summaryrefslogtreecommitdiff
path: root/arch/x86/mm
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/mm')
-rw-r--r--arch/x86/mm/Makefile14
-rw-r--r--arch/x86/mm/amdtopology.c2
-rw-r--r--arch/x86/mm/extable.c2
-rw-r--r--arch/x86/mm/fault.c8
-rw-r--r--arch/x86/mm/highmem_32.c34
-rw-r--r--arch/x86/mm/ident_map.c14
-rw-r--r--arch/x86/mm/init.c32
-rw-r--r--arch/x86/mm/init_32.c57
-rw-r--r--arch/x86/mm/init_64.c67
-rw-r--r--arch/x86/mm/ioremap.c12
-rw-r--r--arch/x86/mm/kasan_init_64.c1
-rw-r--r--arch/x86/mm/kaslr.c10
-rw-r--r--arch/x86/mm/mem_encrypt_amd.c4
-rw-r--r--arch/x86/mm/mem_encrypt_boot.S1
-rw-r--r--arch/x86/mm/mem_encrypt_identity.c571
-rw-r--r--arch/x86/mm/mm_internal.h4
-rw-r--r--arch/x86/mm/mmap.c9
-rw-r--r--arch/x86/mm/numa.c5
-rw-r--r--arch/x86/mm/numa_32.c61
-rw-r--r--arch/x86/mm/numa_64.c13
-rw-r--r--arch/x86/mm/numa_internal.h10
-rw-r--r--arch/x86/mm/pat/cpa-test.c2
-rw-r--r--arch/x86/mm/pat/memtype.c94
-rw-r--r--arch/x86/mm/pat/set_memory.c246
-rw-r--r--arch/x86/mm/pgtable.c212
-rw-r--r--arch/x86/mm/pti.c4
-rw-r--r--arch/x86/mm/tlb.c588
27 files changed, 928 insertions, 1149 deletions
diff --git a/arch/x86/mm/Makefile b/arch/x86/mm/Makefile
index 690fbf48e853..5b9908f13dcf 100644
--- a/arch/x86/mm/Makefile
+++ b/arch/x86/mm/Makefile
@@ -3,12 +3,10 @@
KCOV_INSTRUMENT_tlb.o := n
KCOV_INSTRUMENT_mem_encrypt.o := n
KCOV_INSTRUMENT_mem_encrypt_amd.o := n
-KCOV_INSTRUMENT_mem_encrypt_identity.o := n
KCOV_INSTRUMENT_pgprot.o := n
KASAN_SANITIZE_mem_encrypt.o := n
KASAN_SANITIZE_mem_encrypt_amd.o := n
-KASAN_SANITIZE_mem_encrypt_identity.o := n
KASAN_SANITIZE_pgprot.o := n
# Disable KCSAN entirely, because otherwise we get warnings that some functions
@@ -16,12 +14,10 @@ KASAN_SANITIZE_pgprot.o := n
KCSAN_SANITIZE := n
# Avoid recursion by not calling KMSAN hooks for CEA code.
KMSAN_SANITIZE_cpu_entry_area.o := n
-KMSAN_SANITIZE_mem_encrypt_identity.o := n
ifdef CONFIG_FUNCTION_TRACER
CFLAGS_REMOVE_mem_encrypt.o = -pg
CFLAGS_REMOVE_mem_encrypt_amd.o = -pg
-CFLAGS_REMOVE_mem_encrypt_identity.o = -pg
CFLAGS_REMOVE_pgprot.o = -pg
endif
@@ -32,18 +28,13 @@ obj-y += pat/
# Make sure __phys_addr has no stackprotector
CFLAGS_physaddr.o := -fno-stack-protector
-CFLAGS_mem_encrypt_identity.o := -fno-stack-protector
-
-CFLAGS_fault.o := -I $(src)/../include/asm/trace
obj-$(CONFIG_X86_32) += pgtable_32.o iomap_32.o
obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o
-obj-$(CONFIG_PTDUMP_CORE) += dump_pagetables.o
+obj-$(CONFIG_PTDUMP) += dump_pagetables.o
obj-$(CONFIG_PTDUMP_DEBUGFS) += debug_pagetables.o
-obj-$(CONFIG_HIGHMEM) += highmem_32.o
-
KASAN_SANITIZE_kasan_init_$(BITS).o := n
obj-$(CONFIG_KASAN) += kasan_init_$(BITS).o
@@ -54,7 +45,7 @@ obj-$(CONFIG_MMIOTRACE) += mmiotrace.o
mmiotrace-y := kmmio.o pf_in.o mmio-mod.o
obj-$(CONFIG_MMIOTRACE_TEST) += testmmiotrace.o
-obj-$(CONFIG_NUMA) += numa.o numa_$(BITS).o
+obj-$(CONFIG_NUMA) += numa.o
obj-$(CONFIG_AMD_NUMA) += amdtopology.o
obj-$(CONFIG_ACPI_NUMA) += srat.o
@@ -65,5 +56,4 @@ obj-$(CONFIG_MITIGATION_PAGE_TABLE_ISOLATION) += pti.o
obj-$(CONFIG_X86_MEM_ENCRYPT) += mem_encrypt.o
obj-$(CONFIG_AMD_MEM_ENCRYPT) += mem_encrypt_amd.o
-obj-$(CONFIG_AMD_MEM_ENCRYPT) += mem_encrypt_identity.o
obj-$(CONFIG_AMD_MEM_ENCRYPT) += mem_encrypt_boot.o
diff --git a/arch/x86/mm/amdtopology.c b/arch/x86/mm/amdtopology.c
index 628833afee37..f980b0eb0105 100644
--- a/arch/x86/mm/amdtopology.c
+++ b/arch/x86/mm/amdtopology.c
@@ -25,7 +25,7 @@
#include <asm/numa.h>
#include <asm/mpspec.h>
#include <asm/apic.h>
-#include <asm/amd_nb.h>
+#include <asm/amd/nb.h>
static unsigned char __initdata nodeids[8];
diff --git a/arch/x86/mm/extable.c b/arch/x86/mm/extable.c
index 51986e8a9d35..bf8dab18be97 100644
--- a/arch/x86/mm/extable.c
+++ b/arch/x86/mm/extable.c
@@ -111,7 +111,7 @@ static bool ex_handler_sgx(const struct exception_table_entry *fixup,
/*
* Handler for when we fail to restore a task's FPU state. We should never get
- * here because the FPU state of a task using the FPU (task->thread.fpu.state)
+ * here because the FPU state of a task using the FPU (struct fpu::fpstate)
* should always be valid. However, past bugs have allowed userspace to set
* reserved bits in the XSAVE area using PTRACE_SETREGSET or sys_rt_sigreturn().
* These caused XRSTOR to fail when switching to the task, leaking the FPU
diff --git a/arch/x86/mm/fault.c b/arch/x86/mm/fault.c
index 296d294142c8..998bd807fc7b 100644
--- a/arch/x86/mm/fault.c
+++ b/arch/x86/mm/fault.c
@@ -13,7 +13,6 @@
#include <linux/mmiotrace.h> /* kmmio_handler, ... */
#include <linux/perf_event.h> /* perf_sw_event */
#include <linux/hugetlb.h> /* hstate_index_to_shift */
-#include <linux/prefetch.h> /* prefetchw */
#include <linux/context_tracking.h> /* exception_enter(), ... */
#include <linux/uaccess.h> /* faulthandler_disabled() */
#include <linux/efi.h> /* efi_crash_gracefully_on_page_fault()*/
@@ -38,7 +37,7 @@
#include <asm/sev.h> /* snp_dump_hva_rmpentry() */
#define CREATE_TRACE_POINTS
-#include <asm/trace/exceptions.h>
+#include <trace/events/exceptions.h>
/*
* Returns 0 if mmiotrace is disabled, or if the fault is not
@@ -1455,9 +1454,6 @@ static __always_inline void
trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
unsigned long address)
{
- if (!trace_pagefault_enabled())
- return;
-
if (user_mode(regs))
trace_page_fault_user(address, regs, error_code);
else
@@ -1496,8 +1492,6 @@ DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
address = cpu_feature_enabled(X86_FEATURE_FRED) ? fred_event_data(regs) : read_cr2();
- prefetchw(&current->mm->mmap_lock);
-
/*
* KVM uses #PF vector to deliver 'page not present' events to guests
* (asynchronous page fault mechanism). The event happens when a
diff --git a/arch/x86/mm/highmem_32.c b/arch/x86/mm/highmem_32.c
deleted file mode 100644
index d9efa35711ee..000000000000
--- a/arch/x86/mm/highmem_32.c
+++ /dev/null
@@ -1,34 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-only
-#include <linux/highmem.h>
-#include <linux/export.h>
-#include <linux/swap.h> /* for totalram_pages */
-#include <linux/memblock.h>
-#include <asm/numa.h>
-
-void __init set_highmem_pages_init(void)
-{
- struct zone *zone;
- int nid;
-
- /*
- * Explicitly reset zone->managed_pages because set_highmem_pages_init()
- * is invoked before memblock_free_all()
- */
- reset_all_zones_managed_pages();
- for_each_zone(zone) {
- unsigned long zone_start_pfn, zone_end_pfn;
-
- if (!is_highmem(zone))
- continue;
-
- zone_start_pfn = zone->zone_start_pfn;
- zone_end_pfn = zone_start_pfn + zone->spanned_pages;
-
- nid = zone_to_nid(zone);
- printk(KERN_INFO "Initializing %s for node %d (%08lx:%08lx)\n",
- zone->name, nid, zone_start_pfn, zone_end_pfn);
-
- add_highpages_with_active_regions(nid, zone_start_pfn,
- zone_end_pfn);
- }
-}
diff --git a/arch/x86/mm/ident_map.c b/arch/x86/mm/ident_map.c
index 5ab7bd2f1983..bd5d101c5c37 100644
--- a/arch/x86/mm/ident_map.c
+++ b/arch/x86/mm/ident_map.c
@@ -101,9 +101,7 @@ static int ident_pud_init(struct x86_mapping_info *info, pud_t *pud_page,
pmd_t *pmd;
bool use_gbpage;
- next = (addr & PUD_MASK) + PUD_SIZE;
- if (next > end)
- next = end;
+ next = pud_addr_end(addr, end);
/* if this is already a gbpage, this portion is already mapped */
if (pud_leaf(*pud))
@@ -154,10 +152,7 @@ static int ident_p4d_init(struct x86_mapping_info *info, p4d_t *p4d_page,
p4d_t *p4d = p4d_page + p4d_index(addr);
pud_t *pud;
- next = (addr & P4D_MASK) + P4D_SIZE;
- if (next > end)
- next = end;
-
+ next = p4d_addr_end(addr, end);
if (p4d_present(*p4d)) {
pud = pud_offset(p4d, 0);
result = ident_pud_init(info, pud, addr, next);
@@ -199,10 +194,7 @@ int kernel_ident_mapping_init(struct x86_mapping_info *info, pgd_t *pgd_page,
pgd_t *pgd = pgd_page + pgd_index(addr);
p4d_t *p4d;
- next = (addr & PGDIR_MASK) + PGDIR_SIZE;
- if (next > end)
- next = end;
-
+ next = pgd_addr_end(addr, end);
if (pgd_present(*pgd)) {
p4d = p4d_offset(pgd, 0);
result = ident_p4d_init(info, p4d, addr, next);
diff --git a/arch/x86/mm/init.c b/arch/x86/mm/init.c
index 62aa4d66a032..7456df985d96 100644
--- a/arch/x86/mm/init.c
+++ b/arch/x86/mm/init.c
@@ -28,6 +28,7 @@
#include <asm/text-patching.h>
#include <asm/memtype.h>
#include <asm/paravirt.h>
+#include <asm/mmu_context.h>
/*
* We need to define the tracepoints somewhere, and tlb.c
@@ -173,11 +174,7 @@ __ref void *alloc_low_pages(unsigned int num)
* randomization is enabled.
*/
-#ifndef CONFIG_X86_5LEVEL
-#define INIT_PGD_PAGE_TABLES 3
-#else
#define INIT_PGD_PAGE_TABLES 4
-#endif
#ifndef CONFIG_RANDOMIZE_MEMORY
#define INIT_PGD_PAGE_COUNT (2 * INIT_PGD_PAGE_TABLES)
@@ -645,8 +642,13 @@ static void __init memory_map_top_down(unsigned long map_start,
*/
addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
map_end);
- memblock_phys_free(addr, PMD_SIZE);
- real_end = addr + PMD_SIZE;
+ if (!addr) {
+ pr_warn("Failed to release memory for alloc_low_pages()");
+ real_end = max(map_start, ALIGN_DOWN(map_end, PMD_SIZE));
+ } else {
+ memblock_phys_free(addr, PMD_SIZE);
+ real_end = addr + PMD_SIZE;
+ }
/* step_size need to be small so pgt_buf from BRK could cover it */
step_size = PMD_SIZE;
@@ -819,31 +821,33 @@ void __init poking_init(void)
spinlock_t *ptl;
pte_t *ptep;
- poking_mm = mm_alloc();
- BUG_ON(!poking_mm);
+ text_poke_mm = mm_alloc();
+ BUG_ON(!text_poke_mm);
/* Xen PV guests need the PGD to be pinned. */
- paravirt_enter_mmap(poking_mm);
+ paravirt_enter_mmap(text_poke_mm);
+
+ set_notrack_mm(text_poke_mm);
/*
* Randomize the poking address, but make sure that the following page
* will be mapped at the same PMD. We need 2 pages, so find space for 3,
* and adjust the address if the PMD ends after the first one.
*/
- poking_addr = TASK_UNMAPPED_BASE;
+ text_poke_mm_addr = TASK_UNMAPPED_BASE;
if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
- poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
+ text_poke_mm_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
- if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
- poking_addr += PAGE_SIZE;
+ if (((text_poke_mm_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
+ text_poke_mm_addr += PAGE_SIZE;
/*
* We need to trigger the allocation of the page-tables that will be
* needed for poking now. Later, poking may be performed in an atomic
* section, which might cause allocation to fail.
