diff options
Diffstat (limited to 'drivers/clocksource')
-rw-r--r-- | drivers/clocksource/Kconfig | 20 | ||||
-rw-r--r-- | drivers/clocksource/Makefile | 2 | ||||
-rw-r--r-- | drivers/clocksource/i8253.c | 4 | ||||
-rw-r--r-- | drivers/clocksource/renesas-ostm.c | 4 | ||||
-rw-r--r-- | drivers/clocksource/timer-econet-en751221.c | 216 | ||||
-rw-r--r-- | drivers/clocksource/timer-nxp-stm.c | 495 | ||||
-rw-r--r-- | drivers/clocksource/timer-tegra186.c | 100 |
7 files changed, 796 insertions, 45 deletions
diff --git a/drivers/clocksource/Kconfig b/drivers/clocksource/Kconfig index 487c85259967..645f517a1ac2 100644 --- a/drivers/clocksource/Kconfig +++ b/drivers/clocksource/Kconfig @@ -73,6 +73,14 @@ config DW_APB_TIMER_OF select DW_APB_TIMER select TIMER_OF +config ECONET_EN751221_TIMER + bool "EcoNet EN751221 High Precision Timer" if COMPILE_TEST + depends on HAS_IOMEM + select CLKSRC_MMIO + select TIMER_OF + help + Support for CPU timer found on EcoNet MIPS based SoCs. + config FTTMR010_TIMER bool "Faraday Technology timer driver" if COMPILE_TEST depends on HAS_IOMEM @@ -437,8 +445,8 @@ config ATMEL_ST config ATMEL_TCB_CLKSRC bool "Atmel TC Block timer driver" if COMPILE_TEST - depends on ARM && HAS_IOMEM - select TIMER_OF if OF + depends on ARM && OF && HAS_IOMEM + select TIMER_OF help Support for Timer Counter Blocks on Atmel SoCs. @@ -763,4 +771,12 @@ config RALINK_TIMER Enables support for system tick counter present on Ralink SoCs RT3352 and MT7620. +config NXP_STM_TIMER + bool "NXP System Timer Module driver" + depends on ARCH_S32 || COMPILE_TEST + select CLKSRC_MMIO + help + Enables the support for NXP System Timer Module found in the + s32g NXP platform series. + endmenu diff --git a/drivers/clocksource/Makefile b/drivers/clocksource/Makefile index 43ef16a4efa6..205bf3b0a8f3 100644 --- a/drivers/clocksource/Makefile +++ b/drivers/clocksource/Makefile @@ -17,6 +17,7 @@ obj-$(CONFIG_CLKBLD_I8253) += i8253.o obj-$(CONFIG_CLKSRC_MMIO) += mmio.o obj-$(CONFIG_DAVINCI_TIMER) += timer-davinci.o obj-$(CONFIG_DIGICOLOR_TIMER) += timer-digicolor.o +obj-$(CONFIG_ECONET_EN751221_TIMER) += timer-econet-en751221.o obj-$(CONFIG_OMAP_DM_TIMER) += timer-ti-dm.o obj-$(CONFIG_OMAP_DM_SYSTIMER) += timer-ti-dm-systimer.o obj-$(CONFIG_DW_APB_TIMER) += dw_apb_timer.o @@ -92,3 +93,4 @@ obj-$(CONFIG_GXP_TIMER) += timer-gxp.o obj-$(CONFIG_CLKSRC_LOONGSON1_PWM) += timer-loongson1-pwm.o obj-$(CONFIG_EP93XX_TIMER) += timer-ep93xx.o obj-$(CONFIG_RALINK_TIMER) += timer-ralink.o +obj-$(CONFIG_NXP_STM_TIMER) += timer-nxp-stm.o diff --git a/drivers/clocksource/i8253.c b/drivers/clocksource/i8253.c index 39f7c2d736d1..b603c25f3dfa 100644 --- a/drivers/clocksource/i8253.c +++ b/drivers/clocksource/i8253.c @@ -103,7 +103,7 @@ int __init clocksource_i8253_init(void) #ifdef CONFIG_CLKEVT_I8253 void clockevent_i8253_disable(void) { - raw_spin_lock(&i8253_lock); + guard(raw_spinlock_irqsave)(&i8253_lock); /* * Writing the MODE register should stop the counter, according to @@ -132,8 +132,6 @@ void clockevent_i8253_disable(void) outb_p(0, PIT_CH0); outb_p(0x30, PIT_MODE); - - raw_spin_unlock(&i8253_lock); } static int pit_shutdown(struct clock_event_device *evt) diff --git a/drivers/clocksource/renesas-ostm.c b/drivers/clocksource/renesas-ostm.c index 3fcbd02b2483..2089aeaae225 100644 --- a/drivers/clocksource/renesas-ostm.c +++ b/drivers/clocksource/renesas-ostm.c @@ -225,7 +225,6 @@ err_free: TIMER_OF_DECLARE(ostm, "renesas,ostm", ostm_init); -#if defined(CONFIG_ARCH_RZG2L) || defined(CONFIG_ARCH_R9A09G057) static int __init