diff options
Diffstat (limited to 'arch/x86/mm/mem_encrypt_identity.c')
-rw-r--r-- | arch/x86/mm/mem_encrypt_identity.c | 569 |
1 files changed, 0 insertions, 569 deletions
diff --git a/arch/x86/mm/mem_encrypt_identity.c b/arch/x86/mm/mem_encrypt_identity.c deleted file mode 100644 index 5eecdd92da10..000000000000 --- a/arch/x86/mm/mem_encrypt_identity.c +++ /dev/null @@ -1,569 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0-only -/* - * AMD Memory Encryption Support - * - * Copyright (C) 2016 Advanced Micro Devices, Inc. - * - * Author: Tom Lendacky <thomas.lendacky@amd.com> - */ - -/* - * Since we're dealing with identity mappings, physical and virtual - * addresses are the same, so override these defines which are ultimately - * used by the headers in misc.h. - */ -#define __pa(x) ((unsigned long)(x)) -#define __va(x) ((void *)((unsigned long)(x))) - -/* - * Special hack: we have to be careful, because no indirections are - * allowed here, and paravirt_ops is a kind of one. As it will only run in - * baremetal anyway, we just keep it from happening. (This list needs to - * be extended when new paravirt and debugging variants are added.) - */ -#undef CONFIG_PARAVIRT -#undef CONFIG_PARAVIRT_XXL -#undef CONFIG_PARAVIRT_SPINLOCKS - -/* - * This code runs before CPU feature bits are set. By default, the - * pgtable_l5_enabled() function uses bit X86_FEATURE_LA57 to determine if - * 5-level paging is active, so that won't work here. USE_EARLY_PGTABLE_L5 - * is provided to handle this situation and, instead, use a variable that - * has been set by the early boot code. - */ -#define USE_EARLY_PGTABLE_L5 - -#include <linux/kernel.h> -#include <linux/mm.h> -#include <linux/mem_encrypt.h> -#include <linux/cc_platform.h> - -#include <asm/init.h> -#include <asm/setup.h> -#include <asm/sections.h> -#include <asm/coco.h> -#include <asm/sev.h> - -#include "mm_internal.h" - -#define PGD_FLAGS _KERNPG_TABLE_NOENC -#define P4D_FLAGS _KERNPG_TABLE_NOENC -#define PUD_FLAGS _KERNPG_TABLE_NOENC -#define PMD_FLAGS _KERNPG_TABLE_NOENC - -#define PMD_FLAGS_LARGE (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL) - -#define PMD_FLAGS_DEC PMD_FLAGS_LARGE -#define PMD_FLAGS_DEC_WP ((PMD_FLAGS_DEC & ~_PAGE_LARGE_CACHE_MASK) | \ - (_PAGE_PAT_LARGE | _PAGE_PWT)) - -#define PMD_FLAGS_ENC (PMD_FLAGS_LARGE | _PAGE_ENC) - -#define PTE_FLAGS (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL) - -#define PTE_FLAGS_DEC PTE_FLAGS -#define PTE_FLAGS_DEC_WP ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \ - (_PAGE_PAT | _PAGE_PWT)) - -#define PTE_FLAGS_ENC (PTE_FLAGS | _PAGE_ENC) - -struct sme_populate_pgd_data { - void *pgtable_area; - pgd_t *pgd; - - pmdval_t pmd_flags; - pteval_t pte_flags; - unsigned long paddr; - - unsigned long vaddr; - unsigned long vaddr_end; -}; - -/* - * This work area lives in the .init.scratch section, which lives outside of - * the kernel proper. It is sized to hold the intermediate copy buffer and - * more than enough pagetable pages. - * - * By using this section, the kernel can be encrypted in place and it - * avoids any possibility of boot parameters or initramfs images being - * placed such that the in-place encryption logic overwrites them. This - * section is 2MB aligned to allow for simple pagetable setup using only - * PMD entries (see vmlinux.lds.S). - */ -static char sme_workarea[2 * PMD_SIZE] __section(".init.scratch"); - -static void __head sme_clear_pgd(struct sme_populate_pgd_data *ppd) -{ - unsigned long pgd_start, pgd_end, pgd_size; - pgd_t *pgd_p; - - pgd_start = ppd->vaddr & PGDIR_MASK; - pgd_end = ppd->vaddr_end & PGDIR_MASK; - - pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t); - - pgd_p = ppd->pgd + pgd_index(ppd->vaddr); - - memset(pgd_p, 0, pgd_size); -} - -static pud_t __head *sme_prepare_pgd(struct sme_populate_pgd_data *ppd) -{ - pgd_t *pgd; - p4d_t *p4d; - pud_t *pud; - pmd_t *pmd; - - pgd = ppd->pgd + pgd_index(ppd->vaddr); - if (pgd_none(*pgd)) { - p4d = ppd->pgtable_area; - memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D); - ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D; - set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d))); - } - - p4d = p4d_offset(pgd, ppd->vaddr); - if (p4d_none(*p4d)) { - pud = ppd->pgtable_area; - memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD); - ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD; - set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud))); - } - - pud = pud_offset(p4d, ppd->vaddr); - if (pud_none(*pud)) { - pmd = ppd->pgtable_area; - memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD); - ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD; - set_pud(pud, __pud(PUD_FLAGS | __pa(pmd))); - } - - if (pud_leaf(*pud)) - return NULL; - - return pud; -} - -static void __head sme_populate_pgd_large(struct sme_populate_pgd_data *ppd) -{ - pud_t *pud; - pmd_t *pmd; - - pud = sme_prepare_pgd(ppd); - if (!pud) - return; - - pmd = pmd_offset(pud, ppd->vaddr); - if (pmd_leaf(*pmd)) - return; - - set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags)); -} - -static void __head sme_populate_pgd(struct sme_populate_pgd_data *ppd) -{ - pud_t *pud; - pmd_t *pmd; - pte_t *pte; - - pud = sme_prepare_pgd(ppd); - if (!pud) - return; - - pmd = pmd_offset(pud, ppd->vaddr); - if (pmd_none(*pmd)) { - pte = ppd->pgtable_area; - memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE); - ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE; - set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte))); - } - - if (pmd_leaf(*pmd)) - return; - - pte = pte_offset_kernel(pmd, ppd->vaddr); - if (pte_none(*pte)) - set_pte(pte, __pte(ppd->paddr | ppd->pte_flags)); -} - -static void __head __sme_map_range_pmd(struct sme_populate_pgd_data *ppd) -{ - while (ppd->vaddr < ppd->vaddr_end) { - sme_populate_pgd_large(ppd); - - ppd->vaddr += PMD_SIZE; - ppd->paddr += PMD_SIZE; - } -} - -static void __head __sme_map_range_pte(struct sme_populate_pgd_data *ppd) -{ - while (ppd->vaddr < ppd->vaddr_end) { - sme_populate_pgd(ppd); - - ppd->vaddr += PAGE_SIZE; - ppd->paddr += PAGE_SIZE; - } -} - -static void __head __sme_map_range(struct sme_populate_pgd_data *ppd, - pmdval_t pmd_flags, pteval_t pte_flags) -{ - unsigned long vaddr_end; - - ppd->pmd_flags = pmd_flags; - ppd->pte_flags = pte_flags; - - /* Save original end value since we modify the struct value */ - vaddr_end = ppd->vaddr_end; - - /* If start is not 2MB aligned, create PTE entries */ - ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_SIZE); - __sme_map_range_pte(ppd); - - /* Create PMD entries */ - ppd->vaddr_end = vaddr_end & PMD_MASK; - __sme_map_range_pmd(ppd); - - /* If end is not 2MB aligned, create PTE entries */ - ppd->vaddr_end = vaddr_end; - __sme_map_range_pte(ppd); -} - -static void __head sme_map_range_encrypted(struct sme_populate_pgd_data *ppd) -{ - __sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC); -} - -static void __head sme_map_range_decrypted(struct sme_populate_pgd_data *ppd) -{ - __sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC); -} - -static void __head sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd) -{ - __sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP); -} - -static unsigned long __head sme_pgtable_calc(unsigned long len) -{ - unsigned long entries = 0, tables = 0; - - /* - * Perform a relatively simplistic calculation of the pagetable - * entries that are needed. Those mappings will be covered mostly - * by 2MB PMD entries so we can conservatively calculate the required - * number of P4D, PUD and PMD structures needed to perform the - * mappings. For mappings that are not 2MB aligned, PTE mappings - * would be needed for the start and end portion of the address range - * that fall outside of the 2MB alignment. This results in, at most, - * two extra pages to hold PTE entries for each range that is mapped. - * Incrementing the count for each covers the case where the addresses - * cross entries. - */ - - /* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */ - if (PTRS_PER_P4D > 1) - entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D; - entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD; - entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD; - entries += 2 * sizeof(pte_t) * PTRS_PER_PTE; - - /* - * Now calculate the added pagetable structures needed to populate - * the new pagetables. - */ - - if (PTRS_PER_P4D > 1) - tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D; - tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD; - tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD; - - return entries + tables; -} - -void __head sme_encrypt_kernel(struct boot_params *bp) -{ - unsigned long workarea_start, workarea_end, workarea_len; - unsigned long execute_start, execute_end, execute_len; - unsigned long kernel_start, kernel_end, kernel_len; - unsigned long initrd_start, initrd_end, initrd_len; - struct sme_populate_pgd_data ppd; - unsigned long pgtable_area_len; - unsigned long decrypted_base; - - /* - * This is early code, use an open coded check for SME instead of - * using cc_platform_has(). This eliminates worries about removing - * instrumentation or checking boot_cpu_data in the cc_platform_has() - * function. - */ - if (!sme_get_me_mask() || - RIP_REL_REF(sev_status) & MSR_AMD64_SEV_ENABLED) - return; - - /* - * Prepare for encrypting the kernel and initrd by building new - * pagetables with the necessary attributes needed to encrypt the - * kernel in place. - * - * One range of virtual addresses will map the memory occupied - * by the kernel and initrd as encrypted. - * - * Another range of virtual addresses will map the memory occupied - * by the kernel and initrd as decrypted and write-protected. - * - * The use of write-protect attribute will prevent any of the - * memory from being cached. - */ - - kernel_start = (unsigned long)RIP_REL_REF(_text); - kernel_end = ALIGN((unsigned long)RIP_REL_REF(_end), PMD_SIZE); - kernel_len = kernel_end - kernel_start; - - initrd_start = 0; - initrd_end = 0; - initrd_len = 0; -#ifdef CONFIG_BLK_DEV_INITRD - initrd_len = (unsigned long)bp->hdr.ramdisk_size | - ((unsigned long)bp->ext_ramdisk_size << 32); - if (initrd_len) { - initrd_start = (unsigned long)bp->hdr.ramdisk_image | - ((unsigned long)bp->ext_ramdisk_image << 32); - initrd_end = PAGE_ALIGN(initrd_start + initrd_len); - initrd_len = initrd_end - initrd_start; - } -#endif - - /* - * Calculate required number of workarea bytes needed: - * executable encryption area size: - * stack page (PAGE_SIZE) - * encryption routine page (PAGE_SIZE) - * intermediate copy buffer (PMD_SIZE) - * pagetable structures for the