*/
- ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
+ ptep = get_locked_pte(text_poke_mm, text_poke_mm_addr, &ptl);
BUG_ON(!ptep);
pte_unmap_unlock(ptep, ptl);
}
diff --git a/arch/x86/mm/init_32.c b/arch/x86/mm/init_32.c
index ac41b1e0940d..607d6a2e66e2 100644
--- a/arch/x86/mm/init_32.c
+++ b/arch/x86/mm/init_32.c
@@ -30,6 +30,7 @@
#include <linux/initrd.h>
#include <linux/cpumask.h>
#include <linux/gfp.h>
+#include <linux/execmem.h>
#include <asm/asm.h>
#include <asm/bios_ebda.h>
@@ -394,23 +395,6 @@ static void __init permanent_kmaps_init(pgd_t *pgd_base)
pkmap_page_table = virt_to_kpte(vaddr);
}
-
-void __init add_highpages_with_active_regions(int nid,
- unsigned long start_pfn, unsigned long end_pfn)
-{
- phys_addr_t start, end;
- u64 i;
-
- for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &start, &end, NULL) {
- unsigned long pfn = clamp_t(unsigned long, PFN_UP(start),
- start_pfn, end_pfn);
- unsigned long e_pfn = clamp_t(unsigned long, PFN_DOWN(end),
- start_pfn, end_pfn);
- for ( ; pfn < e_pfn; pfn++)
- if (pfn_valid(pfn))
- free_highmem_page(pfn_to_page(pfn));
- }
-}
#else
static inline void permanent_kmaps_init(pgd_t *pgd_base)
{
@@ -582,7 +566,7 @@ static void __init lowmem_pfn_init(void)
"only %luMB highmem pages available, ignoring highmem size of %luMB!\n"
#define MSG_HIGHMEM_TRIMMED \
- "Warning: only 4GB will be used. Use a HIGHMEM64G enabled kernel!\n"
+ "Warning: only 4GB will be used. Support for CONFIG_HIGHMEM64G was removed!\n"
/*
* We have more RAM than fits into lowmem - we try to put it into
* highmem, also taking the highmem=x boot parameter into account:
@@ -606,18 +590,13 @@ static void __init highmem_pfn_init(void)
#ifndef CONFIG_HIGHMEM
/* Maximum memory usable is what is directly addressable */
printk(KERN_WARNING "Warning only %ldMB will be used.\n", MAXMEM>>20);
- if (max_pfn > MAX_NONPAE_PFN)
- printk(KERN_WARNING "Use a HIGHMEM64G enabled kernel.\n");
- else
- printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
+ printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n");
max_pfn = MAXMEM_PFN;
#else /* !CONFIG_HIGHMEM */
-#ifndef CONFIG_HIGHMEM64G
if (max_pfn > MAX_NONPAE_PFN) {
max_pfn = MAX_NONPAE_PFN;
printk(KERN_WARNING MSG_HIGHMEM_TRIMMED);
}
-#endif /* !CONFIG_HIGHMEM64G */
#endif /* !CONFIG_HIGHMEM */
}
@@ -634,7 +613,6 @@ void __init find_low_pfn_range(void)
highmem_pfn_init();
}
-#ifndef CONFIG_NUMA
void __init initmem_init(void)
{
#ifdef CONFIG_HIGHMEM
@@ -650,20 +628,11 @@ void __init initmem_init(void)
memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
-#ifdef CONFIG_FLATMEM
- max_mapnr = IS_ENABLED(CONFIG_HIGHMEM) ? highend_pfn : max_low_pfn;
-#endif
__vmalloc_start_set = true;
printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
pages_to_mb(max_low_pfn));
- setup_bootmem_allocator();
-}
-#endif /* !CONFIG_NUMA */
-
-void __init setup_bootmem_allocator(void)
-{
printk(KERN_INFO " mapped low ram: 0 - %08lx\n",
max_pfn_mapped<<PAGE_SHIFT);
printk(KERN_INFO " low ram: 0 - %08lx\n", max_low_pfn<<PAGE_SHIFT);
@@ -714,27 +683,17 @@ static void __init test_wp_bit(void)
panic("Linux doesn't support CPUs with broken WP.");
}
-void __init mem_init(void)
+void __init arch_mm_preinit(void)
{
pci_iommu_alloc();
#ifdef CONFIG_FLATMEM
BUG_ON(!mem_map);
#endif
- /*
- * With CONFIG_DEBUG_PAGEALLOC initialization of highmem pages has to
- * be done before memblock_free_all(). Memblock use free low memory for
- * temporary data (see find_range_array()) and for this purpose can use
- * pages that was already passed to the buddy allocator, hence marked as
- * not accessible in the page tables when compiled with
- * CONFIG_DEBUG_PAGEALLOC. Otherwise order of initialization is not
- * important here.
- */
- set_highmem_pages_init();
-
- /* this will put all low memory onto the freelists */
- memblock_free_all();
+}
+void __init mem_init(void)
+{
after_bootmem = 1;
x86_init.hyper.init_after_bootmem();
@@ -790,6 +749,8 @@ void mark_rodata_ro(void)
pr_info("Write protecting kernel text and read-only data: %luk\n",
size >> 10);
+ execmem_cache_make_ro();
+
kernel_set_to_readonly = 1;
#ifdef CONFIG_CPA_DEBUG
diff --git a/arch/x86/mm/init_64.c b/arch/x86/mm/init_64.c
index 01ea7c6df303..66330fe4e18c 100644
--- a/arch/x86/mm/init_64.c
+++ b/arch/x86/mm/init_64.c
@@ -34,6 +34,7 @@
#include <linux/gfp.h>
#include <linux/kcore.h>
#include <linux/bootmem_info.h>
+#include <linux/execmem.h>
#include <asm/processor.h>
#include <asm/bios_ebda.h>
@@ -469,8 +470,6 @@ phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
!e820__mapped_any(paddr & PAGE_MASK, paddr_next,
E820_TYPE_RAM) &&
!e820__mapped_any(paddr & PAGE_MASK, paddr_next,
- E820_TYPE_RESERVED_KERN) &&
- !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
E820_TYPE_ACPI))
set_pte_init(pte, __pte(0), init);
continue;
@@ -526,8 +525,6 @@ phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
!e820__mapped_any(paddr & PMD_MASK, paddr_next,
E820_TYPE_RAM) &&
!e820__mapped_any(paddr & PMD_MASK, paddr_next,
- E820_TYPE_RESERVED_KERN) &&
- !e820__mapped_any(paddr & PMD_MASK, paddr_next,
E820_TYPE_ACPI))
set_pmd_init(pmd, __pmd(0), init);
continue;
@@ -615,8 +612,6 @@ phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
!e820__mapped_any(paddr & PUD_MASK, paddr_next,
E820_TYPE_RAM) &&
!e820__mapped_any(paddr & PUD_MASK, paddr_next,
- E820_TYPE_RESERVED_KERN) &&
- !e820__mapped_any(paddr & PUD_MASK, paddr_next,
E820_TYPE_ACPI))
set_pud_init(pud, __pud(0), init);
continue;
@@ -704,8 +699,6 @@ phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
!e820__mapped_any(paddr & P4D_MASK, paddr_next,
E820_TYPE_RAM) &&
!e820__mapped_any(paddr & P4D_MASK, paddr_next,
- E820_TYPE_RESERVED_KERN) &&
- !e820__mapped_any(paddr & P4D_MASK, paddr_next,
E820_TYPE_ACPI))
set_p4d_init(p4d, __p4d(0), init);
continue;
@@ -813,12 +806,17 @@ kernel_physical_mapping_change(unsigned long paddr_start,
}
#ifndef CONFIG_NUMA
-void __init initmem_init(void)
+static inline void x86_numa_init(void)
{
memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
}
#endif
+void __init initmem_init(void)
+{
+ x86_numa_init();
+}
+
void __init paging_init(void)
{
sparse_init();
@@ -835,7 +833,6 @@ void __init paging_init(void)
zone_sizes_init();
}
-#ifdef CONFIG_SPARSEMEM_VMEMMAP
#define PAGE_UNUSED 0xFD
/*
@@ -934,7 +931,6 @@ static void __meminit vmemmap_use_new_sub_pmd(unsigned long start, unsigned long
if (!IS_ALIGNED(end, PMD_SIZE))
unused_pmd_start = end;
}
-#endif
/*
* Memory hotplug specific functions
@@ -967,9 +963,18 @@ int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
ret = __add_pages(nid, start_pfn, nr_pages, params);
WARN_ON_ONCE(ret);
- /* update max_pfn, max_low_pfn and high_memory */
- update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
- nr_pages << PAGE_SHIFT);
+ /*
+ * Special case: add_pages() is called by memremap_pages() for adding device
+ * private pages. Do not bump up max_pfn in the device private path,
+ * because max_pfn changes affect dma_addressing_limited().
+ *
+ * dma_addressing_limited() returning true when max_pfn is the device's
+ * addressable memory can force device drivers to use bounce buffers
+ * and impact their performance negatively:
+ */
+ if (!params->pgmap)
+ /* update max_pfn, max_low_pfn and high_memory */
+ update_end_of_memory_vars(start_pfn << PAGE_SHIFT, nr_pages << PAGE_SHIFT);
return ret;
}
@@ -1145,16 +1150,13 @@ remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
pmd_clear(pmd);
spin_unlock(&init_mm.page_table_lock);
pages++;
- }
-#ifdef CONFIG_SPARSEMEM_VMEMMAP
- else if (vmemmap_pmd_is_unused(addr, next)) {
+ } else if (vmemmap_pmd_is_unused(addr, next)) {
free_hugepage_table(pmd_page(*pmd),
altmap);
spin_lock(&init_mm.page_table_lock);
pmd_clear(pmd);
spin_unlock(&init_mm.page_table_lock);
}
-#endif
continue;
}
@@ -1348,14 +1350,15 @@ failed:
panic("Failed to pre-allocate %s pages for vmalloc area\n", lvl);
}
-void __init mem_init(void)
+void __init arch_mm_preinit(void)
{
pci_iommu_alloc();
+}
+void __init mem_init(void)
+{
/* clear_bss() already clear the empty_zero_page */
- /* this will put all memory onto the freelists */
- memblock_free_all();
after_bootmem = 1;
x86_init.hyper.init_after_bootmem();
@@ -1389,6 +1392,8 @@ void mark_rodata_ro(void)
(end - start) >> 10);
set_memory_ro(start, (end - start) >> PAGE_SHIFT);
+ execmem_cache_make_ro();
+
kernel_set_to_readonly = 1;
/*
@@ -1490,7 +1495,6 @@ unsigned long memory_block_size_bytes(void)
return memory_block_size_probed;
}
-#ifdef CONFIG_SPARSEMEM_VMEMMAP
/*
* Initialise the sparsemem vmemmap using huge-pages at the PMD level.
*/
@@ -1599,11 +1603,14 @@ void register_page_bootmem_memmap(unsigned long section_nr,
}
get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
- if (!boot_cpu_has(X86_FEATURE_PSE)) {
+ pmd = pmd_offset(pud, addr);
+ if (pmd_none(*pmd)) {
+ next = (addr + PAGE_SIZE) & PAGE_MASK;
+ continue;
+ }
+
+ if (!boot_cpu_has(X86_FEATURE_PSE) || !pmd_leaf(*pmd)) {
next = (addr + PAGE_SIZE) & PAGE_MASK;
- pmd = pmd_offset(pud, addr);
- if (pmd_none(*pmd))
- continue;
get_page_bootmem(section_nr, pmd_page(*pmd),
MIX_SECTION_INFO);
@@ -1614,12 +1621,7 @@ void register_page_bootmem_memmap(unsigned long section_nr,
SECTION_INFO);
} else {
next = pmd_addr_end(addr, end);
-
- pmd = pmd_offset(pud, addr);
- if (pmd_none(*pmd))
- continue;
-
- nr_pmd_pages = 1 << get_order(PMD_SIZE);
+ nr_pmd_pages = (next - addr) >> PAGE_SHIFT;
page = pmd_page(*pmd);
while (nr_pmd_pages--)
get_page_bootmem(section_nr, page++,
@@ -1639,4 +1641,3 @@ void __meminit vmemmap_populate_print_last(void)
node_start = 0;
}
}
-#endif
diff --git a/arch/x86/mm/ioremap.c b/arch/x86/mm/ioremap.c
index 38ff7791a9c7..331e101bf801 100644
--- a/arch/x86/mm/ioremap.c
+++ b/arch/x86/mm/ioremap.c
@@ -440,10 +440,10 @@ void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
EXPORT_SYMBOL(ioremap_cache);
void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
- unsigned long prot_val)
+ pgprot_t prot)
{
return __ioremap_caller(phys_addr, size,
- pgprot2cachemode(__pgprot(prot_val)),
+ pgprot2cachemode(prot),
__builtin_return_address(0), false);
}
EXPORT_SYMBOL(ioremap_prot);
@@ -503,6 +503,14 @@ void iounmap(volatile void __iomem *addr)
}
EXPORT_SYMBOL(iounmap);
+void *arch_memremap_wb(phys_addr_t phys_addr, size_t size, unsigned long flags)
+{
+ if ((flags & MEMREMAP_DEC) || cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
+ return (void __force *)ioremap_cache(phys_addr, size);
+
+ return (void __force *)ioremap_encrypted(phys_addr, size);
+}
+
/*
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
* access
diff --git a/arch/x86/mm/kasan_init_64.c b/arch/x86/mm/kasan_init_64.c
index 9dddf19a5571..0539efd0d216 100644
--- a/arch/x86/mm/kasan_init_64.c
+++ b/arch/x86/mm/kasan_init_64.c
@@ -1,5 +1,4 @@
// SPDX-License-Identifier: GPL-2.0
-#define DISABLE_BRANCH_PROFILING
#define pr_fmt(fmt) "kasan: " fmt
/* cpu_feature_enabled() cannot be used this early */
diff --git a/arch/x86/mm/kaslr.c b/arch/x86/mm/kaslr.c
index 11a93542d198..3c306de52fd4 100644
--- a/arch/x86/mm/kaslr.c
+++ b/arch/x86/mm/kaslr.c
@@ -113,8 +113,14 @@ void __init kernel_randomize_memory(void)
memory_tb = DIV_ROUND_UP(max_pfn << PAGE_SHIFT, 1UL << TB_SHIFT) +
CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING;
- /* Adapt physical memory region size based on available memory */
- if (memory_tb < kaslr_regions[0].size_tb)
+ /*
+ * Adapt physical memory region size based on available memory,
+ * except when CONFIG_PCI_P2PDMA is enabled. P2PDMA exposes the
+ * device BAR space assuming the direct map space is large enough
+ * for creating a ZONE_DEVICE mapping in the direct map corresponding
+ * to the physical BAR address.
+ */
+ if (!IS_ENABLED(CONFIG_PCI_P2PDMA) && (memory_tb < kaslr_regions[0].size_tb))
kaslr_regions[0].size_tb = memory_tb;
/*
diff --git a/arch/x86/mm/mem_encrypt_amd.c b/arch/x86/mm/mem_encrypt_amd.c
index b56c5c073003..faf3a13fb6ba 100644
--- a/arch/x86/mm/mem_encrypt_amd.c
+++ b/arch/x86/mm/mem_encrypt_amd.c
@@ -7,8 +7,6 @@
* Author: Tom Lendacky <thomas.lendacky@amd.com>
*/
-#define DISABLE_BRANCH_PROFILING
-
#include <linux/linkage.h>
#include <linux/init.h>
#include <linux/mm.h>
@@ -42,7 +40,9 @@
* section is later cleared.
