_FS) { - rdmsrl(MSR_FS_BASE, base); + rdmsrq(MSR_FS_BASE, base); } else if (seg_reg_idx == INAT_SEG_REG_GS) { /* * swapgs was called at the kernel entry point. Thus, * MSR_KERNEL_GS_BASE will have the user-space GS base. */ if (user_mode(regs)) - rdmsrl(MSR_KERNEL_GS_BASE, base); + rdmsrq(MSR_KERNEL_GS_BASE, base); else - rdmsrl(MSR_GS_BASE, base); + rdmsrq(MSR_GS_BASE, base); } else { base = 0; } diff --git a/arch/x86/lib/insn.c b/arch/x86/lib/insn.c index 6ffb931b9fb1..149a57e334ab 100644 --- a/arch/x86/lib/insn.c +++ b/arch/x86/lib/insn.c @@ -324,6 +324,11 @@ int insn_get_opcode(struct insn *insn) } insn->attr = inat_get_opcode_attribute(op); + if (insn->x86_64 && inat_is_invalid64(insn->attr)) { + /* This instruction is invalid, like UD2. Stop decoding. */ + insn->attr &= INAT_INV64; + } + while (inat_is_escape(insn->attr)) { /* Get escaped opcode */ op = get_next(insn_byte_t, insn); @@ -337,6 +342,7 @@ int insn_get_opcode(struct insn *insn) insn->attr = 0; return -EINVAL; } + end: opcode->got = 1; return 0; @@ -658,7 +664,6 @@ int insn_get_immediate(struct insn *insn) } if (!inat_has_immediate(insn->attr)) - /* no immediates */ goto done; switch (inat_immediate_size(insn->attr)) { diff --git a/arch/x86/lib/iomem.c b/arch/x86/lib/iomem.c index 5eecb45d05d5..c20e04764edc 100644 --- a/arch/x86/lib/iomem.c +++ b/arch/x86/lib/iomem.c @@ -10,7 +10,7 @@ static __always_inline void rep_movs(void *to, const void *from, size_t n) { unsigned long d0, d1, d2; - asm volatile("rep ; movsl\n\t" + asm volatile("rep movsl\n\t" "testb $2,%b4\n\t" "je 1f\n\t" "movsw\n" diff --git a/arch/x86/lib/kaslr.c b/arch/x86/lib/kaslr.c index a58f451a7dd3..b5893928d55c 100644 --- a/arch/x86/lib/kaslr.c +++ b/arch/x86/lib/kaslr.c @@ -8,7 +8,7 @@ */ #include <asm/asm.h> #include <asm/kaslr.h> -#include <asm/msr.h> +#include <asm/tsc.h> #include <asm/archrandom.h> #include <asm/e820/api.h> #include <asm/shared/io.h> diff --git a/arch/x86/lib/memcpy_64.S b/arch/x86/lib/memcpy_64.S index 0ae2e1712e2e..12a23fa7c44c 100644 --- a/arch/x86/lib/memcpy_64.S +++ b/arch/x86/lib/memcpy_64.S @@ -41,6 +41,7 @@ SYM_FUNC_END(__memcpy) EXPORT_SYMBOL(__memcpy) SYM_FUNC_ALIAS_MEMFUNC(memcpy, __memcpy) +SYM_PIC_ALIAS(memcpy) EXPORT_SYMBOL(memcpy) SYM_FUNC_START_LOCAL(memcpy_orig) diff --git a/arch/x86/lib/memmove_64.S b/arch/x86/lib/memmove_64.S index 1b60ae81ecd8..aa1f92ee6b2e 100644 --- a/arch/x86/lib/memmove_64.S +++ b/arch/x86/lib/memmove_64.S @@ -8,6 +8,7 @@ */ #include <linux/export.h> #include <linux/linkage.h> +#include <linux/cfi_types.h> #include <asm/cpufeatures.h> #include <asm/alternative.h> @@ -26,7 +27,7 @@ * Output: * rax: dest */ -SYM_FUNC_START(__memmove) +SYM_TYPED_FUNC_START(__memmove) mov %rdi, %rax diff --git a/arch/x86/lib/memset_64.S b/arch/x86/lib/memset_64.S index 0199d56cb479..fb5a03cf5ab7 100644 --- a/arch/x86/lib/memset_64.S +++ b/arch/x86/lib/memset_64.S @@ -3,6 +3,7 @@ #include <linux/export.h> #include <linux/linkage.h> +#include <linux/cfi_types.h> #include <asm/cpufeatures.h> #include <asm/alternative.h> @@ -28,7 +29,7 @@ * only for the return value that is the same as the source input, * which the compiler could/should do much better anyway. */ -SYM_FUNC_START(__memset) +SYM_TYPED_FUNC_START(__memset) ALTERNATIVE "jmp memset_orig", "", X86_FEATURE_FSRS movq %rdi,%r9 @@ -41,6 +42,7 @@ SYM_FUNC_END(__memset) EXPORT_SYMBOL(__memset) SYM_FUNC_ALIAS_MEMFUNC(memset, __memset) +SYM_PIC_ALIAS(memset) EXPORT_SYMBOL(memset) SYM_FUNC_START_LOCAL(memset_orig) diff --git a/arch/x86/lib/msr-reg.S b/arch/x86/lib/msr-reg.S index ebd259f31496..5ef8494896e8 100644 --- a/arch/x86/lib/msr-reg.S +++ b/arch/x86/lib/msr-reg.S @@ -1,6 +1,7 @@ /* SPDX-License-Identifier: GPL-2.0 */ #include <linux/linkage.h> #include <linux/errno.h> +#include <linux/cfi_types.h> #include <asm/asm.h> #include <asm/msr.h> @@ -12,7 +13,7 @@ * */ .macro op_safe_regs op -SYM_FUNC_START(\op\()_safe_regs) +SYM_TYPED_FUNC_START(\op\()_safe_regs) pushq %rbx pushq %r12 movq %rdi, %r10 /* Save pointer */ diff --git a/arch/x86/lib/msr-smp.c b/arch/x86/lib/msr-smp.c index acd463d887e1..b8f63419e6ae 100644 --- a/arch/x86/lib/msr-smp.c +++ b/arch/x86/lib/msr-smp.c @@ -47,7 +47,7 @@ int rdmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h) } EXPORT_SYMBOL(rdmsr_on_cpu); -int rdmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 *q) +int rdmsrq_on_cpu(unsigned int cpu, u32 msr_no, u64 *q) { int err; struct msr_info rv; @@ -60,7 +60,7 @@ int rdmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 *q) return err; } -EXPORT_SYMBOL(rdmsrl_on_cpu); +EXPORT_SYMBOL(rdmsrq_on_cpu); int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h) { @@ -78,7 +78,7 @@ int wrmsr_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h) } EXPORT_SYMBOL(wrmsr_on_cpu); -int wrmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 q) +int wrmsrq_on_cpu(unsigned int cpu, u32 msr_no, u64 q) { int err; struct msr_info rv; @@ -92,7 +92,7 @@ int wrmsrl_on_cpu(unsigned int cpu, u32 msr_no, u64 q) return err; } -EXPORT_SYMBOL(wrmsrl_on_cpu); +EXPORT_SYMBOL(wrmsrq_on_cpu); static void __rwmsr_on_cpus(const struct cpumask *mask, u32 msr_no, struct msr __percpu *msrs, @@ -204,7 +204,7 @@ int wrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 l, u32 h) } EXPORT_SYMBOL(wrmsr_safe_on_cpu); -int wrmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 q) +int wrmsrq_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 q) { int err; struct msr_info rv; @@ -218,9 +218,9 @@ int wrmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 q) return err ? err : rv.err; } -EXPORT_SYMBOL(wrmsrl_safe_on_cpu); +EXPORT_SYMBOL(wrmsrq_safe_on_cpu); -int rdmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 *q) +int rdmsrq_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 *q) { u32 low, high; int err; @@ -230,7 +230,7 @@ int rdmsrl_safe_on_cpu(unsigned int cpu, u32 msr_no, u64 *q) return err; } -EXPORT_SYMBOL(rdmsrl_safe_on_cpu); +EXPORT_SYMBOL(rdmsrq_safe_on_cpu); /* * These variants are significantly slower, but allows control over diff --git a/arch/x86/lib/msr.c b/arch/x86/lib/msr.c index 4bf4fad5b148..4ef7c6dcbea6 100644 --- a/arch/x86/lib/msr.c +++ b/arch/x86/lib/msr.c @@ -41,7 +41,7 @@ static int msr_read(u32 msr, struct msr *m) int err; u64 val; - err = rdmsrl_safe(msr, &val); + err = rdmsrq_safe(msr, &val); if (!err) m->q = val; @@ -58,7 +58,7 @@ static int msr_read(u32 msr, struct msr *m) */ static int msr_write(u32 msr, struct msr *m) { - return wrmsrl_safe(msr, m->q); + return wrmsrq_safe(msr, m->q); } static inline int __flip_bit(u32 msr, u8 bit, bool set) @@ -103,6 +103,7 @@ int msr_set_bit(u32 msr, u8 bit) { return __flip_bit(msr, bit, true); } +EXPORT_SYMBOL_GPL(msr_set_bit); /** * msr_clear_bit - Clear @bit in a MSR @msr. @@ -118,25 +119,26 @@ int msr_clear_bit(u32 msr, u8 bit) { return __flip_bit(msr, bit, false); } +EXPORT_SYMBOL_GPL(msr_clear_bit); #ifdef CONFIG_TRACEPOINTS -void do_trace_write_msr(unsigned int msr, u64 val, int failed) +void do_trace_write_msr(u32 msr, u64 val, int failed) { trace_write_msr(msr, val, failed); } EXPORT_SYMBOL(do_trace_write_msr); EXPORT_TRACEPOINT_SYMBOL(write_msr); -void do_trace_read_msr(unsigned int msr, u64 val, int failed) +void do_trace_read_msr(u32 msr, u64 val, int failed) { trace_read_msr(msr, val, failed); } EXPORT_SYMBOL(do_trace_read_msr); EXPORT_TRACEPOINT_SYMBOL(read_msr); -void do_trace_rdpmc(unsigned counter, u64 val, int failed) +void do_trace_rdpmc(u32 msr, u64 val, int