ostm_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; @@ -233,7 +232,7 @@ static int __init ostm_probe(struct platform_device *pdev) return ostm_init(dev->of_node); } -static const struct of_device_id ostm_of_table[] = { +static const struct of_device_id __maybe_unused ostm_of_table[] = { { .compatible = "renesas,ostm", }, { /* sentinel */ } }; @@ -246,4 +245,3 @@ static struct platform_driver ostm_device_driver = { }, }; builtin_platform_driver_probe(ostm_device_driver, ostm_probe); -#endif diff --git a/drivers/clocksource/timer-econet-en751221.c b/drivers/clocksource/timer-econet-en751221.c new file mode 100644 index 000000000000..3b449fdaafee --- /dev/null +++ b/drivers/clocksource/timer-econet-en751221.c @@ -0,0 +1,216 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Timer present on EcoNet EN75xx MIPS based SoCs. + * + * Copyright (C) 2025 by Caleb James DeLisle <cjd@cjdns.fr> + */ + +#include <linux/io.h> +#include <linux/cpumask.h> +#include <linux/interrupt.h> +#include <linux/clockchips.h> +#include <linux/sched_clock.h> +#include <linux/of.h> +#include <linux/of_irq.h> +#include <linux/of_address.h> +#include <linux/cpuhotplug.h> +#include <linux/clk.h> + +#define ECONET_BITS 32 +#define ECONET_MIN_DELTA 0x00001000 +#define ECONET_MAX_DELTA GENMASK(ECONET_BITS - 2, 0) +/* 34Kc hardware has 1 block and 1004Kc has 2. */ +#define ECONET_NUM_BLOCKS DIV_ROUND_UP(NR_CPUS, 2) + +static struct { + void __iomem *membase[ECONET_NUM_BLOCKS]; + u32 freq_hz; +} econet_timer __ro_after_init; + +static DEFINE_PER_CPU(struct clock_event_device, econet_timer_pcpu); + +/* Each memory block has 2 timers, the order of registers is: + * CTL, CMR0, CNT0, CMR1, CNT1 + */ +static inline void __iomem *reg_ctl(u32 timer_n) +{ + return econet_timer.membase[timer_n >> 1]; +} + +static inline void __iomem *reg_compare(u32 timer_n) +{ + return econet_timer.membase[timer_n >> 1] + (timer_n & 1) * 0x08 + 0x04; +} + +static inline void __iomem *reg_count(u32 timer_n) +{ + return econet_timer.membase[timer_n >> 1] + (timer_n & 1) * 0x08 + 0x08; +} + +static inline u32 ctl_bit_enabled(u32 timer_n) +{ + return 1U << (timer_n & 1); +} + +static inline u32 ctl_bit_pending(u32 timer_n) +{ + return 1U << ((timer_n & 1) + 16); +} + +static bool cevt_is_pending(int cpu_id) +{ + return ioread32(reg_ctl(cpu_id)) & ctl_bit_pending(cpu_id); +} + +static irqreturn_t cevt_interrupt(int irq, void *dev_id) +{ + struct clock_event_device *dev = this_cpu_ptr(&econet_timer_pcpu); + int cpu = cpumask_first(dev->cpumask); + + /* Each VPE has its own events, + * so this will only happen on spurious interrupt. + */ + if (!cevt_is_pending(cpu)) + return IRQ_NONE; + + iowrite32(ioread32(reg_count(cpu)), reg_compare(cpu)); + dev->event_handler(dev); + return IRQ_HANDLED; +} + +static int cevt_set_next_event(ulong delta, struct clock_event_device *dev) +{ + u32 next; + int cpu; + + cpu = cpumask_first(dev->cpumask); + next = ioread32(reg_count(cpu)) + delta; + iowrite32(next, reg_compare(cpu)); + + if ((s32)(next - ioread32(reg_count(cpu))) < ECONET_MIN_DELTA / 2) + return -ETIME; + + return 0; +} + +static int cevt_init_cpu(uint cpu) +{ + struct clock_event_device *cd = &per_cpu(econet_timer_pcpu, cpu); + u32 reg; + + pr_debug("%s: Setting up clockevent for CPU %d\n", cd->name, cpu); + + reg = ioread32(reg_ctl(cpu)) | ctl_bit_enabled(cpu); + iowrite32(reg, reg_ctl(cpu)); + + enable_percpu_irq(cd->irq, IRQ_TYPE_NONE); + + /* Do this last because it synchronously configures the timer */ + clockevents_config_and_register(cd, econet_timer.freq_hz, + ECONET_MIN_DELTA, ECONET_MAX_DELTA); + + return 