*/
u64 sme_me_mask __section(".data") = 0;
+SYM_PIC_ALIAS(sme_me_mask);
u64 sev_status __section(".data") = 0;
+SYM_PIC_ALIAS(sev_status);
u64 sev_check_data __section(".data") = 0;
EXPORT_SYMBOL(sme_me_mask);
diff --git a/arch/x86/mm/mem_encrypt_boot.S b/arch/x86/mm/mem_encrypt_boot.S
index e25288ee33c2..f8a33b25ae86 100644
--- a/arch/x86/mm/mem_encrypt_boot.S
+++ b/arch/x86/mm/mem_encrypt_boot.S
@@ -72,6 +72,7 @@ SYM_FUNC_START(sme_encrypt_execute)
SYM_FUNC_END(sme_encrypt_execute)
SYM_FUNC_START(__enc_copy)
+ ANNOTATE_NOENDBR
/*
* Routine used to encrypt memory in place.
* This routine must be run outside of the kernel proper since
diff --git a/arch/x86/mm/mem_encrypt_identity.c b/arch/x86/mm/mem_encrypt_identity.c
deleted file mode 100644
index e6c7686f443a..000000000000
--- a/arch/x86/mm/mem_encrypt_identity.c
+++ /dev/null
@@ -1,571 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-only
-/*
- * AMD Memory Encryption Support
- *
- * Copyright (C) 2016 Advanced Micro Devices, Inc.
- *
- * Author: Tom Lendacky <thomas.lendacky@amd.com>
- */
-
-#define DISABLE_BRANCH_PROFILING
-
-/*
- * Since we're dealing with identity mappings, physical and virtual
- * addresses are the same, so override these defines which are ultimately
- * used by the headers in misc.h.
- */
-#define __pa(x) ((unsigned long)(x))
-#define __va(x) ((void *)((unsigned long)(x)))
-
-/*
- * Special hack: we have to be careful, because no indirections are
- * allowed here, and paravirt_ops is a kind of one. As it will only run in
- * baremetal anyway, we just keep it from happening. (This list needs to
- * be extended when new paravirt and debugging variants are added.)
- */
-#undef CONFIG_PARAVIRT
-#undef CONFIG_PARAVIRT_XXL
-#undef CONFIG_PARAVIRT_SPINLOCKS
-
-/*
- * This code runs before CPU feature bits are set. By default, the
- * pgtable_l5_enabled() function uses bit X86_FEATURE_LA57 to determine if
- * 5-level paging is active, so that won't work here. USE_EARLY_PGTABLE_L5
- * is provided to handle this situation and, instead, use a variable that
- * has been set by the early boot code.
- */
-#define USE_EARLY_PGTABLE_L5
-
-#include <linux/kernel.h>
-#include <linux/mm.h>
-#include <linux/mem_encrypt.h>
-#include <linux/cc_platform.h>
-
-#include <asm/init.h>
-#include <asm/setup.h>
-#include <asm/sections.h>
-#include <asm/coco.h>
-#include <asm/sev.h>
-
-#include "mm_internal.h"
-
-#define PGD_FLAGS _KERNPG_TABLE_NOENC
-#define P4D_FLAGS _KERNPG_TABLE_NOENC
-#define PUD_FLAGS _KERNPG_TABLE_NOENC
-#define PMD_FLAGS _KERNPG_TABLE_NOENC
-
-#define PMD_FLAGS_LARGE (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
-
-#define PMD_FLAGS_DEC PMD_FLAGS_LARGE
-#define PMD_FLAGS_DEC_WP ((PMD_FLAGS_DEC & ~_PAGE_LARGE_CACHE_MASK) | \
- (_PAGE_PAT_LARGE | _PAGE_PWT))
-
-#define PMD_FLAGS_ENC (PMD_FLAGS_LARGE | _PAGE_ENC)
-
-#define PTE_FLAGS (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
-
-#define PTE_FLAGS_DEC PTE_FLAGS
-#define PTE_FLAGS_DEC_WP ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
- (_PAGE_PAT | _PAGE_PWT))
-
-#define PTE_FLAGS_ENC (PTE_FLAGS | _PAGE_ENC)
-
-struct sme_populate_pgd_data {
- void *pgtable_area;
- pgd_t *pgd;
-
- pmdval_t pmd_flags;
- pteval_t pte_flags;
- unsigned long paddr;
-
- unsigned long vaddr;
- unsigned long vaddr_end;
-};
-
-/*
- * This work area lives in the .init.scratch section, which lives outside of
- * the kernel proper. It is sized to hold the intermediate copy buffer and
- * more than enough pagetable pages.
- *
- * By using this section, the kernel can be encrypted in place and it
- * avoids any possibility of boot parameters or initramfs images being
- * placed such that the in-place encryption logic overwrites them. This
- * section is 2MB aligned to allow for simple pagetable setup using only
- * PMD entries (see vmlinux.lds.S).
- */
-static char sme_workarea[2 * PMD_SIZE] __section(".init.scratch");
-
-static void __head sme_clear_pgd(struct sme_populate_pgd_data *ppd)
-{
- unsigned long pgd_start, pgd_end, pgd_size;
- pgd_t *pgd_p;
-
- pgd_start = ppd->vaddr & PGDIR_MASK;
- pgd_end = ppd->vaddr_end & PGDIR_MASK;
-
- pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
-
- pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
-
- memset(pgd_p, 0, pgd_size);
-}
-
-static pud_t __head *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
-{
- pgd_t *pgd;
- p4d_t *p4d;
- pud_t *pud;
- pmd_t *pmd;
-
- pgd = ppd->pgd + pgd_index(ppd->vaddr);
- if (pgd_none(*pgd)) {
- p4d = ppd->pgtable_area;
- memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D);
- ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D;
- set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d)));
- }
-
- p4d = p4d_offset(pgd, ppd->vaddr);
- if (p4d_none(*p4d)) {
- pud = ppd->pgtable_area;
- memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD);
- ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD;
- set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud)));
- }
-
- pud = pud_offset(p4d, ppd->vaddr);
- if (pud_none(*pud)) {
- pmd = ppd->pgtable_area;
- memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD);
- ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD;
- set_pud(pud, __pud(PUD_FLAGS | __pa(pmd)));
- }
-
- if (pud_leaf(*pud))
- return NULL;
-
- return pud;
-}
-
-static void __head sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
-{
- pud_t *pud;
- pmd_t *pmd;
-
- pud = sme_prepare_pgd(ppd);
- if (!pud)
- return;
-
- pmd = pmd_offset(pud, ppd->vaddr);
- if (pmd_leaf(*pmd))
- return;
-
- set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags));
-}
-
-static void __head sme_populate_pgd(struct sme_populate_pgd_data *ppd)
-{
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
-
- pud = sme_prepare_pgd(ppd);
- if (!pud)
- return;
-
- pmd = pmd_offset(pud, ppd->vaddr);
- if (pmd_none(*pmd)) {
- pte = ppd->pgtable_area;
- memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE);
- ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE;
- set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte)));
- }
-
- if (pmd_leaf(*pmd))
- return;
-
- pte = pte_offset_kernel(pmd, ppd->vaddr);
- if (pte_none(*pte))
- set_pte(pte, __pte(ppd->paddr | ppd->pte_flags));
-}
-
-static void __head __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
-{
- while (ppd->vaddr < ppd->vaddr_end) {
- sme_populate_pgd_large(ppd);
-
- ppd->vaddr += PMD_SIZE;
- ppd->paddr += PMD_SIZE;
- }
-}
-
-static void __head __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
-{
- while (ppd->vaddr < ppd->vaddr_end) {
- sme_populate_pgd(ppd);
-
- ppd->vaddr += PAGE_SIZE;
- ppd->paddr += PAGE_SIZE;
- }
-}
-
-static void __head __sme_map_range(struct sme_populate_pgd_data *ppd,
- pmdval_t pmd_flags, pteval_t pte_flags)
-{
- unsigned long vaddr_end;
-
- ppd->pmd_flags = pmd_flags;
- ppd->pte_flags = pte_flags;
-
- /* Save original end value since we modify the struct value */
- vaddr_end = ppd->vaddr_end;
-
- /* If start is not 2MB aligned, create PTE entries */
- ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_SIZE);
- __sme_map_range_pte(ppd);
-
- /* Create PMD entries */
- ppd->vaddr_end = vaddr_end & PMD_MASK;
- __sme_map_range_pmd(ppd);
-
- /* If end is not 2MB aligned, create PTE entries */
- ppd->vaddr_end = vaddr_end;
- __sme_map_range_pte(ppd);
-}
-
-static void __head sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
-{
- __sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
-}
-
-static void __head sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
-{
- __sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
-}
-
-static void __head sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
-{
- __sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
-}
-
-static unsigned long __head sme_pgtable_calc(unsigned long len)
-{
- unsigned long entries = 0, tables = 0;
-
- /*
- * Perform a relatively simplistic calculation of the pagetable
- * entries that are needed. Those mappings will be covered mostly
- * by 2MB PMD entries so we can conservatively calculate the required
- * number of P4D, PUD and PMD structures needed to perform the
- * mappings. For mappings that are not 2MB aligned, PTE mappings
- * would be needed for the start and end portion of the address range
- * that fall outside of the 2MB alignment. This results in, at most,
- * two extra pages to hold PTE entries for each range that is mapped.
- * Incrementing the count for each covers the case where the addresses
- * cross entries.
- */
-
- /* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
- if (PTRS_PER_P4D > 1)
- entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D;
- entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD;
- entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD;
- entries += 2 * sizeof(pte_t) * PTRS_PER_PTE;
-
- /*
- * Now calculate the added pagetable structures needed to populate
- * the new pagetables.
- */
-
- if (PTRS_PER_P4D > 1)
- tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D;
- tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD;
- tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD;
-
- return entries + tables;
-}
-
-void __head sme_encrypt_kernel(struct boot_params *bp)
-{
- unsigned long workarea_start, workarea_end, workarea_len;
- unsigned long execute_start, execute_end, execute_len;
- unsigned long kernel_start, kernel_end, kernel_len;
- unsigned long initrd_start, initrd_end, initrd_len;
- struct sme_populate_pgd_data ppd;
- unsigned long pgtable_area_len;
- unsigned long decrypted_base;
-
- /*
- * This is early code, use an open coded check for SME instead of
- * using cc_platform_has(). This eliminates worries about removing
- * instrumentation or checking boot_cpu_data in the cc_platform_has()
- * function.
- */
- if (!sme_get_me_mask() ||
- RIP_REL_REF(sev_status) & MSR_AMD64_SEV_ENABLED)
- return;
-
- /*
- * Prepare for encrypting the kernel and initrd by building new
- * pagetables with the necessary attributes needed to encrypt the
- * kernel in place.
- *
- * One range of virtual addresses will map the memory occupied
- * by the kernel and initrd as encrypted.
- *
- * Another range of virtual addresses will map the memory occupied
- * by the kernel and initrd as decrypted and write-protected.
- *
- * The use of write-protect attribute will prevent any of the
- * memory from being cached.
- */
-
- kernel_start = (unsigned long)RIP_REL_REF(_text);
- kernel_end = ALIGN((unsigned long)RIP_REL_REF(_end), PMD_SIZE);
- kernel_len = kernel_end - kernel_start;
-
- initrd_start = 0;
- initrd_end = 0;
- initrd_len = 0;
-#ifdef CONFIG_BLK_DEV_INITRD
- initrd_len = (unsigned long)bp->hdr.ramdisk_size |
- ((unsigned long)bp->ext_ramdisk_size << 32);
- if (initrd_len) {
- initrd_start = (unsigned long)bp->hdr.ramdisk_image |
- ((unsigned long)bp->ext_ramdisk_image << 32);
- initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
- initrd_len = initrd_end - initrd_start;
- }
-#endif
-
- /*
- * Calculate required number of workarea bytes needed:
- * executable encryption area size:
- * stack page (PAGE_SIZE)
- * encryption routine page (PAGE_SIZE)
- * intermediate copy buffer (PMD_SIZE)
- * pagetable structures for the encryption of the kernel
- * pagetable structures for workarea (in case not currently mapped)
- */
- execute_start = workarea_start = (unsigned long)RIP_REL_REF(sme_workarea);
- execute_end = execute_start + (PAGE_SIZE * 2) + PMD_SIZE;
- execute_len = execute_end - execute_start;
-
- /*
- * One PGD for both encrypted and decrypted mappings and a set of
- * PUDs and PMDs for each of the encrypted and decrypted mappings.
- */
- pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
- pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
- if (initrd_len)
- pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
-
- /* PUDs and PMDs needed in the current pagetables for the workarea */
- pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
-
- /*
- * The total workarea includes the executable encryption area and
- * the pagetable area. The start of the workarea is already 2MB
- * aligned, align the end of the workarea on a 2MB boundary so that
- * we don't try to create/allocate PTE entries from the workarea
- * before it is mapped.
- */
- workarea_len = execute_len + pgtable_area_len;
- workarea_end = ALIGN(workarea_start + workarea_len, PMD_SIZE);
-
- /*
- * Set the address to the start of where newly created pagetable
- * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
- * structures are created when the workarea is added to the current
- * pagetables and when the new encrypted and decrypted kernel
- * mappings are populated.
- */
- ppd.pgtable_area = (void *)execute_end;
-
- /*
- * Make sure the current pagetable structure has entries for
- * addressing the workarea.
- */
- ppd.pgd = (pgd_t *)native_read_cr3_pa();
- ppd.paddr = workarea_start;
- ppd.vaddr = workarea_start;
- ppd.vaddr_end = workarea_end;
- sme_map_range_decrypted(&ppd);
-
- /* Flush the TLB - no globals so cr3 is enough */
- native_write_cr3(__native_read_cr3());
-
- /*
- * A new pagetable structure is being built to allow for the kernel
- * and initrd to be encrypted. It starts with an empty PGD that will
- * then be populated with new PUDs and PMDs as the encrypted and
- * decrypted kernel mappings are created.
- */
- ppd.pgd = ppd.pgtable_area;
- memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
- ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
-
- /*
- * A different PGD index/entry must be used to get different
- * pagetable entries for the decrypted mapping. Choose the next
- * PGD index and convert it to a virtual address to be used as
- * the base of the mapping.