failed) { - trace_rdpmc(counter, val, failed); + trace_rdpmc(msr, val, failed); } EXPORT_SYMBOL(do_trace_rdpmc); EXPORT_TRACEPOINT_SYMBOL(rdpmc); diff --git a/arch/x86/lib/putuser.S b/arch/x86/lib/putuser.S index 975c9c18263d..46d9e9b98a61 100644 --- a/arch/x86/lib/putuser.S +++ b/arch/x86/lib/putuser.S @@ -13,6 +13,7 @@ */ #include <linux/export.h> #include <linux/linkage.h> +#include <linux/objtool.h> #include <asm/thread_info.h> #include <asm/errno.h> #include <asm/asm.h> @@ -45,6 +46,7 @@ .text SYM_FUNC_START(__put_user_1) + ANNOTATE_NOENDBR check_range size=1 ASM_STAC 1: movb %al,(%_ASM_CX) @@ -55,6 +57,7 @@ SYM_FUNC_END(__put_user_1) EXPORT_SYMBOL(__put_user_1) SYM_FUNC_START(__put_user_nocheck_1) + ANNOTATE_NOENDBR ASM_STAC 2: movb %al,(%_ASM_CX) xor %ecx,%ecx @@ -64,6 +67,7 @@ SYM_FUNC_END(__put_user_nocheck_1) EXPORT_SYMBOL(__put_user_nocheck_1) SYM_FUNC_START(__put_user_2) + ANNOTATE_NOENDBR check_range size=2 ASM_STAC 3: movw %ax,(%_ASM_CX) @@ -74,6 +78,7 @@ SYM_FUNC_END(__put_user_2) EXPORT_SYMBOL(__put_user_2) SYM_FUNC_START(__put_user_nocheck_2) + ANNOTATE_NOENDBR ASM_STAC 4: movw %ax,(%_ASM_CX) xor %ecx,%ecx @@ -83,6 +88,7 @@ SYM_FUNC_END(__put_user_nocheck_2) EXPORT_SYMBOL(__put_user_nocheck_2) SYM_FUNC_START(__put_user_4) + ANNOTATE_NOENDBR check_range size=4 ASM_STAC 5: movl %eax,(%_ASM_CX) @@ -93,6 +99,7 @@ SYM_FUNC_END(__put_user_4) EXPORT_SYMBOL(__put_user_4) SYM_FUNC_START(__put_user_nocheck_4) + ANNOTATE_NOENDBR ASM_STAC 6: movl %eax,(%_ASM_CX) xor %ecx,%ecx @@ -102,6 +109,7 @@ SYM_FUNC_END(__put_user_nocheck_4) EXPORT_SYMBOL(__put_user_nocheck_4) SYM_FUNC_START(__put_user_8) + ANNOTATE_NOENDBR check_range size=8 ASM_STAC 7: mov %_ASM_AX,(%_ASM_CX) @@ -115,6 +123,7 @@ SYM_FUNC_END(__put_user_8) EXPORT_SYMBOL(__put_user_8) SYM_FUNC_START(__put_user_nocheck_8) + ANNOTATE_NOENDBR ASM_STAC 9: mov %_ASM_AX,(%_ASM_CX) #ifdef CONFIG_X86_32 diff --git a/arch/x86/lib/retpoline.S b/arch/x86/lib/retpoline.S index 391059b2c6fb..d78d769a02bd 100644 --- a/arch/x86/lib/retpoline.S +++ b/arch/x86/lib/retpoline.S @@ -40,6 +40,7 @@ SYM_INNER_LABEL(__x86_indirect_thunk_\reg, SYM_L_GLOBAL) ALTERNATIVE_2 __stringify(RETPOLINE \reg), \ __stringify(lfence; ANNOTATE_RETPOLINE_SAFE; jmp *%\reg; int3), X86_FEATURE_RETPOLINE_LFENCE, \ __stringify(ANNOTATE_RETPOLINE_SAFE; jmp *%\reg), ALT_NOT(X86_FEATURE_RETPOLINE) +SYM_PIC_ALIAS(__x86_indirect_thunk_\reg) .endm @@ -326,6 +327,7 @@ SYM_FUNC_END(retbleed_untrain_ret) #if defined(CONFIG_MITIGATION_UNRET_ENTRY) || defined(CONFIG_MITIGATION_SRSO) SYM_FUNC_START(entry_untrain_ret) + ANNOTATE_NOENDBR