0; +} + +static u64 notrace sched_clock_read(void) +{ + /* Always read from clock zero no matter the CPU */ + return (u64)ioread32(reg_count(0)); +} + +/* Init */ + +static void __init cevt_dev_init(uint cpu) +{ + iowrite32(0, reg_count(cpu)); + iowrite32(U32_MAX, reg_compare(cpu)); +} + +static int __init cevt_init(struct device_node *np) +{ + int i, irq, ret; + + irq = irq_of_parse_and_map(np, 0); + if (irq <= 0) { + pr_err("%pOFn: irq_of_parse_and_map failed", np); + return -EINVAL; + } + + ret = request_percpu_irq(irq, cevt_interrupt, np->name, &econet_timer_pcpu); + + if (ret < 0) { + pr_err("%pOFn: IRQ %d setup failed (%d)\n", np, irq, ret); + goto err_unmap_irq; + } + + for_each_possible_cpu(i) { + struct clock_event_device *cd = &per_cpu(econet_timer_pcpu, i); + + cd->rating = 310, + cd->features = CLOCK_EVT_FEAT_ONESHOT | + CLOCK_EVT_FEAT_C3STOP | + CLOCK_EVT_FEAT_PERCPU; + cd->set_next_event = cevt_set_next_event; + cd->irq = irq; + cd->cpumask = cpumask_of(i); + cd->name = np->name; + + cevt_dev_init(i); + } + + cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, + "clockevents/econet/timer:starting", + cevt_init_cpu, NULL); + return 0; + +err_unmap_irq: + irq_dispose_mapping(irq); + return ret; +} + +static int __init timer_init(struct device_node *np) +{ + int num_blocks = DIV_ROUND_UP(num_possible_cpus(), 2); + struct clk *clk; + int ret; + + clk = of_clk_get(np, 0); + if (IS_ERR(clk)) { + pr_err("%pOFn: Failed to get CPU clock from DT %ld\n", np, PTR_ERR(clk)); + return PTR_ERR(clk); + } + + econet_timer.freq_hz = clk_get_rate(clk); + + for (int i = 0; i < num_blocks; i++) { + econet_timer.membase[i] = of_iomap(np, i); + if (!econet_timer.membase[i]) { + pr_err("%pOFn: failed to map register [%d]\n", np, i); + return -ENXIO; + } + } + + /* For clocksource purposes always read clock zero, whatever the CPU */ + ret = clocksource_mmio_init(reg_count(0), np->name, + econet_timer.freq_hz, 301, ECONET_BITS, + clocksource_mmio_readl_up); + if (ret) { + pr_err("%pOFn: clocksource_mmio_init failed: %d", np, ret); + return ret; + } + + ret = cevt_init(np); + if (ret < 0) + return ret; + + sched_clock_register(sched_clock_read, ECONET_BITS, + econet_timer.freq_hz); + + pr_info("%pOFn: using %u.%03u MHz high precision timer\n", np, + econet_timer.freq_hz / 1000000, + (econet_timer.freq_hz / 1000) % 1000); + + return 0; +} + +TIMER_OF_DECLARE(econet_timer_hpt, "econet,en751221-timer", timer_init); diff --git a/drivers/clocksource/timer-nxp-stm.c b/drivers/clocksource/timer-nxp-stm.c new file mode 100644 index 000000000000..d7ccf9001729 --- /dev/null +++ b/drivers/clocksource/timer-nxp-stm.c @@ -0,0 +1,495 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright 2016 Freescale Semiconductor, Inc. + * Copyright 2018,2021-2025 NXP + * + * NXP System Timer Module: + * + * STM supports commonly required system and application software + * timing functions. STM includes a 32-bit count-up timer and four + * 32-bit compare channels with a separate interrupt source for each + * channel. The timer is driven by the STM module clock divided by an + * 8-bit prescale value (1 to 256). It has ability to stop the timer + * in Debug mode + */ +#include <linux/clk.h> +#include <linux/clockchips.h> +#include <linux/cpuhotplug.h> +#include <linux/interrupt.h> +#include <linux/module.h> +#include <linux/of_irq.h> +#include <linux/platform_device.h> +#include <linux/sched_clock.h> +#include <linux/units.h> + +#define STM_CR(__base) (__base) + +#define STM_CR_TEN BIT(0) +#define STM_CR_FRZ BIT(1) +#define STM_CR_CPS_OFFSET 8u +#define STM_CR_CPS_MASK GENMASK(15, STM_CR_CPS_OFFSET) + +#define STM_CNT(__base) ((__base) + 0x04) + +#define STM_CCR0(__base) ((__base) + 0x10) +#define STM_CCR1(__base) ((__base) + 0x20) +#define STM_CCR2(__base) ((__base) + 0x30) +#define STM_CCR3(__base) ((__base) + 0x40) + +#define STM_CCR_CEN BIT(0) + +#define STM_CIR0(__base) ((__base) + 0x14) +#define STM_CIR1(__base) ((__base) + 0x24) +#define STM_CIR2(__base) ((__base) + 0x34) +#define STM_CIR3(__base) ((__base) + 0x44) + +#define STM_CIR_CIF BIT(0) + +#define STM_CMP0(__base) ((__base) + 0x18) +#define STM_CMP1(__base) ((__base) + 0x28) +#define STM_CMP2(__base) ((__base) + 0x38) +#define STM_CMP3(__base) ((__base) + 0x48) + +#define STM_ENABLE_MASK (STM_CR_FRZ | STM_CR_TEN) + +struct stm_timer { + void __iomem *base; + unsigned long rate; + unsigned long delta; + unsigned long counter; + struct clock_event_device ced; + struct clocksource cs; + atomic_t refcnt; +}; + +static DEFINE_PER_CPU(struct stm_timer *, stm_timers); + +static struct stm_timer *stm_sched_clock; + +/* + * Global structure for multiple STMs initialization + */ +static int stm_instances; + +/* + * This global lock is used to prevent race conditions with the + * stm_instances in case the driver is using the ASYNC option + */ +static DEFINE_MUTEX(stm_instances_lock); + +DEFINE_GUARD(stm_instances, struct mutex *, mutex_lock(_T), mutex_unlock(_T)) + +static struct stm_timer *cs_to_stm(struct clocksource *cs) +{ + return container_of(cs, struct stm_timer, cs); +} + +static struct stm_timer *ced_to_stm(struct clock_event_device *ced) +{ + return container_of(ced, struct stm_timer, ced); +} + +static u64 notrace nxp_stm_read_sched_clock(void) +{ + return readl(STM_CNT(stm_sched_clock->base)); +} + +static u32 nxp_stm_clocksource_getcnt(struct stm_timer *stm_timer) +{ + return readl(STM_CNT(stm_timer->base)); +} + +static void nxp_stm_clocksource_setcnt(struct stm_timer *stm_timer, u32 cnt) +{ + writel(cnt, STM_CNT(stm_timer->base)); +} + +static u64 nxp_stm_clocksource_read(struct clocksource *cs) +{ + struct stm_timer *stm_timer = cs_to_stm(cs); + + return (u64)nxp_stm_clocksource_getcnt(stm_timer); +} + +static void nxp_stm_module_enable(struct stm_timer *stm_timer) +{ + u32 reg; + + reg = readl(STM_CR(stm_timer->base)); + + reg |= STM_ENABLE_MASK; + + writel(reg, STM_CR(stm_timer->base)); +} + +static void nxp_stm_module_disable(struct stm_timer *stm_timer) +{ + u32 reg; + + reg = readl(STM_CR(stm_timer->base)); + + reg &= ~STM_ENABLE_MASK; + + writel(reg, STM_CR(stm_timer->base)); +} + +static void nxp_stm_module_put(struct stm_timer *stm_timer) +{ + if (atomic_dec_and_test(&stm_timer->refcnt)) + nxp_stm_module_disable(stm_timer); +} + +static void nxp_stm_module_get(struct stm_timer *stm_timer) +{ + if (atomic_inc_return(&stm_timer->refcnt) == 1) + nxp_stm_module_enable(stm_timer); +} + +static int nxp_stm_clocksource_enable(struct clocksource *cs) +{ + struct stm_timer *stm_timer = cs_to_stm(cs); + + nxp_stm_module_get(stm_timer); + + return 0; +} + +static void nxp_stm_clocksource_disable(struct clocksource *cs) +{ + struct stm_timer *stm_timer = cs_to_stm(cs); + + nxp_stm_module_put(stm_timer); +} + +static void nxp_stm_clocksource_suspend(struct clocksource *cs) +{ + struct stm_timer *stm_timer = cs_to_stm(cs); + + nxp_stm_clocksource_disable(cs); + stm_timer->counter = nxp_stm_clocksource_getcnt(stm_timer); +} + +static void nxp_stm_clocksource_resume(struct clocksource *cs) +{ + struct stm_timer *stm_timer = cs_to_stm(cs); + + nxp_stm_clocksource_setcnt(stm_timer, stm_timer->counter); + nxp_stm_clocksource_enable(cs); +} + +static void __init devm_clocksource_unregister(void *data) +{ + struct stm_timer *stm_timer = data; + + clocksource_unregister(&stm_timer->cs); +} + +static int __init nxp_stm_clocksource_init(struct device *dev, struct stm_timer *stm_timer, + const char *name, void __iomem *base, struct clk *clk) +{ + int ret; + + stm_timer->base = base; + stm_timer->rate = clk_get_rate(clk); + + stm_timer->cs.name = name; + stm_timer->cs.rating = 460; + stm_timer->cs.read = nxp_stm_clocksource_read; + stm_timer->cs.enable = nxp_stm_clocksource_enable; + stm_timer->cs.disable = nxp_stm_clocksource_disable; + stm_timer->cs.suspend = nxp_stm_clocksource_suspend; + stm_timer->cs.resume = nxp_stm_clocksource_resume; + stm_timer->cs.mask = CLOCKSOURCE_MASK(32); + stm_timer->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS; + + ret = clocksource_register_hz(&stm_timer->cs, stm_timer->rate); + if (ret) + return ret; + + ret = devm_add_action_or_reset(dev, devm_clocksource_unregister, stm_timer); + if (ret) { + clocksource_unregister(&stm_timer->cs); + return ret; + } + + stm_sched_clock = stm_timer; + + sched_clock_register(nxp_stm_read_sched_clock, 32, stm_timer->rate); + + dev_dbg(dev, "Registered clocksource %s\n", name); + + return 0; +} + +static int nxp_stm_clockevent_read_counter(struct stm_timer *stm_timer) +{ + return readl(STM_CNT(stm_timer->base)); +} + +static void nxp_stm_clockevent_disable(struct stm_timer *stm_timer) +{ + writel(0, STM_CCR0(stm_timer->base)); +} + +static void nxp_stm_clockevent_enable(struct stm_timer *stm_timer) +{ + writel(STM_CCR_CEN, STM_CCR0(stm_timer->base)); +} + +static int nxp_stm_clockevent_shutdown(struct clock_event_device *ced) +{ + struct stm_timer *stm_timer = ced_to_stm(ced); + + nxp_stm_clockevent_disable(stm_timer); + + return 0; +} + +static int nxp_stm_clockevent_set_next_event(unsigned long delta, struct clock_event_device *ced) +{ + struct stm_timer *stm_timer = ced_to_stm(ced); + u32 val; + + nxp_stm_clockevent_disable(stm_timer); + + stm_timer->delta = delta; + + val = nxp_stm_clockevent_read_counter(stm_timer) + delta; + + writel(val, STM_CMP0(stm_timer->base)); + + /* + * The counter is shared across the channels and can not be + * stopped while we are setting the next event. If the delta + * is very small it is possible the counter increases above + * the computed 'val'. The min_delta value specified when + * registering the clockevent will prevent that. The second + * case is if the counter wraps while we compute the 'val' and + * before writing the comparator register. We read the counter, + * check if we are back in time and abort the timer with -ETIME. + */ + if (val > nxp_stm_clockevent_read_counter(stm_timer) + delta) + return -ETIME; + + nxp_stm_clockevent_enable(stm_timer); + + return 0; +} + +static int nxp_stm_clockevent_set_periodic(struct clock_event_device *ced) +{ + struct stm_timer *stm_timer = ced_to_stm(ced); + + return nxp_stm_clockevent_set_next_event(stm_timer->rate, ced); +} + +static void nxp_stm_clockevent_suspend(struct clock_event_device *ced) +{ + struct stm_timer *stm_timer = ced_to_stm(ced); + + nxp_stm_module_put(stm_timer); +} + +static void nxp_stm_clockevent_resume(struct clock_event_device *ced) +{ + struct stm_timer *stm_timer = ced_to_stm(ced); + + nxp_stm_module_get(stm_timer); +} + +static int __init nxp_stm_clockevent_per_cpu_init(struct device *dev, struct stm_timer *stm_timer, + const char *name, void __iomem *base, int irq, + struct clk *clk, int cpu) +{ + stm_timer->base = base; + stm_timer->rate = clk_get_rate(clk); + + stm_timer->ced.name = name; + stm_timer->ced.