- */
- decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
- if (initrd_len) {
- unsigned long check_base;
-
- check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
- decrypted_base = max(decrypted_base, check_base);
- }
- decrypted_base <<= PGDIR_SHIFT;
-
- /* Add encrypted kernel (identity) mappings */
- ppd.paddr = kernel_start;
- ppd.vaddr = kernel_start;
- ppd.vaddr_end = kernel_end;
- sme_map_range_encrypted(&ppd);
-
- /* Add decrypted, write-protected kernel (non-identity) mappings */
- ppd.paddr = kernel_start;
- ppd.vaddr = kernel_start + decrypted_base;
- ppd.vaddr_end = kernel_end + decrypted_base;
- sme_map_range_decrypted_wp(&ppd);
-
- if (initrd_len) {
- /* Add encrypted initrd (identity) mappings */
- ppd.paddr = initrd_start;
- ppd.vaddr = initrd_start;
- ppd.vaddr_end = initrd_end;
- sme_map_range_encrypted(&ppd);
- /*
- * Add decrypted, write-protected initrd (non-identity) mappings
- */
- ppd.paddr = initrd_start;
- ppd.vaddr = initrd_start + decrypted_base;
- ppd.vaddr_end = initrd_end + decrypted_base;
- sme_map_range_decrypted_wp(&ppd);
- }
-
- /* Add decrypted workarea mappings to both kernel mappings */
- ppd.paddr = workarea_start;
- ppd.vaddr = workarea_start;
- ppd.vaddr_end = workarea_end;
- sme_map_range_decrypted(&ppd);
-
- ppd.paddr = workarea_start;
- ppd.vaddr = workarea_start + decrypted_base;
- ppd.vaddr_end = workarea_end + decrypted_base;
- sme_map_range_decrypted(&ppd);
-
- /* Perform the encryption */
- sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
- kernel_len, workarea_start, (unsigned long)ppd.pgd);
-
- if (initrd_len)
- sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
- initrd_len, workarea_start,
- (unsigned long)ppd.pgd);
-
- /*
- * At this point we are running encrypted. Remove the mappings for
- * the decrypted areas - all that is needed for this is to remove
- * the PGD entry/entries.
- */
- ppd.vaddr = kernel_start + decrypted_base;
- ppd.vaddr_end = kernel_end + decrypted_base;
- sme_clear_pgd(&ppd);
-
- if (initrd_len) {
- ppd.vaddr = initrd_start + decrypted_base;
- ppd.vaddr_end = initrd_end + decrypted_base;
- sme_clear_pgd(&ppd);
- }
-
- ppd.vaddr = workarea_start + decrypted_base;
- ppd.vaddr_end = workarea_end + decrypted_base;
- sme_clear_pgd(&ppd);
-
- /* Flush the TLB - no globals so cr3 is enough */
- native_write_cr3(__native_read_cr3());
-}
-
-void __head sme_enable(struct boot_params *bp)
-{
- unsigned int eax, ebx, ecx, edx;
- unsigned long feature_mask;
- unsigned long me_mask;
- bool snp_en;
- u64 msr;
-
- snp_en = snp_init(bp);
-
- /* Check for the SME/SEV support leaf */
- eax = 0x80000000;
- ecx = 0;
- native_cpuid(&eax, &ebx, &ecx, &edx);
- if (eax < 0x8000001f)
- return;
-
-#define AMD_SME_BIT BIT(0)
-#define AMD_SEV_BIT BIT(1)
-
- /*
- * Check for the SME/SEV feature:
- * CPUID Fn8000_001F[EAX]
- * - Bit 0 - Secure Memory Encryption support
- * - Bit 1 - Secure Encrypted Virtualization support
- * CPUID Fn8000_001F[EBX]
- * - Bits 5:0 - Pagetable bit position used to indicate encryption
- */
- eax = 0x8000001f;
- ecx = 0;
- native_cpuid(&eax, &ebx, &ecx, &edx);
- /* Check whether SEV or SME is supported */
- if (!(eax & (AMD_SEV_BIT | AMD_SME_BIT)))
- return;
-
- me_mask = 1UL << (ebx & 0x3f);
-
- /* Check the SEV MSR whether SEV or SME is enabled */
- RIP_REL_REF(sev_status) = msr = __rdmsr(MSR_AMD64_SEV);
- feature_mask = (msr & MSR_AMD64_SEV_ENABLED) ? AMD_SEV_BIT : AMD_SME_BIT;
-
- /*
- * Any discrepancies between the presence of a CC blob and SNP
- * enablement abort the guest.
- */
- if (snp_en ^ !!(msr & MSR_AMD64_SEV_SNP_ENABLED))
- snp_abort();
-
- /* Check if memory encryption is enabled */
- if (feature_mask == AMD_SME_BIT) {
- if (!(bp->hdr.xloadflags & XLF_MEM_ENCRYPTION))
- return;
-
- /*
- * No SME if Hypervisor bit is set. This check is here to
- * prevent a guest from trying to enable SME. For running as a
- * KVM guest the MSR_AMD64_SYSCFG will be sufficient, but there
- * might be other hypervisors which emulate that MSR as non-zero
- * or even pass it through to the guest.
- * A malicious hypervisor can still trick a guest into this
- * path, but there is no way to protect against that.
- */
- eax = 1;
- ecx = 0;
- native_cpuid(&eax, &ebx, &ecx, &edx);
- if (ecx & BIT(31))
- return;
-
- /* For SME, check the SYSCFG MSR */
- msr = __rdmsr(MSR_AMD64_SYSCFG);
- if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
- return;
- }
-
- RIP_REL_REF(sme_me_mask) = me_mask;
- physical_mask &= ~me_mask;
- cc_vendor = CC_VENDOR_AMD;
- cc_set_mask(me_mask);
-}
diff --git a/arch/x86/mm/mm_internal.h b/arch/x86/mm/mm_internal.h
index 3f37b5c80bb3..097aadc250f7 100644
--- a/arch/x86/mm/mm_internal.h
+++ b/arch/x86/mm/mm_internal.h
@@ -25,4 +25,8 @@ void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache);
extern unsigned long tlb_single_page_flush_ceiling;
+#ifdef CONFIG_NUMA
+void __init x86_numa_init(void);
+#endif
+
#endif /* __X86_MM_INTERNAL_H */
diff --git a/arch/x86/mm/mmap.c b/arch/x86/mm/mmap.c
index b8a6ffffb451..5ed2109211da 100644
--- a/arch/x86/mm/mmap.c
+++ b/arch/x86/mm/mmap.c
@@ -84,7 +84,6 @@ static unsigned long mmap_base(unsigned long rnd, unsigned long task_size,
{
unsigned long gap = rlim_stack->rlim_cur;
unsigned long pad = stack_maxrandom_size(task_size) + stack_guard_gap;
- unsigned long gap_min, gap_max;
/* Values close to RLIM_INFINITY can overflow. */
if (gap + pad > gap)
@@ -94,13 +93,7 @@ static unsigned long mmap_base(unsigned long rnd, unsigned long task_size,
* Top of mmap area (just below the process stack).
* Leave an at least ~128 MB hole with possible stack randomization.
*/
- gap_min = SIZE_128M;
- gap_max = (task_size / 6) * 5;
-
- if (gap < gap_min)
- gap = gap_min;
- else if (gap > gap_max)
- gap = gap_max;
+ gap = clamp(gap, SIZE_128M, (task_size / 6) * 5);
return PAGE_ALIGN(task_size - gap - rnd);
}
diff --git a/arch/x86/mm/numa.c b/arch/x86/mm/numa.c
index 64e5cdb2460a..c24890c40138 100644
--- a/arch/x86/mm/numa.c
+++ b/arch/x86/mm/numa.c
@@ -18,9 +18,10 @@
#include <asm/e820/api.h>
#include <asm/proto.h>
#include <asm/dma.h>
-#include <asm/amd_nb.h>
+#include <asm/numa.h>
+#include <asm/amd/nb.h>
-#include "numa_internal.h"
+#include "mm_internal.h"
int numa_off;
diff --git a/arch/x86/mm/numa_32.c b/arch/x86/mm/numa_32.c
deleted file mode 100644
index 65fda406e6f2..000000000000
--- a/arch/x86/mm/numa_32.c
+++ /dev/null
@@ -1,61 +0,0 @@
-/*
- * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
- * August 2002: added remote node KVA remap - Martin J. Bligh
- *
- * Copyright (C) 2002, IBM Corp.
- *
- * All rights reserved.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
- * NON INFRINGEMENT. See the GNU General Public License for more
- * details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
-#include <linux/memblock.h>
-#include <linux/init.h>
-#include <linux/vmalloc.h>
-#include <asm/pgtable_areas.h>
-
-#include "numa_internal.h"
-
-extern unsigned long highend_pfn, highstart_pfn;
-
-void __init initmem_init(void)
-{
- x86_numa_init();
-
-#ifdef CONFIG_HIGHMEM
- highstart_pfn = highend_pfn = max_pfn;
- if (max_pfn > max_low_pfn)
- highstart_pfn = max_low_pfn;
- printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
- pages_to_mb(highend_pfn - highstart_pfn));
- high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
-#else
- high_memory = (void *) __va(max_low_pfn * PAGE_SIZE - 1) + 1;
-#endif
- printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
- pages_to_mb(max_low_pfn));
- printk(KERN_DEBUG "max_low_pfn = %lx, highstart_pfn = %lx\n",
- max_low_pfn, highstart_pfn);
-
- printk(KERN_DEBUG "Low memory ends at vaddr %08lx\n",
- (ulong) pfn_to_kaddr(max_low_pfn));
-
- printk(KERN_DEBUG "High memory starts at vaddr %08lx\n",
- (ulong) pfn_to_kaddr(highstart_pfn));
-
- __vmalloc_start_set = true;
- setup_bootmem_allocator();
-}
diff --git a/arch/x86/mm/numa_64.c b/arch/x86/mm/numa_64.c
deleted file mode 100644
index 59d80160fa5a..000000000000
--- a/arch/x86/mm/numa_64.c
+++ /dev/null
@@ -1,13 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0
-/*
- * Generic VM initialization for x86-64 NUMA setups.
- * Copyright 2002,2003 Andi Kleen, SuSE Labs.
- */
-#include <linux/memblock.h>
-
-#include "numa_internal.h"
-
-void __init initmem_init(void)
-{
- x86_numa_init();
-}
diff --git a/arch/x86/mm/numa_internal.h b/arch/x86/mm/numa_internal.h
deleted file mode 100644
index 11e1ff370c10..000000000000
--- a/arch/x86/mm/numa_internal.h
+++ /dev/null
@@ -1,10 +0,0 @@
-/* SPDX-License-Identifier: GPL-2.0 */
-#ifndef __X86_MM_NUMA_INTERNAL_H
-#define __X86_MM_NUMA_INTERNAL_H
-
-#include <linux/types.h>
-#include <asm/numa.h>
-
-void __init x86_numa_init(void);
-
-#endif /* __X86_MM_NUMA_INTERNAL_H */
diff --git a/arch/x86/mm/pat/cpa-test.c b/arch/x86/mm/pat/cpa-test.c
index 3d2f7f0a6ed1..ad3c1feec990 100644
--- a/arch/x86/mm/pat/cpa-test.c
+++ b/arch/x86/mm/pat/cpa-test.c
@@ -183,7 +183,7 @@ static int pageattr_test(void)
break;
case 1:
- err = change_page_attr_set(addrs, len[1], PAGE_CPA_TEST, 1);
+ err = change_page_attr_set(addrs, len[i], PAGE_CPA_TEST, 1);
break;
case 2:
diff --git a/arch/x86/mm/pat/memtype.c b/arch/x86/mm/pat/memtype.c
index feb8cc6a12bf..c97b527c66fe 100644
--- a/arch/x86/mm/pat/memtype.c
+++ b/arch/x86/mm/pat/memtype.c
@@ -38,11 +38,13 @@
#include <linux/kernel.h>
#include <linux/pfn_t.h>
#include <linux/slab.h>
+#include <linux/io.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/fs.h>
#include <linux/rbtree.h>
+#include <asm/cpu_device_id.h>
#include <asm/cacheflush.h>
#include <asm/cacheinfo.h>
#include <asm/processor.h>
@@ -231,7 +233,7 @@ void pat_cpu_init(void)
panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
}
- wrmsrl(MSR_IA32_CR_PAT, pat_msr_val);
+ wrmsrq(MSR_IA32_CR_PAT, pat_msr_val);
__flush_tlb_all();
}
@@ -255,7 +257,7 @@ void __init pat_bp_init(void)
if (!cpu_feature_enabled(X86_FEATURE_PAT))
pat_disable("PAT not supported by the CPU.");
else
- rdmsrl(MSR_IA32_CR_PAT, pat_msr_val);
+ rdmsrq(MSR_IA32_CR_PAT, pat_msr_val);
if (!pat_msr_val) {
pat_disable("PAT support disabled by the firmware.");
@@ -290,9 +292,8 @@ void __init pat_bp_init(void)
return;
}
- if ((c->x86_vendor == X86_VENDOR_INTEL) &&
- (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
- ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
+ if ((c->x86_vfm >= INTEL_PENTIUM_PRO && c->x86_vfm <= INTEL_PENTIUM_M_DOTHAN) ||
+ (c->x86_vfm >= INTEL_P4_WILLAMETTE && c->x86_vfm <= INTEL_P4_CEDARMILL)) {
/*
* PAT support with the lower four entries. Intel Pentium 2,
* 3, M, and 4 are affected by PAT errata, which makes the
@@ -682,6 +683,7 @@ static enum page_cache_mode lookup_memtype(u64 paddr)
/**
* pat_pfn_immune_to_uc_mtrr - Check whether the PAT memory type
* of @pfn cannot be overridden by UC MTRR memory type.
+ * @pfn: The page frame number to check.
*
* Only to be called when PAT is enabled.
*
@@ -773,38 +775,14 @@ pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
return vma_prot;
}
-#ifdef CONFIG_STRICT_DEVMEM
-/* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
-static inline int range_is_allowed(unsigned long pfn, unsigned long size)
-{
- return 1;
-}
-#else
-/* This check is needed to avoid cache aliasing when PAT is enabled */
-static inline int range_is_allowed(unsigned long pfn, unsigned long size)
-{
- u64 from = ((u64)pfn) << PAGE_SHIFT;
- u64 to = from + size;
- u64 cursor = from;
-
- if (!pat_enabled())
- return 1;
-
- while (cursor < to) {
- if (!devmem_is_allowed(pfn))
- return 0;
- cursor += PAGE_SIZE;
- pfn++;
- }
- return 1;
-}
-#endif /* CONFIG_STRICT_DEVMEM */
-
int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
unsigned long size, pgprot_t *vma_prot)
{
enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
+ if (!pat_enabled())
+ return 1;
+
if (!range_is_allowed(pfn, size))
return 0;
@@ -984,29 +962,42 @@ static int get_pat_info(struct vm_area_struct *vma, resource_size_t *paddr,
return -EINVAL;
}
-/*
- * track_pfn_copy is called when vma that is covering the pfnmap gets
- * copied through copy_page_range().