encryption of the kernel - * pagetable structures for workarea (in case not currently mapped) - */ - execute_start = workarea_start = (unsigned long)RIP_REL_REF(sme_workarea); - execute_end = execute_start + (PAGE_SIZE * 2) + PMD_SIZE; - execute_len = execute_end - execute_start; - - /* - * One PGD for both encrypted and decrypted mappings and a set of - * PUDs and PMDs for each of the encrypted and decrypted mappings. - */ - pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD; - pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2; - if (initrd_len) - pgtable_area_len += sme_pgtable_calc(initrd_len) * 2; - - /* PUDs and PMDs needed in the current pagetables for the workarea */ - pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len); - - /* - * The total workarea includes the executable encryption area and - * the pagetable area. The start of the workarea is already 2MB - * aligned, align the end of the workarea on a 2MB boundary so that - * we don't try to create/allocate PTE entries from the workarea - * before it is mapped. - */ - workarea_len = execute_len + pgtable_area_len; - workarea_end = ALIGN(workarea_start + workarea_len, PMD_SIZE); - - /* - * Set the address to the start of where newly created pagetable - * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable - * structures are created when the workarea is added to the current - * pagetables and when the new encrypted and decrypted kernel - * mappings are populated. - */ - ppd.pgtable_area = (void *)execute_end; - - /* - * Make sure the current pagetable structure has entries for - * addressing the workarea. - */ - ppd.pgd = (pgd_t *)native_read_cr3_pa(); - ppd.paddr = workarea_start; - ppd.vaddr = workarea_start; - ppd.vaddr_end = workarea_end; - sme_map_range_decrypted(&ppd); - - /* Flush the TLB - no globals so cr3 is enough */ - native_write_cr3(__native_read_cr3()); - - /* - * A new pagetable structure is being built to allow for the kernel - * and initrd to be encrypted. It starts with an empty PGD that will - * then be populated with new PUDs and PMDs as the encrypted and - * decrypted kernel mappings are created. - */ - ppd.pgd = ppd.pgtable_area; - memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD); - ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD; - - /* - * A different PGD index/entry must be used to get different - * pagetable entries for the decrypted mapping. Choose the next - * PGD index and convert it to a virtual address to be used as - * the base of the mapping. - */ - decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1); - if (initrd_len) { - unsigned long check_base; - - check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1); - decrypted_base = max(decrypted_base, check_base); - } - decrypted_base <<= PGDIR_SHIFT; - - /* Add encrypted kernel (identity) mappings */ - ppd.paddr = kernel_start; - ppd.vaddr = kernel_start; - ppd.vaddr_end = kernel_end; - sme_map_range_encrypted(&ppd); - - /* Add decrypted, write-protected kernel (non-identity) mappings */ - ppd.paddr = kernel_start; - ppd.vaddr = kernel_start + decrypted_base; - ppd.vaddr_end = kernel_end + decrypted_base; - sme_map_range_decrypted_wp(&ppd); - - if (initrd_len) { - /* Add encrypted initrd (identity) mappings */ - ppd.paddr = initrd_start; - ppd.vaddr = initrd_start; - ppd.vaddr_end = initrd_end; - sme_map_range_encrypted(&ppd); - /* - * Add decrypted, write-protected initrd (non-identity) mappings - */ - ppd.paddr = initrd_start; - ppd.vaddr = initrd_start + decrypted_base; - ppd.vaddr_end = initrd_end + decrypted_base; - sme_map_range_decrypted_wp(&ppd); - } - - /* Add decrypted workarea mappings to both kernel mappings */ - ppd.paddr = workarea_start; - ppd.vaddr = workarea_start; - ppd.vaddr_end = workarea_end; - sme_map_range_decrypted(&ppd); - - ppd.paddr = workarea_start; - ppd.vaddr = workarea_start + decrypted_base; - ppd.vaddr_end = workarea_end + decrypted_base; - sme_map_range_decrypted(&ppd); - - /* Perform the encryption */ - sme_encrypt_execute(kernel_start, kernel_start + decrypted_base, - kernel_len, workarea_start, (unsigned long)ppd.pgd); - - if (initrd_len) - sme_encrypt_execute(initrd_start, initrd_start + decrypted_base, - initrd_len, workarea_start, - (unsigned long)ppd.pgd); - - /* - * At this point we are running encrypted. Remove the mappings for - * the decrypted areas - all that is needed for this is to remove - * the PGD entry/entries. - */ - ppd.vaddr = kernel_start + decrypted_base; - ppd.vaddr_end = kernel_end + decrypted_base; - sme_clear_pgd(&ppd); - - if (initrd_len) { - ppd.vaddr = initrd_start + decrypted_base; - ppd.vaddr_end = initrd_end + decrypted_base; - sme_clear_pgd(&ppd); - } - - ppd.vaddr = workarea_start + decrypted_base; - ppd.vaddr_end = workarea_end + decrypted_base; - sme_clear_pgd(&ppd); - - /* Flush the TLB - no globals so cr3 is enough */ - native_write_cr3(__native_read_cr3()); -} - -void __head sme_enable(struct boot_params *bp) -{ - unsigned int eax, ebx, ecx, edx; - unsigned long feature_mask; - unsigned long me_mask; - bool snp_en; - u64 msr; - - snp_en = snp_init(bp); - - /* Check for the SME/SEV support leaf */ - eax = 0x80000000; - ecx = 0; - native_cpuid(&eax, &ebx, &ecx, &edx); - if (eax < 0x8000001f) - return; - -#define AMD_SME_BIT BIT(0) -#define AMD_SEV_BIT BIT(1) - - /* - * Check for the SME/SEV feature: - * CPUID Fn8000_001F[EAX] - * - Bit 0 - Secure Memory Encryption support - * - Bit 1 - Secure Encrypted Virtualization support - * CPUID Fn8000_001F[EBX] - * - Bits 5:0 - Pagetable bit position used to indicate encryption - */ - eax = 0x8000001f; - ecx = 0; - native_cpuid(&eax, &ebx, &ecx, &edx); - /* Check whether SEV or SME is supported */ - if (!(eax & (AMD_SEV_BIT | AMD_SME_BIT))) - return; - - me_mask = 1UL << (ebx & 0x3f); - - /* Check the SEV MSR whether SEV or SME is enabled */ - RIP_REL_REF(sev_status) = msr = __rdmsr(MSR_AMD64_SEV); - feature_mask = (msr & MSR_AMD64_SEV_ENABLED) ? AMD_SEV_BIT : AMD_SME_BIT; - - /* - * Any discrepancies between the presence of a CC blob and SNP - * enablement abort the guest. - */ - if (snp_en ^ !!(msr & MSR_AMD64_SEV_SNP_ENABLED)) - snp_abort(); - - /* Check if memory encryption is enabled */ - if (feature_mask == AMD_SME_BIT) { - if (!(bp->hdr.xloadflags & XLF_MEM_ENCRYPTION)) - return; - - /* - * No SME if Hypervisor bit is set. This check is here to - * prevent a guest from trying to enable SME. For running as a - * KVM guest the MSR_AMD64_SYSCFG will be sufficient, but there - * might be other hypervisors which emulate that MSR as non-zero - * or even pass it through to the guest. - * A malicious hypervisor can still trick a guest into this - * path, but there is no way to protect against that. - */ - eax = 1; - ecx = 0; - native_cpuid(&eax, &ebx, &ecx, &edx); - if (ecx & BIT(31)) - return; - - /* For SME, check the SYSCFG MSR */ - msr = __rdmsr(MSR_AMD64_SYSCFG); - if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) - return; - } - - RIP_REL_REF(sme_me_mask) = me_mask; - RIP_REL_REF(physical_mask) &= ~me_mask; - RIP_REL_REF(cc_vendor) = CC_VENDOR_AMD; - cc_set_mask(me_mask); -} |