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT; + stm_timer->ced.set_state_shutdown = nxp_stm_clockevent_shutdown; + stm_timer->ced.set_state_periodic = nxp_stm_clockevent_set_periodic; + stm_timer->ced.set_next_event = nxp_stm_clockevent_set_next_event; + stm_timer->ced.suspend = nxp_stm_clockevent_suspend; + stm_timer->ced.resume = nxp_stm_clockevent_resume; + stm_timer->ced.cpumask = cpumask_of(cpu); + stm_timer->ced.rating = 460; + stm_timer->ced.irq = irq; + + per_cpu(stm_timers, cpu) = stm_timer; + + nxp_stm_module_get(stm_timer); + + dev_dbg(dev, "Initialized per cpu clockevent name=%s, irq=%d, cpu=%d\n", name, irq, cpu); + + return 0; +} + +static int nxp_stm_clockevent_starting_cpu(unsigned int cpu) +{ + struct stm_timer *stm_timer = per_cpu(stm_timers, cpu); + int ret; + + if (WARN_ON(!stm_timer)) + return -EFAULT; + + ret = irq_force_affinity(stm_timer->ced.irq, cpumask_of(cpu)); + if (ret) + return ret; + + /* + * The timings measurement show reading the counter register + * and writing to the comparator register takes as a maximum + * value 1100 ns at 133MHz rate frequency. The timer must be + * set above this value and to be secure we set the minimum + * value equal to 2000ns, so 2us. + * + * minimum ticks = (rate / MICRO) * 2 + */ + clockevents_config_and_register(&stm_timer->ced, stm_timer->rate, + (stm_timer->rate / MICRO) * 2, ULONG_MAX); + + return 0; +} + +static irqreturn_t nxp_stm_module_interrupt(int irq, void *dev_id) +{ + struct stm_timer *stm_timer = dev_id; + struct clock_event_device *ced = &stm_timer->ced; + u32 val; + + /* + * The interrupt is shared across the channels in the + * module. But this one is configured to run only one channel, + * consequently it is pointless to test the interrupt flags + * before and we can directly reset the channel 0 irq flag + * register. + */ + writel(STM_CIR_CIF, STM_CIR0(stm_timer->base)); + + /* + * Update STM_CMP value using the counter value + */ + val = nxp_stm_clockevent_read_counter(stm_timer) + stm_timer->delta; + + writel(val, STM_CMP0(stm_timer->base)); + + /* + * stm hardware doesn't support oneshot, it will generate an + * interrupt and start the counter again so software needs to + * disable the timer to stop the counter loop in ONESHOT mode. + */ + if (likely(clockevent_state_oneshot(ced))) + nxp_stm_clockevent_disable(stm_timer); + + ced->event_handler(ced); + + return IRQ_HANDLED; +} + +static int __init nxp_stm_timer_probe(struct platform_device *pdev) +{ + struct stm_timer *stm_timer; + struct device *dev = &pdev->dev; + struct device_node *np = dev->of_node; + const char *name = of_node_full_name(np); + struct clk *clk; + void __iomem *base; + int irq, ret; + + /* + * The device tree can have multiple STM nodes described, so + * it makes this driver a good candidate for the async probe. + * It is still unclear if the time framework correctly handles + * parallel loading of the timers but at least this driver is + * ready to support the option. + */ + guard(stm_instances)(&stm_instances_lock); + + /* + * The S32Gx are SoCs featuring a diverse set of cores. Linux + * is expected to run on Cortex-A53 cores, while other + * software stacks will operate on Cortex-M cores. The number + * of STM instances has been sized to include at most one + * instance per core. + * + * As we need a clocksource and a clockevent per cpu, we + * simply initialize a clocksource per cpu along with the + * clockevent which makes the resulting code simpler. + * + * However if the device tree is describing more STM instances + * than the number of cores, then we ignore them. + */ + if (stm_instances >= num_possible_cpus()) + return 0; + + base = devm_of_iomap(dev, np, 0, NULL); + if (IS_ERR(base)) + return dev_err_probe(dev, PTR_ERR(base), "Failed to iomap %pOFn\n", np); + + irq = platform_get_irq(pdev, 0); + if (irq < 0) + return dev_err_probe(dev, irq, "Failed to get IRQ\n"); + + clk = devm_clk_get_enabled(dev, NULL); + if (IS_ERR(clk)) + return dev_err_probe(dev, PTR_ERR(clk), "Clock not found\n"); + + stm_timer = devm_kzalloc(dev, sizeof(*stm_timer), GFP_KERNEL); + if (!stm_timer) + return -ENOMEM; + + ret = devm_request_irq(dev, irq, nxp_stm_module_interrupt, + IRQF_TIMER | IRQF_NOBALANCING, name, stm_timer); + if (ret) + return dev_err_probe(dev, ret, "Unable to allocate interrupt line\n"); + + ret = nxp_stm_clocksource_init(dev, stm_timer, name, base, clk); + if (ret) + return ret; + + /* + * Next probed STM will be a per CPU clockevent, until we + * probe as many as we have CPUs available on the system, we + * do a partial initialization + */ + ret = nxp_stm_clockevent_per_cpu_init(dev, stm_timer, name, + base, irq, clk, + stm_instances); + if (ret) + return ret; + + stm_instances++; + + /* + * The number of probed STMs for per CPU clockevent is + * equal to the number of available CPUs on the + * system. We install the cpu hotplug to finish the + * initialization by registering the clockevents + */ + if (stm_instances == num_possible_cpus()) { + ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "STM timer:starting", + nxp_stm_clockevent_starting_cpu, NULL); + if (ret < 0) + return ret; + } + + return 0; +} + +static const struct of_device_id nxp_stm_of_match[] = { + { .compatible = "nxp,s32g2-stm" }, + { } +}; +MODULE_DEVICE_TABLE(of, nxp_stm_of_match); + +static struct platform_driver nxp_stm_probe = { + .probe = nxp_stm_timer_probe, + .driver = { + .name = "nxp-stm", + .of_match_table = nxp_stm_of_match, + }, +}; +module_platform_driver(nxp_stm_probe); + +MODULE_DESCRIPTION("NXP System Timer Module driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/clocksource/timer-tegra186.c b/drivers/clocksource/timer-tegra186.c index 5d4cf5237a11..e5394f98a02e 100644 --- a/drivers/clocksource/timer-tegra186.c +++ b/drivers/clocksource/timer-tegra186.c @@ -1,8 +1,9 @@ // SPDX-License-Identifier: GPL-2.0-only /* - * Copyright (c) 2019-2020 NVIDIA Corporation. All rights reserved. + * Copyright (c) 2019-2025 NVIDIA Corporation. All rights reserved. */ +#include <linux/bitfield.h> #include <linux/clocksource.h> #include <linux/module.h> #include <linux/interrupt.h> @@ -29,6 +30,7 @@ #define TMRSR 0x004 #define TMRSR_INTR_CLR BIT(30) +#define TMRSR_PCV GENMASK(28, 0) #define TMRCSSR 0x008 #define TMRCSSR_SRC_USEC (0 << 0) @@ -45,6 +47,9 @@ #define WDTCR_TIMER_SOURCE_MASK 0xf #define WDTCR_TIMER_SOURCE(x) ((x) & 0xf) +#define WDTSR 0x004 +#define WDTSR_CURRENT_EXPIRATION_COUNT GENMASK(14, 12) + #define WDTCMDR 0x008 #define WDTCMDR_DISABLE_COUNTER BIT(1) #define WDTCMDR_START_COUNTER BIT(0) @@ -169,18 +174,6 @@ static void tegra186_wdt_enable(struct tegra186_wdt *wdt) value &= ~WDTCR_PERIOD_MASK; value |= WDTCR_PERIOD(1); - /* enable local interrupt for WDT petting */ - value |= WDTCR_LOCAL_INT_ENABLE; - - /* enable local FIQ and remote interrupt for debug dump */ - if (0) - value |= WDTCR_REMOTE_INT_ENABLE | - WDTCR_LOCAL_FIQ_ENABLE; - - /* enable system debug reset (doesn't properly reboot) */ - if (0) - value |= WDTCR_SYSTEM_DEBUG_RESET_ENABLE; - /* enable system POR reset */ value |= WDTCR_SYSTEM_POR_RESET_ENABLE; @@ -234,12 +227,69 @@ static int tegra186_wdt_set_timeout(struct watchdog_device *wdd, return 0; } +static unsigned int tegra186_wdt_get_timeleft(struct watchdog_device *wdd) +{ + struct tegra186_wdt *wdt = to_tegra186_wdt(wdd); + u32 expiration, val; + u64 timeleft; + + if (!watchdog_active(&wdt->base)) { + /* return zero if the watchdog timer is not activated. */ + return 0; + } + + /* + * Reset occurs on the fifth expiration of the + * watchdog timer and so when the watchdog timer is configured, + * the actual value programmed into the counter is 1/5 of the + * timeout value. Once the counter reaches 0, expiration count + * will be increased by 1 and the down counter restarts. + * Hence to get the time left before system reset we must + * combine 2 parts: + * 1. value of the current down counter + * 2. (number of counter expirations remaining) * (timeout/5) + */ + + /* Get the current number of counter expirations. Should be a + * value between 0 and 4 + */ + val = readl_relaxed(wdt->regs + WDTSR); + expiration = FIELD_GET(WDTSR_CURRENT_EXPIRATION_COUNT, val); + if (WARN_ON_ONCE(expiration > 4)) + return 0; + + /* Get the current counter value in microsecond. */ + val = readl_relaxed(wdt->tmr->regs + TMRSR); + timeleft = FIELD_GET(TMRSR_PCV, val); + + /* + * Calculate the time remaining by adding the time for the + * counter value to the time of the counter expirations that + * remain. + */ + timeleft += (((u64)wdt->base.timeout * USEC_PER_SEC) / 5) * (4 - expiration); + + /* + * Convert the current counter value to seconds, + * rounding up to the nearest second. Cast u64 to + * u32 under the assumption that no overflow happens + * when coverting to seconds. + */ + timeleft = DIV_ROUND_CLOSEST_ULL(timeleft, USEC_PER_SEC); + + if (WARN_ON_ONCE(timeleft > U32_MAX)) + return U32_MAX; + + return lower_32_bits(timeleft); +} + static const struct watchdog_ops tegra186_wdt_ops = { .owner = THIS_MODULE, .start = tegra186_wdt_start, .stop = tegra186_wdt_stop, .ping = tegra186_wdt_ping, .set_timeout = tegra186_wdt_set_timeout, + .get_timeleft = tegra186_wdt_get_timeleft, }; static struct tegra186_wdt *tegra186_wdt_create(struct tegra186_timer *tegra, @@ -365,23 +415,10 @@ static int tegra186_timer_usec_init(struct tegra186_timer *tegra) return clocksource_register_hz(&tegra->usec, USEC_PER_SEC); } -static irqreturn_t tegra186_timer_irq(int irq, void *data) -{ - struct tegra186_timer *tegra = data; - - if (watchdog_active(&tegra->wdt->base)) { - tegra186_wdt_disable(tegra->wdt); - tegra186_wdt_enable(tegra->wdt); - } - - return IRQ_HANDLED; -} - static int tegra186_timer_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct tegra186_timer *tegra; - unsigned int irq; int err; tegra = devm_kzalloc(dev, sizeof(*tegra), GFP_KERNEL); @@ -400,8 +437,6 @@ static int tegra186_timer_probe(struct platform_device *pdev) if (err < 0) return err; - irq = err; - /* create a watchdog using a preconfigured timer */ tegra->wdt = tegra186_wdt_create(tegra, 0); if (IS_ERR(tegra->wdt)) { @@ -428,17 +463,8 @@ static int tegra186_timer_probe(struct platform_device *pdev) goto unregister_osc; } - err = devm_request_irq(dev, irq, tegra186_timer_irq, 0, - "tegra186-timer", tegra); - if (err < 0) { - dev_err(dev, "failed to request IRQ#%u: %d\n", irq, err); - goto unregister_usec; - } - return 0; -unregister_usec: - clocksource_unregister(&tegra->usec); unregister_osc: clocksource_unregister(&tegra->osc); unregister_tsc: |