- *
- * If the vma has a linear pfn mapping for the entire range, we get the prot
- * from pte and reserve the entire vma range with single reserve_pfn_range call.
- */
-int track_pfn_copy(struct vm_area_struct *vma)
+int track_pfn_copy(struct vm_area_struct *dst_vma,
+ struct vm_area_struct *src_vma, unsigned long *pfn)
{
+ const unsigned long vma_size = src_vma->vm_end - src_vma->vm_start;
resource_size_t paddr;
- unsigned long vma_size = vma->vm_end - vma->vm_start;
pgprot_t pgprot;
+ int rc;
- if (vma->vm_flags & VM_PAT) {
- if (get_pat_info(vma, &paddr, &pgprot))
- return -EINVAL;
- /* reserve the whole chunk covered by vma. */
- return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
- }
+ if (!(src_vma->vm_flags & VM_PAT))
+ return 0;
+
+ /*
+ * Duplicate the PAT information for the dst VMA based on the src
+ * VMA.
+ */
+ if (get_pat_info(src_vma, &paddr, &pgprot))
+ return -EINVAL;
+ rc = reserve_pfn_range(paddr, vma_size, &pgprot, 1);
+ if (rc)
+ return rc;
+ /* Reservation for the destination VMA succeeded. */
+ vm_flags_set(dst_vma, VM_PAT);
+ *pfn = PHYS_PFN(paddr);
return 0;
}
+void untrack_pfn_copy(struct vm_area_struct *dst_vma, unsigned long pfn)
+{
+ untrack_pfn(dst_vma, pfn, dst_vma->vm_end - dst_vma->vm_start, true);
+ /*
+ * Reservation was freed, any copied page tables will get cleaned
+ * up later, but without getting PAT involved again.
+ */
+}
+
/*
* prot is passed in as a parameter for the new mapping. If the vma has
* a linear pfn mapping for the entire range, or no vma is provided,
@@ -1095,15 +1086,6 @@ void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
}
}
-/*
- * untrack_pfn_clear is called if the following situation fits:
- *
- * 1) while mremapping a pfnmap for a new region, with the old vma after
- * its pfnmap page table has been removed. The new vma has a new pfnmap
- * to the same pfn & cache type with VM_PAT set.
- * 2) while duplicating vm area, the new vma fails to copy the pgtable from
- * old vma.
- */
void untrack_pfn_clear(struct vm_area_struct *vma)
{
vm_flags_clear(vma, VM_PAT);
diff --git a/arch/x86/mm/pat/set_memory.c b/arch/x86/mm/pat/set_memory.c
index ef4514d64c05..30ab4aced761 100644
--- a/arch/x86/mm/pat/set_memory.c
+++ b/arch/x86/mm/pat/set_memory.c
@@ -73,6 +73,7 @@ static DEFINE_SPINLOCK(cpa_lock);
#define CPA_ARRAY 2
#define CPA_PAGES_ARRAY 4
#define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
+#define CPA_COLLAPSE 16 /* try to collapse large pages */
static inline pgprot_t cachemode2pgprot(enum page_cache_mode pcm)
{
@@ -105,6 +106,18 @@ static void split_page_count(int level)
direct_pages_count[level - 1] += PTRS_PER_PTE;
}
+static void collapse_page_count(int level)
+{
+ direct_pages_count[level]++;
+ if (system_state == SYSTEM_RUNNING) {
+ if (level == PG_LEVEL_2M)
+ count_vm_event(DIRECT_MAP_LEVEL2_COLLAPSE);
+ else if (level == PG_LEVEL_1G)
+ count_vm_event(DIRECT_MAP_LEVEL3_COLLAPSE);
+ }
+ direct_pages_count[level - 1] -= PTRS_PER_PTE;
+}
+
void arch_report_meminfo(struct seq_file *m)
{
seq_printf(m, "DirectMap4k: %8lu kB\n",
@@ -122,6 +135,7 @@ void arch_report_meminfo(struct seq_file *m)
}
#else
static inline void split_page_count(int level) { }
+static inline void collapse_page_count(int level) { }
#endif
#ifdef CONFIG_X86_CPA_STATISTICS
@@ -211,14 +225,14 @@ within(unsigned long addr, unsigned long start, unsigned long end)
return addr >= start && addr < end;
}
+#ifdef CONFIG_X86_64
+
static inline int
within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
{
return addr >= start && addr <= end;
}
-#ifdef CONFIG_X86_64
-
/*
* The kernel image is mapped into two places in the virtual address space
* (addresses without KASLR, of course):
@@ -394,16 +408,49 @@ static void __cpa_flush_tlb(void *data)
flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
}
-static void cpa_flush(struct cpa_data *data, int cache)
+static int collapse_large_pages(unsigned long addr, struct list_head *pgtables);
+
+static void cpa_collapse_large_pages(struct cpa_data *cpa)
+{
+ unsigned long start, addr, end;
+ struct ptdesc *ptdesc, *tmp;
+ LIST_HEAD(pgtables);
+ int collapsed = 0;
+ int i;
+
+ if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
+ for (i = 0; i < cpa->numpages; i++)
+ collapsed += collapse_large_pages(__cpa_addr(cpa, i),
+ &pgtables);
+ } else {
+ addr = __cpa_addr(cpa, 0);
+ start = addr & PMD_MASK;
+ end = addr + PAGE_SIZE * cpa->numpages;
+
+ for (addr = start; within(addr, start, end); addr += PMD_SIZE)
+ collapsed += collapse_large_pages(addr, &pgtables);
+ }
+
+ if (!collapsed)
+ return;
+
+ flush_tlb_all();
+
+ list_for_each_entry_safe(ptdesc, tmp, &pgtables, pt_list) {
+ list_del(&ptdesc->pt_list);
+ __free_page(ptdesc_page(ptdesc));
+ }
+}
+
+static void cpa_flush(struct cpa_data *cpa, int cache)
{
- struct cpa_data *cpa = data;
unsigned int i;
BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
cpa_flush_all(cache);
- return;
+ goto collapse_large_pages;
}
if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
@@ -412,7 +459,7 @@ static void cpa_flush(struct cpa_data *data, int cache)
on_each_cpu(__cpa_flush_tlb, cpa, 1);
if (!cache)
- return;
+ goto collapse_large_pages;
mb();
for (i = 0; i < cpa->numpages; i++) {
@@ -428,6 +475,10 @@ static void cpa_flush(struct cpa_data *data, int cache)
clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
}
mb();
+
+collapse_large_pages:
+ if (cpa->flags & CPA_COLLAPSE)
+ cpa_collapse_large_pages(cpa);
}
static bool overlaps(unsigned long r1_start, unsigned long r1_end,
@@ -838,7 +889,7 @@ static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
/* change init_mm */
set_pte_atomic(kpte, pte);
#ifdef CONFIG_X86_32
- if (!SHARED_KERNEL_PMD) {
+ {
struct page *page;
list_for_each_entry(page, &pgd_list, lru) {
@@ -1197,6 +1248,161 @@ static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
return 0;
}
+static int collapse_pmd_page(pmd_t *pmd, unsigned long addr,
+ struct list_head *pgtables)
+{
+ pmd_t _pmd, old_pmd;
+ pte_t *pte, first;
+ unsigned long pfn;
+ pgprot_t pgprot;
+ int i = 0;
+
+ addr &= PMD_MASK;
+ pte = pte_offset_kernel(pmd, addr);
+ first = *pte;
+ pfn = pte_pfn(first);
+
+ /* Make sure alignment is suitable */
+ if (PFN_PHYS(pfn) & ~PMD_MASK)
+ return 0;
+
+ /* The page is 4k intentionally */
+ if (pte_flags(first) & _PAGE_KERNEL_4K)
+ return 0;
+
+ /* Check that the rest of PTEs are compatible with the first one */
+ for (i = 1, pte++; i < PTRS_PER_PTE; i++, pte++) {
+ pte_t entry = *pte;
+
+ if (!pte_present(entry))
+ return 0;
+ if (pte_flags(entry) != pte_flags(first))
+ return 0;
+ if (pte_pfn(entry) != pte_pfn(first) + i)
+ return 0;
+ }
+
+ old_pmd = *pmd;
+
+ /* Success: set up a large page */
+ pgprot = pgprot_4k_2_large(pte_pgprot(first));
+ pgprot_val(pgprot) |= _PAGE_PSE;
+ _pmd = pfn_pmd(pfn, pgprot);
+ set_pmd(pmd, _pmd);
+
+ /* Queue the page table to be freed after TLB flush */
+ list_add(&page_ptdesc(pmd_page(old_pmd))->pt_list, pgtables);
+
+ if (IS_ENABLED(CONFIG_X86_32)) {
+ struct page *page;
+
+ /* Update all PGD tables to use the same large page */
+ list_for_each_entry(page, &pgd_list, lru) {
+ pgd_t *pgd = (pgd_t *)page_address(page) + pgd_index(addr);
+ p4d_t *p4d = p4d_offset(pgd, addr);
+ pud_t *pud = pud_offset(p4d, addr);
+ pmd_t *pmd = pmd_offset(pud, addr);
+ /* Something is wrong if entries doesn't match */
+ if (WARN_ON(pmd_val(old_pmd) != pmd_val(*pmd)))
+ continue;
+ set_pmd(pmd, _pmd);
+ }
+ }
+
+ if (virt_addr_valid(addr) && pfn_range_is_mapped(pfn, pfn + 1))
+ collapse_page_count(PG_LEVEL_2M);
+
+ return 1;
+}
+
+static int collapse_pud_page(pud_t *pud, unsigned long addr,
+ struct list_head *pgtables)
+{
+ unsigned long pfn;
+ pmd_t *pmd, first;
+ int i;
+
+ if (!direct_gbpages)
+ return 0;
+
+ addr &= PUD_MASK;
+ pmd = pmd_offset(pud, addr);
+ first = *pmd;
+
+ /*
+ * To restore PUD page all PMD entries must be large and
+ * have suitable alignment
+ */
+ pfn = pmd_pfn(first);
+ if (!pmd_leaf(first) || (PFN_PHYS(pfn) & ~PUD_MASK))
+ return 0;
+
+ /*
+ * To restore PUD page, all following PMDs must be compatible with the
+ * first one.
+ */
+ for (i = 1, pmd++; i < PTRS_PER_PMD; i++, pmd++) {
+ pmd_t entry = *pmd;
+
+ if (!pmd_present(entry) || !pmd_leaf(entry))
+ return 0;
+ if (pmd_flags(entry) != pmd_flags(first))
+ return 0;
+ if (pmd_pfn(entry) != pmd_pfn(first) + i * PTRS_PER_PTE)
+ return 0;
+ }
+
+ /* Restore PUD page and queue page table to be freed after TLB flush */
+ list_add(&page_ptdesc(pud_page(*pud))->pt_list, pgtables);
+ set_pud(pud, pfn_pud(pfn, pmd_pgprot(first)));
+
+ if (virt_addr_valid(addr) && pfn_range_is_mapped(pfn, pfn + 1))
+ collapse_page_count(PG_LEVEL_1G);
+
+ return 1;
+}
+
+/*
+ * Collapse PMD and PUD pages in the kernel mapping around the address where
+ * possible.
+ *
+ * Caller must flush TLB and free page tables queued on the list before
+ * touching the new entries. CPU must not see TLB entries of different size
+ * with different attributes.
+ */
+static int collapse_large_pages(unsigned long addr, struct list_head *pgtables)
+{
+ int collapsed = 0;
+ pgd_t *pgd;
+ p4d_t *p4d;
+ pud_t *pud;
+ pmd_t *pmd;
+
+ addr &= PMD_MASK;
+
+ spin_lock(&pgd_lock);
+ pgd = pgd_offset_k(addr);
+ if (pgd_none(*pgd))
+ goto out;
+ p4d = p4d_offset(pgd, addr);
+ if (p4d_none(*p4d))
+ goto out;
+ pud = pud_offset(p4d, addr);
+ if (!pud_present(*pud) || pud_leaf(*pud))
+ goto out;
+ pmd = pmd_offset(pud, addr);
+ if (!pmd_present(*pmd) || pmd_leaf(*pmd))
+ goto out;
+
+ collapsed = collapse_pmd_page(pmd, addr, pgtables);
+ if (collapsed)
+ collapsed += collapse_pud_page(pud, addr, pgtables);
+
+out:
+ spin_unlock(&pgd_lock);
+ return collapsed;
+}
+
static bool try_to_free_pte_page(pte_t *pte)
{
int i;
@@ -1942,19 +2148,6 @@ static inline int cpa_clear_pages_array(struct page **pages, int numpages,
CPA_PAGES_ARRAY, pages);
}
-/*
- * __set_memory_prot is an internal helper for callers that have been passed
- * a pgprot_t value from upper layers and a reservation has already been taken.
- * If you want to set the pgprot to a specific page protocol, use the
- * set_memory_xx() functions.