ALTERNATIVE JMP_RETBLEED_UNTRAIN_RET, JMP_SRSO_UNTRAIN_RET, X86_FEATURE_SRSO SYM_FUNC_END(entry_untrain_ret) __EXPORT_THUNK(entry_untrain_ret) @@ -342,7 +344,7 @@ SYM_FUNC_START(call_depth_return_thunk) * case. */ CALL_THUNKS_DEBUG_INC_RETS - shlq $5, PER_CPU_VAR(pcpu_hot + X86_call_depth) + shlq $5, PER_CPU_VAR(__x86_call_depth) jz 1f ANNOTATE_UNRET_SAFE ret @@ -366,6 +368,54 @@ SYM_FUNC_END(call_depth_return_thunk) #endif /* CONFIG_MITIGATION_CALL_DEPTH_TRACKING */ +#ifdef CONFIG_MITIGATION_ITS + +.macro ITS_THUNK reg + +/* + * If CFI paranoid is used then the ITS thunk starts with opcodes (0xea; jne 1b) + * that complete the fineibt_paranoid caller sequence. + */ +1: .byte 0xea +SYM_INNER_LABEL(__x86_indirect_paranoid_thunk_\reg, SYM_L_GLOBAL) + UNWIND_HINT_UNDEFINED + ANNOTATE_NOENDBR + jne 1b +SYM_INNER_LABEL(__x86_indirect_its_thunk_\reg, SYM_L_GLOBAL) + UNWIND_HINT_UNDEFINED + ANNOTATE_NOENDBR + ANNOTATE_RETPOLINE_SAFE + jmp *%\reg + int3 + .align 32, 0xcc /* fill to the end of the line */ + .skip 32 - (__x86_indirect_its_thunk_\reg - 1b), 0xcc /* skip to the next upper half */ +.endm + +/* ITS mitigation requires thunks be aligned to upper half of cacheline */ +.align 64, 0xcc +.skip 29, 0xcc + +#define GEN(reg) ITS_THUNK reg +#include <asm/GEN-for-each-reg.h> +#undef GEN + + .align 64, 0xcc +SYM_FUNC_ALIAS(__x86_indirect_its_thunk_array, __x86_indirect_its_thunk_rax) +SYM_CODE_END(__x86_indirect_its_thunk_array) + +.align 64, 0xcc +.skip 32, 0xcc +SYM_CODE_START(its_return_thunk) + UNWIND_HINT_FUNC + ANNOTATE_NOENDBR + ANNOTATE_UNRET_SAFE + ret + int3 +SYM_CODE_END(its_return_thunk) +EXPORT_SYMBOL(its_return_thunk) + +#endif /* CONFIG_MITIGATION_ITS */ + /* * This function name is magical and is used by -mfunction-return=thunk-extern * for the compiler to generate JMPs to it. @@ -393,6 +443,7 @@ SYM_CODE_START(__x86_return_thunk) #endif int3 SYM_CODE_END(__x86_return_thunk) +SYM_PIC_ALIAS(__x86_return_thunk) EXPORT_SYMBOL(__x86_return_thunk) #endif /* CONFIG_MITIGATION_RETHUNK */ diff --git a/arch/x86/lib/string_32.c b/arch/x86/lib/string_32.c index 53b3f202267c..f87ec24fa579 100644 --- a/arch/x86/lib/string_32.c +++ b/arch/x86/lib/string_32.c @@ -40,8 +40,7 @@ char *strncpy(char *dest, const char *src, size_t count) "stosb\n\t" "testb %%al,%%al\n\t" "jne 1b\n\t" - "rep\n\t" - "stosb\n" + "rep stosb\n" "2:" : "=&S" (d0), "=&D" (d1), "=&c" (d2), "=&a" (d3) : "0" (src), "1" (dest), "2" (count) : "memory"); @@ -54,8 +53,7 @@ EXPORT_SYMBOL(strncpy); char *strcat(char *dest, const char *src) { int d0, d1, d2, d3; - asm volatile("repne\n\t" - "scasb\n\t" + asm volatile("repne scasb\n\t" "decl %1\n" "1:\tlodsb\n\t" "stosb\n\t" @@ -72,8 +70,7 @@ EXPORT_SYMBOL(strcat); char *strncat(char *dest, const char *src, size_t count) { int d0, d1, d2, d3; - asm volatile("repne\n\t" - "scasb\n\t" + asm volatile("repne scasb\n\t" "decl %1\n\t" "movl %8,%3\n" "1:\tdecl %3\n\t" @@ -167,8 +164,7 @@ size_t strlen(const char *s) { int d0; size_t res; - asm volatile("repne\n\t" - "scasb" + asm volatile("repne scasb" : "=c" (res), "=&D" (d0) : "1" (s), "a" (0), "0" (0xffffffffu) : "memory"); @@ -184,8 +180,7 @@ void *memchr(const void *cs, int c, size_t count) void *res; if (!count) return NULL; - asm volatile("repne\n\t" - "scasb\n\t" + asm volatile("repne scasb\n\t" "je 1f\n\t" "movl $1,%0\n" "1:\tdecl %0" @@ -202,7 +197,7 @@ void *memscan(void *addr, int c, size_t size) { if (!size) return addr; - asm volatile("repnz; scasb\n\t" + asm volatile("repnz scasb\n\t" "jnz 1f\n\t" "dec %%edi\n" "1:" diff --git a/arch/x86/lib/strstr_32.c b/arch/x86/lib/strstr_32.c index 38f37df056f7..28267985e85f 100644 --- a/arch/x86/lib/strstr_32.c +++ b/arch/x86/lib/strstr_32.c @@ -8,16 +8,14 @@ int d0, d1; register char *__res; __asm__ __volatile__( "movl %6,%%edi\n\t" - "repne\n\t" - "scasb\n\t" + "repne scasb\n\t" "notl %%ecx\n\t" "decl %%ecx\n\t" /* NOTE! This also sets Z if searchstring='' */ "movl %%ecx,%%edx\n" "1:\tmovl %6,%%edi\n\t" "movl %%esi,%%eax\n\t" "movl %%edx,%%ecx\n\t" - "repe\n\t" - "cmpsb\n\t" + "repe cmpsb\n\t" "je 2f\n\t" /* also works for empty string, see above */ "xchgl %%eax,%%esi\n\t" "incl %%esi\n\t" diff --git a/arch/x86/lib/usercopy_32.c b/arch/x86/lib/usercopy_32.c index 422257c350c6..f6f436f1d573 100644 --- a/arch/x86/lib/usercopy_32.c +++ b/arch/x86/lib/usercopy_32.c @@ -38,9 +38,9 @@ do { \ might_fault(); \ __asm__ __volatile__( \ ASM_STAC "\n" \ - "0: rep; stosl\n" \ + "0: rep stosl\n" \ " movl %2,%0\n" \ - "1: rep; stosb\n" \ + "1: rep stosb\n" \ "2: " ASM_CLAC "\n" \ _ASM_EXTABLE_TYPE_REG(0b, 2b, EX_TYPE_UCOPY_LEN4, %2) \ _ASM_EXTABLE_UA(1b, 2b) \ @@ -140,9 +140,9 @@ __copy_user_intel(void __user *to, const void *from, unsigned long size) " shrl $2, %0\n" " andl $3, %%eax\n" " cld\n" - "99: rep; movsl\n" + "99: rep movsl\n" "36: movl %%eax, %0\n" - "37: rep; movsb\n" + "37: rep movsb\n" "100:\n" _ASM_EXTABLE_UA(1b, 100b) _ASM_EXTABLE_UA(2b, 100b) @@ -242,9 +242,9 @@ static unsigned long __copy_user_intel_nocache(void *to, " shrl $2, %0\n" " andl $3, %%eax\n" " cld\n" - "6: rep; movsl\n" + "6: rep movsl\n" " movl %%eax,%0\n" - "7: rep; movsb\n" + "7: rep movsb\n" "8:\n" _ASM_EXTABLE_UA(0b, 8b) _ASM_EXTABLE_UA(1b, 8b) @@ -293,14 +293,14 @@ do { \ " negl %0\n" \ " andl $7,%0\n" \ " subl %0,%3\n" \ - "4: rep; movsb\n" \ + "4: rep movsb\n" \ " movl %3,%0\n" \ " shrl $2,%0\n" \ " andl $3,%3\n" \ " .align 2,0x90\n" \ - "0: rep; movsl\n" \ + "0: rep movsl\n" \ " movl %3,%0\n" \ - "1: rep; movsb\n" \ + "1: rep movsb\n" \ "2:\n" \ _ASM_EXTABLE_TYPE_REG(4b, 2b, EX_TYPE_UCOPY_LEN1, %3) \ _ASM_EXTABLE_TYPE_REG(0b, 2b, EX_TYPE_UCOPY_LEN4, %3) \ diff --git a/arch/x86/lib/usercopy_64.c b/arch/x86/lib/usercopy_64.c index e9251b89a9e9..654280aaa3e9 100644 --- a/arch/x86/lib/usercopy_64.c +++ b/arch/x86/lib/usercopy_64.c @@ -18,7 +18,7 @@ #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE /** * clean_cache_range - write back a cache range with CLWB - * @vaddr: virtual start address + * @addr: virtual start address * @size: number of bytes to write back * * Write back a cache range using the CLWB (cache line write back) diff --git a/arch/x86/lib/x86-opcode-map.txt b/arch/x86/lib/x86-opcode-map.txt index caedb3ef6688..262f7ca1fb95 100644 --- a/arch/x86/lib/x86-opcode-map.txt +++ b/arch/x86/lib/x86-opcode-map.txt @@ -35,7 +35,7 @@ # - (!F3) : the last prefix is not 0xF3 (including non-last prefix case) # - (66&F2): Both 0x66 and 0xF2 prefixes are specified. # -# REX2 Prefix +# REX2 Prefix Superscripts # - (!REX2): REX2 is not allowed # - (REX2): REX2 variant e.g. JMPABS @@ -147,7 +147,7 @@ AVXcode: # 0x60 - 0x6f 60: PUSHA/PUSHAD (i64) 61: POPA/POPAD (i64) -62: BOUND Gv,Ma (i64) | EVEX (Prefix) +62: BOUND Gv,Ma (i64) | EVEX (Prefix),(o64) 63: ARPL Ew,Gw (i64) | MOVSXD Gv,Ev (o64) 64: SEG=FS (Prefix) 65: SEG=GS (Prefix) @@ -253,8 +253,8 @@ c0: Grp2 Eb,Ib (1A) c1: Grp2 Ev,Ib (1A) c2: RETN Iw (f64) c3: RETN -c4: LES Gz,Mp (i64) | VEX+2byte (Prefix) -c5: LDS Gz,Mp (i64) | VEX+1byte (Prefix) +c4: LES Gz,Mp (i64) | VEX+2byte (Prefix),(o64) +c5: LDS Gz,Mp (i64) | VEX+1byte (Prefix),(o64) c6: Grp11A Eb,Ib (1A) c7: Grp11B Ev,Iz (1A) c8: ENTER Iw,Ib @@ -286,10 +286,10 @@ df: ESC # Note: "forced64" is Intel CPU behavior: they ignore 0x66 prefix # in 64-bit mode. AMD CPUs accept 0x66 prefix, it causes RIP truncation # to 16 bits. In 32-bit mode, 0x66 is accepted by both Intel and AMD. -e0: LOOPNE/LOOPNZ Jb (f64) (!REX2) -e1: LOOPE/LOOPZ Jb (f64) (!REX2) -e2: LOOP Jb (f64) (!REX2) -e3: JrCXZ Jb (f64) (!REX2) +e0: LOOPNE/LOOPNZ Jb (f64),(!REX2) +e1: LOOPE/LOOPZ Jb (f64),(!REX2) +e2: LOOP Jb (f64),(!REX2) +e3: JrCXZ Jb (f64),(!REX2) e4: IN AL,Ib (!REX2) e5: IN eAX,Ib (!REX2) e6: OUT Ib,AL (!REX2) @@ -298,10 +298,10 @@ e7: OUT Ib,eAX (!REX2) # in "near" jumps and calls is 16-bit. For CALL, # push of return address is 16-bit wide, RSP is decremented by 2 # but is not truncated to 16 bits, unlike RIP. -e8: CALL Jz (f64) (!REX2) -e9: JMP-near Jz (f64) (!REX2) -ea: JMP-far Ap (i64) (!REX2) -eb: JMP-short Jb (f64) (!REX2) +e8: CALL Jz (f64),(!REX2) +e9: JMP-near Jz (f64),(!REX2) +ea: JMP-far Ap (i64),(!REX2) +eb: JMP-short Jb (f64),(!REX2) ec: IN AL,DX (!REX2) ed: IN eAX,DX (!REX2) ee: OUT DX,AL (!REX2) @@ -478,22 +478,22 @@ AVXcode: 1 7f: movq Qq,Pq | vmovdqa Wx,Vx (66) | vmovdqa32/64 Wx,Vx (66),(evo) | vmovdqu Wx,Vx (F3) | vmovdqu32/64 Wx,Vx (F3),(evo) | vmovdqu8/16 Wx,Vx (F2),(ev) # 0x0f 0x80-0x8f # Note: "forced64" is Intel CPU behavior (see comment about CALL insn). -80: JO Jz (f64) (!REX2) -81: JNO Jz (f64) (!REX2) -82: JB/JC/JNAE Jz (f64) (!REX2) -83: JAE/JNB/JNC Jz (f64) (!REX2) -84: JE/JZ Jz (f64) (!REX2) -85: JNE/JNZ Jz (f64) (!REX2) -86: JBE/JNA Jz (f64) (!REX2) -87: JA/JNBE Jz (f64) (!REX2) -88: JS Jz (f64) (!REX2) -89: JNS Jz (f64) (!REX2) -8a: JP/JPE Jz (f64) (!REX2) -8b: JNP/JPO Jz (f64) (!REX2) -8c: JL/JNGE Jz (f64) (!REX2) -8d: JNL/JGE Jz (f64) (!REX2) -8e: JLE/JNG Jz (f64) (!REX2) -8f: JNLE/JG Jz (f64) (!REX2) +80: JO Jz (f64),(!REX2) +81: JNO Jz (f64),(!REX2) +82: JB/JC/JNAE Jz (f64),(!REX2) +83: JAE/JNB/JNC Jz (f64),(!REX2) +84: JE/JZ Jz (f64),(!REX2) +85: JNE/JNZ Jz (f64),(!REX2) +86: JBE/JNA Jz (f64),(!REX2) +87: JA/JNBE Jz (f64),(!REX2) +88: JS Jz (f64),(!REX2) +89: JNS Jz (f64),(!REX2) +8a: JP/JPE Jz (f64),(!REX2) +8b: JNP/JPO Jz (f64),(!REX2) +8c: JL/JNGE Jz (f64),(!REX2) +8d: JNL/JGE Jz (f64),(!REX2) +8e: JLE/JNG Jz (f64),(!REX2) +8f: JNLE/JG Jz (f64),(!REX2) # 0x0f 0x90-0x9f 90: SETO Eb | kmovw/q Vk,Wk | kmovb/d Vk,Wk (66) 91: SETNO Eb | kmovw/q Mv,Vk | kmovb/d Mv,Vk (66) @@ -996,8 +996,8 @@ AVXcode: 4 83: Grp1 Ev,Ib (1A),(es) # CTESTSCC instructions are: CTESTB, CTESTBE, CTESTF, CTESTL, CTESTLE, CTESTNB, CTESTNBE, CTESTNL, # CTESTNLE, CTESTNO, CTESTNS, CTESTNZ, CTESTO, CTESTS, CTESTT, CTESTZ -84: CTESTSCC (ev) -85: CTESTSCC (es) | CTESTSCC (66),(es) +84: CTESTSCC Eb,Gb (ev) +85: CTESTSCC Ev,Gv (es) | CTESTSCC Ev,Gv (66),(es) 88: POPCNT Gv,Ev (es) | POPCNT Gv,Ev (66),(es) 8f: POP2 Bq,Rq (000),(11B),(ev) a5: SHLD Ev,Gv,CL (es) | SHLD Ev,Gv,CL (66),(es) |