- */
-int __set_memory_prot(unsigned long addr, int numpages, pgprot_t prot)
-{
- return change_page_attr_set_clr(&addr, numpages, prot,
- __pgprot(~pgprot_val(prot)), 0, 0,
- NULL);
-}
-
int _set_memory_uc(unsigned long addr, int numpages)
{
/*
@@ -2081,6 +2274,7 @@ int set_mce_nospec(unsigned long pfn)
pr_warn("Could not invalidate pfn=0x%lx from 1:1 map\n", pfn);
return rc;
}
+EXPORT_SYMBOL_GPL(set_mce_nospec);
/* Restore full speculative operation to the pfn. */
int clear_mce_nospec(unsigned long pfn)
@@ -2120,7 +2314,8 @@ int set_memory_rox(unsigned long addr, int numpages)
if (__supported_pte_mask & _PAGE_NX)
clr.pgprot |= _PAGE_NX;
- return change_page_attr_clear(&addr, numpages, clr, 0);
+ return change_page_attr_set_clr(&addr, numpages, __pgprot(0), clr, 0,
+ CPA_COLLAPSE, NULL);
}
int set_memory_rw(unsigned long addr, int numpages)
@@ -2147,7 +2342,8 @@ int set_memory_p(unsigned long addr, int numpages)
int set_memory_4k(unsigned long addr, int numpages)
{
- return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
+ return change_page_attr_set_clr(&addr, numpages,
+ __pgprot(_PAGE_KERNEL_4K),
__pgprot(0), 1, 0, NULL);
}
@@ -2420,7 +2616,7 @@ static int __set_pages_np(struct page *page, int numpages)
.pgd = NULL,
.numpages = numpages,
.mask_set = __pgprot(0),
- .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
+ .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY),
.flags = CPA_NO_CHECK_ALIAS };
/*
@@ -2507,7 +2703,7 @@ int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
.pgd = pgd,
.numpages = numpages,
.mask_set = __pgprot(0),
- .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
+ .mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW|_PAGE_DIRTY)),
.flags = CPA_NO_CHECK_ALIAS,
};
@@ -2550,7 +2746,7 @@ int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
.pgd = pgd,
.numpages = numpages,
.mask_set = __pgprot(0),
- .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
+ .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY),
.flags = CPA_NO_CHECK_ALIAS,
};
diff --git a/arch/x86/mm/pgtable.c b/arch/x86/mm/pgtable.c
index 1fef5ad32d5a..62777ba4de1a 100644
--- a/arch/x86/mm/pgtable.c
+++ b/arch/x86/mm/pgtable.c
@@ -10,61 +10,18 @@
#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1;
EXPORT_SYMBOL(physical_mask);
+SYM_PIC_ALIAS(physical_mask);
#endif
-#ifdef CONFIG_HIGHPTE
-#define PGTABLE_HIGHMEM __GFP_HIGHMEM
-#else
-#define PGTABLE_HIGHMEM 0
-#endif
-
-#ifndef CONFIG_PARAVIRT
-#ifndef CONFIG_PT_RECLAIM
-static inline
-void paravirt_tlb_remove_table(struct mmu_gather *tlb, void *table)
-{
- struct ptdesc *ptdesc = (struct ptdesc *)table;
-
- pagetable_dtor(ptdesc);
- tlb_remove_page(tlb, ptdesc_page(ptdesc));
-}
-#else
-static inline
-void paravirt_tlb_remove_table(struct mmu_gather *tlb, void *table)
-{
- tlb_remove_table(tlb, table);
-}
-#endif /* !CONFIG_PT_RECLAIM */
-#endif /* !CONFIG_PARAVIRT */
-
-gfp_t __userpte_alloc_gfp = GFP_PGTABLE_USER | PGTABLE_HIGHMEM;
-
pgtable_t pte_alloc_one(struct mm_struct *mm)
{
- return __pte_alloc_one(mm, __userpte_alloc_gfp);
+ return __pte_alloc_one(mm, GFP_PGTABLE_USER);
}
-static int __init setup_userpte(char *arg)
-{
- if (!arg)
- return -EINVAL;
-
- /*
- * "userpte=nohigh" disables allocation of user pagetables in
- * high memory.
- */
- if (strcmp(arg, "nohigh") == 0)
- __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
- else
- return -EINVAL;
- return 0;
-}
-early_param("userpte", setup_userpte);
-
void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
{
paravirt_release_pte(page_to_pfn(pte));
- paravirt_tlb_remove_table(tlb, page_ptdesc(pte));
+ tlb_remove_ptdesc(tlb, page_ptdesc(pte));
}
#if CONFIG_PGTABLE_LEVELS > 2
@@ -78,21 +35,21 @@ void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
#ifdef CONFIG_X86_PAE
tlb->need_flush_all = 1;
#endif
- paravirt_tlb_remove_table(tlb, virt_to_ptdesc(pmd));
+ tlb_remove_ptdesc(tlb, virt_to_ptdesc(pmd));
}
#if CONFIG_PGTABLE_LEVELS > 3
void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
{
paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
- paravirt_tlb_remove_table(tlb, virt_to_ptdesc(pud));
+ tlb_remove_ptdesc(tlb, virt_to_ptdesc(pud));
}
#if CONFIG_PGTABLE_LEVELS > 4
void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
{
paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
- paravirt_tlb_remove_table(tlb, virt_to_ptdesc(p4d));
+ tlb_remove_ptdesc(tlb, virt_to_ptdesc(p4d));
}
#endif /* CONFIG_PGTABLE_LEVELS > 4 */
#endif /* CONFIG_PGTABLE_LEVELS > 3 */
@@ -112,12 +69,6 @@ static inline void pgd_list_del(pgd_t *pgd)
list_del(&ptdesc->pt_list);
}
-#define UNSHARED_PTRS_PER_PGD \
- (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
-#define MAX_UNSHARED_PTRS_PER_PGD \
- MAX_T(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD)
-
-
static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
{
virt_to_ptdesc(pgd)->pt_mm = mm;
@@ -130,29 +81,19 @@ struct mm_struct *pgd_page_get_mm(struct page *page)
static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
{
- /* If the pgd points to a shared pagetable level (either the
- ptes in non-PAE, or shared PMD in PAE), then just copy the
- references from swapper_pg_dir. */
- if (CONFIG_PGTABLE_LEVELS == 2 ||
- (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
- CONFIG_PGTABLE_LEVELS >= 4) {
+ /* PAE preallocates all its PMDs. No cloning needed. */
+ if (!IS_ENABLED(CONFIG_X86_PAE))
clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
swapper_pg_dir + KERNEL_PGD_BOUNDARY,
KERNEL_PGD_PTRS);
- }
- /* list required to sync kernel mapping updates */
- if (!SHARED_KERNEL_PMD) {
- pgd_set_mm(pgd, mm);
- pgd_list_add(pgd);
- }
+ /* List used to sync kernel mapping updates */
+ pgd_set_mm(pgd, mm);
+ pgd_list_add(pgd);
}
static void pgd_dtor(pgd_t *pgd)
{
- if (SHARED_KERNEL_PMD)
- return;
-
spin_lock(&pgd_lock);
pgd_list_del(pgd);
spin_unlock(&pgd_lock);
@@ -176,15 +117,15 @@ static void pgd_dtor(pgd_t *pgd)
* processor notices the update. Since this is expensive, and
* all 4 top-level entries are used almost immediately in a
* new process's life, we just pre-populate them here.
- *
- * Also, if we're in a paravirt environment where the kernel pmd is
- * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
- * and initialize the kernel pmds here.
*/
-#define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
-#define MAX_PREALLOCATED_PMDS MAX_UNSHARED_PTRS_PER_PGD
+#define PREALLOCATED_PMDS PTRS_PER_PGD
/*
+ * "USER_PMDS" are the PMDs for the user copy of the page tables when
+ * PTI is enabled. They do not exist when PTI is disabled. Note that
+ * this is distinct from the user _portion_ of the kernel page tables
+ * which always exists.
+ *
* We allocate separate PMDs for the kernel part of the user page-table
* when PTI is enabled. We need them to map the per-process LDT into the
* user-space page-table.
@@ -213,7 +154,6 @@ void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
/* No need to prepopulate any pagetable entries in non-PAE modes. */
#define PREALLOCATED_PMDS 0
-#define MAX_PREALLOCATED_PMDS 0
#define PREALLOCATED_USER_PMDS 0
#define MAX_PREALLOCATED_USER_PMDS 0
#endif /* CONFIG_X86_PAE */
@@ -362,82 +302,28 @@ static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
{
}
#endif
-/*
- * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
- * assumes that pgd should be in one page.
- *
- * But kernel with PAE paging that is not running as a Xen domain
- * only needs to allocate 32 bytes for pgd instead of one page.
- */
-#ifdef CONFIG_X86_PAE
-
-#include <linux/slab.h>
-
-#define PGD_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
-#define PGD_ALIGN 32
-
-static struct kmem_cache *pgd_cache;
-
-void __init pgtable_cache_init(void)
-{
- /*
- * When PAE kernel is running as a Xen domain, it does not use
- * shared kernel pmd. And this requires a whole page for pgd.
- */
- if (!SHARED_KERNEL_PMD)
- return;
-
- /*
- * when PAE kernel is not running as a Xen domain, it uses
- * shared kernel pmd. Shared kernel pmd does not require a whole
- * page for pgd. We are able to just allocate a 32-byte for pgd.
- * During boot time, we create a 32-byte slab for pgd table allocation.
- */
- pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
- SLAB_PANIC, NULL);
-}
static inline pgd_t *_pgd_alloc(struct mm_struct *mm)
{
/*
- * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
- * We allocate one page for pgd.
- */
- if (!SHARED_KERNEL_PMD)
- return __pgd_alloc(mm, PGD_ALLOCATION_ORDER);
-
- /*
- * Now PAE kernel is not running as a Xen domain. We can allocate
- * a 32-byte slab for pgd to save memory space.
+ * PTI and Xen need a whole page for the PAE PGD
+ * even though the hardware only needs 32 bytes.
+ *
+ * For simplicity, allocate a page for all users.
*/
- return kmem_cache_alloc(pgd_cache, GFP_PGTABLE_USER);
-}
-
-static inline void _pgd_free(struct mm_struct *mm, pgd_t *pgd)
-{
- if (!SHARED_KERNEL_PMD)
- __pgd_free(mm, pgd);
- else
- kmem_cache_free(pgd_cache, pgd);
-}
-#else
-
-static inline pgd_t *_pgd_alloc(struct mm_struct *mm)
-{
- return __pgd_alloc(mm, PGD_ALLOCATION_ORDER);
+ return __pgd_alloc(mm, pgd_allocation_order());
}
static inline void _pgd_free(struct mm_struct *mm, pgd_t *pgd)
{
__pgd_free(mm, pgd);
}
-#endif /* CONFIG_X86_PAE */
pgd_t *pgd_alloc(struct mm_struct *mm)
{
pgd_t *pgd;
pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS];
- pmd_t *pmds[MAX_PREALLOCATED_PMDS];
+ pmd_t *pmds[PREALLOCATED_PMDS];
pgd = _pgd_alloc(mm);
@@ -657,11 +543,11 @@ pud_t pudp_invalidate(struct vm_area_struct *vma, unsigned long address,
#endif
/**
- * reserve_top_address - reserves a hole in the top of kernel address space
- * @reserve - size of hole to reserve
+ * reserve_top_address - Reserve a hole in the top of the kernel address space
+ * @reserve: Size of hole to reserve
*
* Can be used to relocate the fixmap area and poke a hole in the top
- * of kernel address space to make room for a hypervisor.
+ * of the kernel address space to make room for a hypervisor.
*/
void __init reserve_top_address(unsigned long reserve)
{
@@ -706,9 +592,12 @@ void native_set_fixmap(unsigned /* enum fixed_addresses */ idx,
}
#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
-#ifdef CONFIG_X86_5LEVEL
+#if CONFIG_PGTABLE_LEVELS > 4
/**
- * p4d_set_huge - setup kernel P4D mapping
+ * p4d_set_huge - Set up kernel P4D mapping
+ * @p4d: Pointer to the P4D entry
+ * @addr: Virtual address associated with the P4D entry
+ * @prot: Protection bits to use
*
* No 512GB pages yet -- always return 0
*/
@@ -718,9 +607,10 @@ int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
}
/**
- * p4d_clear_huge - clear kernel P4D mapping when it is set
+ * p4d_clear_huge - Clear kernel P4D mapping when it is set
+ * @p4d: Pointer to the P4D entry to clear
*
- * No 512GB pages yet -- always return 0
+ * No 512GB pages yet -- do nothing
*/
void p4d_clear_huge(p4d_t *p4d)
{
@@ -728,7 +618,10 @@ void p4d_clear_huge(p4d_t *p4d)
#endif
/**
- * pud_set_huge - setup kernel PUD mapping
+ * pud_set_huge - Set up kernel PUD mapping
+ * @pud: Pointer to the PUD entry
+ * @addr: Virtual address associated with the PUD entry
+ * @prot: Protection bits to use
*
* MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
* function sets up a huge page only if the complete range has the same MTRR
@@ -759,7 +652,10 @@ int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
}
/**
- * pmd_set_huge - setup kernel PMD mapping
+ * pmd_set_huge - Set up kernel PMD mapping
+ * @pmd: Pointer to the PMD entry
+ * @addr: Virtual address associated with the PMD entry
+ * @prot: Protection bits to use
*
* See text over pud_set_huge() above.
*
@@ -788,7 +684,8 @@ int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
}
/**
- * pud_clear_huge - clear kernel PUD mapping when it is set
+ * pud_clear_huge - Clear kernel PUD mapping when it is set
+ * @pud: Pointer to the PUD entry to clear.
*
* Returns 1 on success and 0 on failure (no PUD map is found).
*/
@@ -803,7 +700,8 @@ int pud_clear_huge(pud_t *pud)
}
/**
- * pmd_clear_huge - clear kernel PMD mapping when it is set
+ * pmd_clear_huge - Clear kernel PMD mapping when it is set
+ * @pmd: Pointer to the PMD entry to clear.
*
* Returns 1 on success and 0 on failure (no PMD map is found).
*/
@@ -819,11 +717,11 @@ int pmd_clear_huge(pmd_t *pmd)
#ifdef CONFIG_X86_64
/**
- * pud_free_pmd_page - Clear pud entry and free pmd page.
- * @pud: Pointer to a PUD.
- * @addr: Virtual address associated with pud.
+ * pud_free_pmd_page - Clear PUD entry and free PMD page
+ * @pud: Pointer to a PUD
+ * @addr: Virtual address associated with PUD
*
- * Context: The pud range has been unmapped and TLB purged.
+ * Context: The PUD range has been unmapped and TLB purged.
* Return: 1 if clearing the entry succeeded. 0 otherwise.
*
* NOTE: Callers must allow a single page allocation.
@@ -866,11 +764,11 @@ int pud_free_pmd_page(pud_t *pud, unsigned long addr)
}
/**
- * pmd_free_pte_page - Clear pmd entry and free pte page.
- * @pmd: Pointer to a PMD.
- * @addr: Virtual address associated with pmd.
+ * pmd_free_pte_page - Clear PMD entry and free PTE page.
+ * @pmd: Pointer to the PMD
+ * @addr: Virtual address associated with PMD
*
- * Context: The pmd range has been unmapped and TLB purged.
+ * Context: The PMD range has been unmapped and TLB purged.
* Return: 1 if clearing the entry succeeded. 0 otherwise.
*/
int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
@@ -892,7 +790,7 @@ int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
/*
* Disable free page handling on x86-PAE. This assures that ioremap()
- * does not update sync'd pmd entries. See vmalloc_sync_one().
+ * does not update sync'd PMD entries. See vmalloc_sync_one().
*/
int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
{
diff --git a/arch/x86/mm/pti.c b/arch/x86/mm/pti.c
index 5f0d579932c6..190299834011 100644
--- a/arch/x86/mm/pti.c
+++ b/arch/x86/mm/pti.c
@@ -185,7 +185,7 @@ static p4d_t *pti_user_pagetable_walk_p4d(unsigned long address)
set_pgd(pgd, __pgd(_KERNPG_TABLE | __pa(new_p4d_page)));
}
- BUILD_BUG_ON(pgd_leaf(*pgd) != 0);
+ BUILD_BUG_ON(pgd_leaf(*pgd));
return p4d_offset(pgd, address);
}
@@ -206,7 +206,7 @@ static pmd_t *pti_user_pagetable_walk_pmd(unsigned long address)
if (!p4d)
return NULL;
- BUILD_BUG_ON(p4d_leaf(*p4d) != 0);
+ BUILD_BUG_ON(p4d_leaf(*p4d));
if (p4d_none(*p4d)) {
unsigned long new_pud_page = __get_free_page(gfp);
if (WARN_ON_ONCE(!new_pud_page))
diff --git a/arch/x86/mm/tlb.c b/arch/x86/mm/tlb.c
index 6cf881a942bb..39f80111e6f1 100644
--- a/arch/x86/mm/tlb.c
+++ b/arch/x86/mm/tlb.c
@@ -19,6 +19,7 @@
#include <asm/cache.h>
#include <asm/cacheflush.h>
#include <asm/apic.h>
+#include <asm/msr.h>
#include <asm/perf_event.h>
#include <asm/tlb.h>
@@ -74,13 +75,15 @@
* use different names for each of them:
*
* ASID - [0, TLB_NR_DYN_ASIDS-1]
- * the canonical identifier for an mm
+ * the canonical identifier for an mm, dynamically allocated on each CPU
+ * [TLB_NR_DYN_ASIDS, MAX_ASID_AVAILABLE-1]
+ * the canonical, global identifier for an mm, identical across all CPUs
*
- * kPCID - [1, TLB_NR_DYN_ASIDS]
+ * kPCID - [1, MAX_ASID_AVAILABLE]
* the value we write into the PCID part of CR3; corresponds to the
* ASID+1, because PCID 0 is special.
*
- * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
+ * uPCID - [2048 + 1, 2048 + MAX_ASID_AVAILABLE]
* for KPTI each mm has two address spaces and thus needs two
* PCID values, but we can still do with a single ASID denomination
* for each mm. Corresponds to kPCID + 2048.
@@ -213,16 +216,34 @@ static void clear_asid_other(void)
atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
+struct new_asid {
+ unsigned int asid : 16;
+ unsigned int need_flush : 1;
+};
-static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
- u16 *new_asid, bool *need_flush)
+static struct new_asid choose_new_asid(struct mm_struct *next, u64 next_tlb_gen)
{
+ struct new_asid ns;
u16 asid;
if (!static_cpu_has(X86_FEATURE_PCID)) {
- *new_asid = 0;
- *need_flush = true;
- return;
+ ns.asid = 0;
+ ns.need_flush = 1;
+ return ns;
+ }
+
+ /*
+ * TLB consistency for global ASIDs is maintained with hardware assisted
+ * remote TLB flushing. Global ASIDs are always up to date.
+ */
+ if (cpu_feature_enabled(X86_FEATURE_INVLPGB)) {
+ u16 global_asid = mm_global_asid(next);
+
+ if (global_asid) {
+ ns.asid = global_asid;
+ ns.need_flush = 0;
+ return ns;
+ }
}
if (this_cpu_read(cpu_tlbstate.invalidate_other))
@@ -233,22 +254,285 @@ static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
next->context.ctx_id)
continue;
- *new_asid = asid;
- *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
- next_tlb_gen);
- return;
+ ns.asid = asid;
+ ns.need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) < next_tlb_gen);
+ return ns;
}
/*
* We don't currently own an ASID slot on this CPU.
* Allocate a slot.
*/
- *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
- if (*new_asid >= TLB_NR_DYN_ASIDS) {
- *new_asid = 0;
+ ns.asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
+ if (ns.asid >= TLB_NR_DYN_ASIDS) {
+ ns.asid = 0;
this_cpu_write(cpu_tlbstate.next_asid, 1);
}
- *need_flush = true;
+ ns.need_flush = true;
+
+ return ns;
+}
+
+/*
+ * Global ASIDs are allocated for multi-threaded processes that are
+ * active on multiple CPUs simultaneously, giving each of those
+ * processes the same PCID on every CPU, for use with hardware-assisted
+ * TLB shootdown on remote CPUs, like AMD INVLPGB or Intel RAR.
+ *
+ * These global ASIDs are held for the lifetime of the process.
+ */
+static DEFINE_RAW_SPINLOCK(global_asid_lock);
+static u16 last_global_asid = MAX_ASID_AVAILABLE;
+static DECLARE_BITMAP(global_asid_used, MAX_ASID_AVAILABLE);
+static DECLARE_BITMAP(global_asid_freed, MAX_ASID_AVAILABLE);
+static int global_asid_available = MAX_ASID_AVAILABLE - TLB_NR_DYN_ASIDS - 1;
+
+/*
+ * When the search for a free ASID in the global ASID space reaches
+ * MAX_ASID_AVAILABLE, a global TLB flush guarantees that previously
+ * freed global ASIDs are safe to re-use.
+ *
+ * This way the global flush only needs to happen at ASID rollover
+ * time, and not at ASID allocation time.
+ */
+static void reset_global_asid_space(void)
+{
+ lockdep_assert_held(&global_asid_lock);
+
+ invlpgb_flush_all_nonglobals();
+
+ /*
+ * The TLB flush above makes it safe to re-use the previously
+ * freed global ASIDs.
+ */
+ bitmap_andnot(global_asid_used, global_asid_used,
+ global_asid_freed, MAX_ASID_AVAILABLE);
+ bitmap_clear(global_asid_freed, 0, MAX_ASID_AVAILABLE);
+
+ /* Restart the search from the start of global ASID space. */
+ last_global_asid = TLB_NR_DYN_ASIDS;
+}
+
+static u16 allocate_global_asid(void)
+{
+ u16 asid;
+
+ lockdep_assert_held(&global_asid_lock);
+
+ /* The previous allocation hit the edge of available address space */
+ if (last_global_asid >= MAX_ASID_AVAILABLE - 1)
+ reset_global_asid_space();
+
+ asid = find_next_zero_bit(global_asid_used, MAX_ASID_AVAILABLE, last_global_asid);
+
+ if (asid >= MAX_ASID_AVAILABLE && !global_asid_available) {
+ /* This should never happen. */
+ VM_WARN_ONCE(1, "Unable to allocate global ASID despite %d available\n",
+ global_asid_available);
+ return 0;
+ }
+
+ /* Claim this global ASID. */
+ __set_bit(asid, global_asid_used);
+ last_global_asid = asid;
+ global_asid_available--;
+ return asid;
+}
+
+/*
+ * Check whether a process is currently active on more than @threshold CPUs.
+ * This is a cheap estimation on whether or not it may make sense to assign
+ * a global ASID to this process, and use broadcast TLB invalidation.
+ */
+static bool mm_active_cpus_exceeds(struct mm_struct *mm, int threshold)
+{
+ int count = 0;
+ int cpu;
+
+ /* This quick check should eliminate most single threaded programs. */
+ if (cpumask_weight(mm_cpumask(mm)) <= threshold)
+ return false;
+
+ /* Slower check to make sure. */
+ for_each_cpu(cpu, mm_cpumask(mm)) {
+ /* Skip the CPUs that aren't really running this process. */
+ if (per_cpu(cpu_tlbstate.loaded_mm, cpu) != mm)
+ continue;
+
+ if (per_cpu(cpu_tlbstate_shared.is_lazy, cpu))
+ continue;
+
+ if (++count > threshold)
+ return true;
+ }
+ return false;
+}
+
+/*
+ * Assign a global ASID to the current process, protecting against
+ * races between multiple threads in the process.
+ */
+static void use_global_asid(struct mm_struct *mm)
+{
+ u16 asid;
+
+ guard(raw_spinlock_irqsave)(&global_asid_lock);
+
+ /* This process is already using broadcast TLB invalidation. */
+ if (mm_global_asid(mm))
+ return;
+
+ /*
+ * The last global ASID was consumed while waiting for the lock.
+ *
+ * If this fires, a more aggressive ASID reuse scheme might be
+ * needed.
+ */
+ if (!global_asid_available) {
+ VM_WARN_ONCE(1, "Ran out of global ASIDs\n");
+ return;
+ }
+
+ asid = allocate_global_asid();
+ if (!asid)
+ return;
+
+ mm_assign_global_asid(mm, asid);
+}
+
+void mm_free_global_asid(struct mm_struct *mm)
+{
+ if (!cpu_feature_enabled(X86_FEATURE_INVLPGB))
+ return;
+
+ if (!mm_global_asid(mm))
+ return;
+
+ guard(raw_spinlock_irqsave)(&global_asid_lock);
+
+ /* The global ASID can be re-used only after flush at wrap-around. */
+#ifdef CONFIG_BROADCAST_TLB_FLUSH
+ __set_bit(mm->context.global_asid, global_asid_freed);
+
+ mm->context.global_asid = 0;
+ global_asid_available++;
+#endif
+}
+
+/*
+ * Is the mm transitioning from a CPU-local ASID to a global ASID?
+ */
+static bool mm_needs_global_asid(struct mm_struct *mm, u16 asid)
+{
+ u16 global_asid = mm_global_asid(mm);
+
+ if (!cpu_feature_enabled(X86_FEATURE_INVLPGB))
+ return false;
+
+ /* Process is transitioning to a global ASID */
+ if (global_asid && asid != global_asid)
+ return true;
+
+ return false;
+}
+
+/*
+ * x86 has 4k ASIDs (2k when compiled with KPTI), but the largest x86
+ * systems have over 8k CPUs. Because of this potential ASID shortage,
+ * global ASIDs are handed out to processes that have frequent TLB
+ * flushes and are active on 4 or more CPUs simultaneously.
+ */
+static void consider_global_asid(struct mm_struct *mm)
+{
+ if (!cpu_feature_enabled(X86_FEATURE_INVLPGB))
+ return;
+
+ /* Check every once in a while. */
+ if ((current->pid & 0x1f) != (jiffies & 0x1f))
+ return;
+
+ /*
+ * Assign a global ASID if the process is active on
+ * 4 or more CPUs simultaneously.
+ */
+ if (mm_active_cpus_exceeds(mm, 3))
+ use_global_asid(mm);
+}
+
+static void finish_asid_transition(struct flush_tlb_info *info)
+{
+ struct mm_struct *mm = info->mm;
+ int bc_asid = mm_global_asid(mm);
+ int cpu;
+
+ if (!mm_in_asid_transition(mm))
+ return;
+
+ for_each_cpu(cpu, mm_cpumask(mm)) {
+ /*
+ * The remote CPU is context switching. Wait for that to
+ * finish, to catch the unlikely case of it switching to
+ * the target mm with an out of date ASID.
+ */
+ while (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm, cpu)) == LOADED_MM_SWITCHING)
+ cpu_relax();
+
+ if (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm, cpu)) != mm)
+ continue;
+
+ /*
+ * If at least one CPU is not using the global ASID yet,
+ * send a TLB flush IPI. The IPI should cause stragglers
+ * to transition soon.
+ *
+ * This can race with the CPU switching to another task;
+ * that results in a (harmless) extra IPI.
+ */
+ if (READ_ONCE(per_cpu(cpu_tlbstate.loaded_mm_asid, cpu)) != bc_asid) {
+ flush_tlb_multi(mm_cpumask(info->mm), info);
+ return;
+ }
+ }
+
+ /* All the CPUs running this process are using the global ASID. */
+ mm_clear_asid_transition(mm);
+}
+
+static void broadcast_tlb_flush(struct flush_tlb_info *info)
+{
+ bool pmd = info->stride_shift == PMD_SHIFT;
+ unsigned long asid = mm_global_asid(info->mm);
+ unsigned long addr = info->start;
+
+ /*
+ * TLB flushes with INVLPGB are kicked off asynchronously.
+ * The inc_mm_tlb_gen() guarantees page table updates are done
+ * before these TLB flushes happen.
+ */
+ if (info->end == TLB_FLUSH_ALL) {
+ invlpgb_flush_single_pcid_nosync(kern_pcid(asid));
+ /* Do any CPUs supporting INVLPGB need PTI? */
+ if (cpu_feature_enabled(X86_FEATURE_PTI))
+ invlpgb_flush_single_pcid_nosync(user_pcid(asid));
+ } else do {
+ unsigned long nr = 1;
+
+ if (info->stride_shift <= PMD_SHIFT) {
+ nr = (info->end - addr) >> info->stride_shift;
+ nr = clamp_val(nr, 1, invlpgb_count_max);
+ }
+
+ invlpgb_flush_user_nr_nosync(kern_pcid(asid), addr, nr, pmd);
+ if (cpu_feature_enabled(X86_FEATURE_PTI))
+ invlpgb_flush_user_nr_nosync(user_pcid(asid), addr, nr, pmd);
+
+ addr += nr << info->stride_shift;
+ } while (addr < info->end);
+
+ finish_asid_transition(info);
+
+ /* Wait for the INVLPGBs kicked off above to finish. */
+ __tlbsync();
}
/*
@@ -345,7 +629,7 @@ static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
{
/* Flush L1D if the outgoing task requests it */
if (prev_mm & LAST_USER_MM_L1D_FLUSH)
- wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
+ wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
/* Check whether the incoming task opted in for L1D flush */
if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
@@ -389,9 +673,9 @@ static void cond_mitigation(struct task_struct *next)
prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
/*
- * Avoid user/user BTB poisoning by flushing the branch predictor
- * when switching between processes. This stops one process from
- * doing Spectre-v2 attacks on another.
+ * Avoid user->user BTB/RSB poisoning by flushing them when switching
+ * between processes. This stops one process from doing Spectre-v2
+ * attacks on another.
*
* Both, the conditional and the always IBPB mode use the mm
* pointer to avoid the IBPB when switching between tasks of the
@@ -447,8 +731,7 @@ static void cond_mitigation(struct task_struct *next)
* different context than the user space task which ran
* last on this CPU.
*/
- if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) !=
- (unsigned long)next->mm)
+ if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) != (unsigned long)next->mm)
indirect_branch_prediction_barrier();
}
@@ -504,9 +787,9 @@ void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
unsigned cpu = smp_processor_id();
unsigned long new_lam;
+ struct new_asid ns;
u64 next_tlb_gen;
- bool need_flush;
- u16 new_asid;
+
/* We don't want flush_tlb_func() to run concurrently with us. */
if (IS_ENABLED(CONFIG_PROVE_LOCKING))
@@ -556,7 +839,8 @@ void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
*/
if (prev == next) {
/* Not actually switching mm's */
- VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
+ VM_WARN_ON(is_dyn_asid(prev_asid) &&
+ this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
next->context.ctx_id);
/*
@@ -569,10 +853,25 @@ void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
* mm_cpumask. The TLB shootdown code can figure out from
* cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
*/
- if (IS_ENABLED(CONFIG_DEBUG_VM) && WARN_ON_ONCE(prev != &init_mm &&
+ if (IS_ENABLED(CONFIG_DEBUG_VM) &&
+ WARN_ON_ONCE(prev != &init_mm && !is_notrack_mm(prev) &&
!cpumask_test_cpu(cpu, mm_cpumask(next))))
cpumask_set_cpu(cpu, mm_cpumask(next));
+ /* Check if the current mm is transitioning to a global ASID */
+ if (mm_needs_global_asid(next, prev_asid)) {
+ next_tlb_gen = atomic64_read(&next->context.tlb_gen);
+ ns = choose_new_asid(next, next_tlb_gen);
+ goto reload_tlb;
+ }
+
+ /*
+ * Broadcast TLB invalidation keeps this ASID up to date
+ * all the time.
+ */
+ if (is_global_asid(prev_asid))
+ return;
+
/*
* If the CPU is not in lazy TLB mode, we are just switching
* from one thread in a process to another thread in the same
@@ -597,8 +896,8 @@ void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
* TLB contents went out of date while we were in lazy
* mode. Fall through to the TLB switching code below.
*/
- new_asid = prev_asid;
- need_flush = true;
+ ns.asid = prev_asid;
+ ns.need_flush = true;
} else {
/*
* Apply process to process speculation vulnerability
@@ -607,35 +906,33 @@ void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
cond_mitigation(tsk);
/*
- * Leave this CPU in prev's mm_cpumask. Atomic writes to
- * mm_cpumask can be expensive under contention. The CPU
- * will be removed lazily at TLB flush time.
+ * Indicate that CR3 is about to change. nmi_uaccess_okay()
+ * and others are sensitive to the window where mm_cpumask(),
+ * CR3 and cpu_tlbstate.loaded_mm are not all in sync.
*/
- VM_WARN_ON_ONCE(prev != &init_mm && !cpumask_test_cpu(cpu,
- mm_cpumask(prev)));
+ this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
+ barrier();
/* Start receiving IPIs and then read tlb_gen (and LAM below) */
if (next != &init_mm && !cpumask_test_cpu(cpu, mm_cpumask(next)))
cpumask_set_cpu(cpu, mm_cpumask(next));
next_tlb_gen = atomic64_read(&next->context.tlb_gen);
- choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
-
- /* Let nmi_uaccess_okay() know that we're changing CR3. */
- this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
- barrier();
+ ns = choose_new_asid(next, next_tlb_gen);
}
+reload_tlb:
new_lam = mm_lam_cr3_mask(next);
- if (need_flush) {
- this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
- this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
- load_new_mm_cr3(next->pgd, new_asid, new_lam, true);
+ if (ns.need_flush) {
+ VM_WARN_ON_ONCE(is_global_asid(ns.asid));
+ this_cpu_write(cpu_tlbstate.ctxs[ns.asid].ctx_id, next->context.ctx_id);
+ this_cpu_write(cpu_tlbstate.ctxs[ns.asid].tlb_gen, next_tlb_gen);
+ load_new_mm_cr3(next->pgd, ns.asid, new_lam, true);
trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
} else {
/* The new ASID is already up to date. */
- load_new_mm_cr3(next->pgd, new_asid, new_lam, false);
+ load_new_mm_cr3(next->pgd, ns.asid, new_lam, false);
trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
}
@@ -644,7 +941,7 @@ void switch_mm_irqs_off(struct mm_struct *unused, struct mm_struct *next,
barrier();
this_cpu_write(cpu_tlbstate.loaded_mm, next);
- this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
+ this_cpu_write(cpu_tlbstate.loaded_mm_asid, ns.asid);
cpu_tlbstate_update_lam(new_lam, mm_untag_mask(next));
if (next != prev) {
@@ -675,6 +972,77 @@ void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
}
/*
+ * Using a temporary mm allows to set temporary mappings that are not accessible
+ * by other CPUs. Such mappings are needed to perform sensitive memory writes
+ * that override the kernel memory protections (e.g., W^X), without exposing the
+ * temporary page-table mappings that are required for these write operations to
+ * other CPUs. Using a temporary mm also allows to avoid TLB shootdowns when the
+ * mapping is torn down. Temporary mms can also be used for EFI runtime service
+ * calls or similar functionality.
+ *
+ * It is illegal to schedule while using a temporary mm -- the context switch
+ * code is unaware of the temporary mm and does not know how to context switch.
+ * Use a real (non-temporary) mm in a kernel thread if you need to sleep.
+ *
+ * Note: For sensitive memory writes, the temporary mm needs to be used
+ * exclusively by a single core, and IRQs should be disabled while the
+ * temporary mm is loaded, thereby preventing interrupt handler bugs from
+ * overriding the kernel memory protection.
+ */
+struct mm_struct *use_temporary_mm(struct mm_struct *temp_mm)
+{
+ struct mm_struct *prev_mm;
+
+ lockdep_assert_preemption_disabled();
+ guard(irqsave)();
+
+ /*
+ * Make sure not to be in TLB lazy mode, as otherwise we'll end up
+ * with a stale address space WITHOUT being in lazy mode after
+ * restoring the previous mm.
+ */
+ if (this_cpu_read(cpu_tlbstate_shared.is_lazy))
+ leave_mm();
+
+ prev_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
+ switch_mm_irqs_off(NULL, temp_mm, current);
+
+ /*
+ * If breakpoints are enabled, disable them while the temporary mm is
+ * used. Userspace might set up watchpoints on addresses that are used
+ * in the temporary mm, which would lead to wrong signals being sent or
+ * crashes.
+ *
+ * Note that breakpoints are not disabled selectively, which also causes
+ * kernel breakpoints (e.g., perf's) to be disabled. This might be
+ * undesirable, but still seems reasonable as the code that runs in the
+ * temporary mm should be short.
+ */
+ if (hw_breakpoint_active())
+ hw_breakpoint_disable();
+
+ return prev_mm;
+}
+
+void unuse_temporary_mm(struct mm_struct *prev_mm)
+{
+ lockdep_assert_preemption_disabled();
+ guard(irqsave)();
+
+ /* Clear the cpumask, to indicate no TLB flushing is needed anywhere */
+ cpumask_clear_cpu(smp_processor_id(), mm_cpumask(this_cpu_read(cpu_tlbstate.loaded_mm)));
+
+ switch_mm_irqs_off(NULL, prev_mm, current);
+
+ /*
+ * Restore the breakpoints if they were disabled before the temporary mm
+ * was loaded.
+ */
+ if (hw_breakpoint_active())
+ hw_breakpoint_restore();
+}
+
+/*
* Call this when reinitializing a CPU. It fixes the following potential
* problems:
*
@@ -746,7 +1114,7 @@ static void flush_tlb_func(void *info)
const struct flush_tlb_info *f = info;
struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
- u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
+ u64 local_tlb_gen;
bool local = smp_processor_id() == f->initiating_cpu;
unsigned long nr_invalidate = 0;
u64 mm_tlb_gen;
@@ -769,6 +1137,16 @@ static void flush_tlb_func(void *info)
if (unlikely(loaded_mm == &init_mm))
return;
+ /* Reload the ASID if transitioning into or out of a global ASID */
+ if (mm_needs_global_asid(loaded_mm, loaded_mm_asid)) {
+ switch_mm_irqs_off(NULL, loaded_mm, NULL);
+ loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
+ }
+
+ /* Broadcast ASIDs are always kept up to date with INVLPGB. */
+ if (is_global_asid(loaded_mm_asid))
+ return;
+
VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
loaded_mm->context.ctx_id);
@@ -786,6 +1164,8 @@ static void flush_tlb_func(void *info)
return;
}
+ local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
+
if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID &&
f->new_tlb_gen <= local_tlb_gen)) {
/*
@@ -895,8 +1275,16 @@ done:
static bool should_flush_tlb(int cpu, void *data)
{
+ struct mm_struct *loaded_mm = per_cpu(cpu_tlbstate.loaded_mm, cpu);
struct flush_tlb_info *info = data;
+ /*
+ * Order the 'loaded_mm' and 'is_lazy' against their
+ * write ordering in switch_mm_irqs_off(). Ensure
+ * 'is_lazy' is at least as new as 'loaded_mm'.
+ */
+ smp_rmb();
+
/* Lazy TLB will get flushed at the next context switch. */
if (per_cpu(cpu_tlbstate_shared.is_lazy, cpu))
return false;
@@ -905,8 +1293,15 @@ static bool should_flush_tlb(int cpu, void *data)
if (!info->mm)
return true;
+ /*
+ * While switching, the remote CPU could have state from
+ * either the prev or next mm. Assume the worst and flush.
+ */
+ if (loaded_mm == LOADED_MM_SWITCHING)
+ return true;
+
/* The target mm is loaded, and the CPU is not lazy. */
- if (per_cpu(cpu_tlbstate.loaded_mm, cpu) == info->mm)
+ if (loaded_mm == info->mm)
return true;
/* In cpumask, but not the loaded mm? Periodically remove by flushing. */
@@ -953,7 +1348,7 @@ STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
* up on the new contents of what used to be page tables, while
* doing a speculative memory access.
*/
- if (info->freed_tables)
+ if (info->freed_tables || mm_in_asid_transition(info->mm))
on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
else
on_each_cpu_cond_mask(should_flush_tlb, flush_tlb_func,
@@ -1000,6 +1395,15 @@ static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
#endif
+ /*
+ * If the number of flushes is so large that a full flush
+ * would be faster, do a full flush.
+ */
+ if ((end - start) >> stride_shift > tlb_single_page_flush_ceiling) {
+ start = 0;
+ end = TLB_FLUSH_ALL;
+ }
+
info->start = start;
info->end = end;
info->mm = mm;
@@ -1026,17 +1430,8 @@ void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
bool freed_tables)
{
struct flush_tlb_info *info;
+ int cpu = get_cpu();
u64 new_tlb_gen;
- int cpu;
-
- cpu = get_cpu();
-
- /* Should we flush just the requested range? */
- if ((end == TLB_FLUSH_ALL) ||
- ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
- start = 0;
- end = TLB_FLUSH_ALL;
- }
/* This is also a barrier that synchronizes with switch_mm(). */
new_tlb_gen = inc_mm_tlb_gen(mm);
@@ -1049,9 +1444,12 @@ void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
* a local TLB flush is needed. Optimize this use-case by calling
* flush_tlb_func_local() directly in this case.
*/
- if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
+ if (mm_global_asid(mm)) {
+ broadcast_tlb_flush(info);
+ } else if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
info->trim_cpumask = should_trim_cpumask(mm);
flush_tlb_multi(mm_cpumask(mm), info);
+ consider_global_asid(mm);
} else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
lockdep_assert_irqs_enabled();
local_irq_disable();
@@ -1064,7 +1462,6 @@ void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end);
}
-
static void do_flush_tlb_all(void *info)
{
count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
@@ -1074,7 +1471,32 @@ static void do_flush_tlb_all(void *info)
void flush_tlb_all(void)
{
count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
- on_each_cpu(do_flush_tlb_all, NULL, 1);
+
+ /* First try (faster) hardware-assisted TLB invalidation. */
+ if (cpu_feature_enabled(X86_FEATURE_INVLPGB))
+ invlpgb_flush_all();
+ else
+ /* Fall back to the IPI-based invalidation. */
+ on_each_cpu(do_flush_tlb_all, NULL, 1);
+}
+
+/* Flush an arbitrarily large range of memory with INVLPGB. */
+static void invlpgb_kernel_range_flush(struct flush_tlb_info *info)
+{
+ unsigned long addr, nr;
+
+ for (addr = info->start; addr < info->end; addr += nr << PAGE_SHIFT) {
+ nr = (info->end - addr) >> PAGE_SHIFT;
+
+ /*
+ * INVLPGB has a limit on the size of ranges it can
+ * flush. Break up large flushes.
+ */
+ nr = clamp_val(nr, 1, invlpgb_count_max);
+
+ invlpgb_flush_addr_nosync(addr, nr);
+ }
+ __tlbsync();
}
static void do_kernel_range_flush(void *info)
@@ -1087,24 +1509,37 @@ static void do_kernel_range_flush(void *info)
flush_tlb_one_kernel(addr);
}
-void flush_tlb_kernel_range(unsigned long start, unsigned long end)
+static void kernel_tlb_flush_all(struct flush_tlb_info *info)
{
- /* Balance as user space task's flush, a bit conservative */
- if (end == TLB_FLUSH_ALL ||
- (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
+ if (cpu_feature_enabled(X86_FEATURE_INVLPGB))
+ invlpgb_flush_all();
+ else
on_each_cpu(do_flush_tlb_all, NULL, 1);
- } else {
- struct flush_tlb_info *info;
-
- preempt_disable();
- info = get_flush_tlb_info(NULL, start, end, 0, false,
- TLB_GENERATION_INVALID);
+}
+static void kernel_tlb_flush_range(struct flush_tlb_info *info)
+{
+ if (cpu_feature_enabled(X86_FEATURE_INVLPGB))
+ invlpgb_kernel_range_flush(info);
+ else
on_each_cpu(do_kernel_range_flush, info, 1);
+}
- put_flush_tlb_info();
- preempt_enable();
- }
+void flush_tlb_kernel_range(unsigned long start, unsigned long end)
+{
+ struct flush_tlb_info *info;
+
+ guard(preempt)();
+
+ info = get_flush_tlb_info(NULL, start, end, PAGE_SHIFT, false,
+ TLB_GENERATION_INVALID);
+
+ if (info->end == TLB_FLUSH_ALL)
+ kernel_tlb_flush_all(info);
+ else
+ kernel_tlb_flush_range(info);
+
+ put_flush_tlb_info();
}
/*
@@ -1283,7 +1718,10 @@ void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
* a local TLB flush is needed. Optimize this use-case by calling
* flush_tlb_func_local() directly in this case.
*/
- if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
+ if (cpu_feature_enabled(X86_FEATURE_INVLPGB) && batch->unmapped_pages) {
+ invlpgb_flush_all_nonglobals();
+ batch->unmapped_pages = false;
+ } else if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
flush_tlb_multi(&batch->cpumask, info);
} else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
lockdep_assert_irqs_enabled();
@@ -1325,7 +1763,7 @@ bool nmi_uaccess_okay(void)
if (loaded_mm != current_mm)
return false;
- VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
+ VM_WARN_ON_ONCE(__pa(current_mm->pgd) != read_cr3_pa());
return true;
}