summaryrefslogtreecommitdiff
path: root/include/linux/damon.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux/damon.h')
-rw-r--r--include/linux/damon.h241
1 files changed, 200 insertions, 41 deletions
diff --git a/include/linux/damon.h b/include/linux/damon.h
index a67f2c4940e9..a4011726cb3b 100644
--- a/include/linux/damon.h
+++ b/include/linux/damon.h
@@ -36,6 +36,16 @@ struct damon_addr_range {
};
/**
+ * struct damon_size_range - Represents size for filter to operate on [@min, @max].
+ * @min: Min size (inclusive).
+ * @max: Max size (inclusive).
+ */
+struct damon_size_range {
+ unsigned long min;
+ unsigned long max;
+};
+
+/**
* struct damon_region - Represents a monitoring target region.
* @ar: The address range of the region.
* @sampling_addr: Address of the sample for the next access check.
@@ -135,6 +145,8 @@ enum damos_action {
*
* @DAMOS_QUOTA_USER_INPUT: User-input value.
* @DAMOS_QUOTA_SOME_MEM_PSI_US: System level some memory PSI in us.
+ * @DAMOS_QUOTA_NODE_MEM_USED_BP: MemUsed ratio of a node.
+ * @DAMOS_QUOTA_NODE_MEM_FREE_BP: MemFree ratio of a node.
* @NR_DAMOS_QUOTA_GOAL_METRICS: Number of DAMOS quota goal metrics.
*
* Metrics equal to larger than @NR_DAMOS_QUOTA_GOAL_METRICS are unsupported.
@@ -142,6 +154,8 @@ enum damos_action {
enum damos_quota_goal_metric {
DAMOS_QUOTA_USER_INPUT,
DAMOS_QUOTA_SOME_MEM_PSI_US,
+ DAMOS_QUOTA_NODE_MEM_USED_BP,
+ DAMOS_QUOTA_NODE_MEM_FREE_BP,
NR_DAMOS_QUOTA_GOAL_METRICS,
};
@@ -151,6 +165,7 @@ enum damos_quota_goal_metric {
* @target_value: Target value of @metric to achieve with the tuning.
* @current_value: Current value of @metric.
* @last_psi_total: Last measured total PSI
+ * @nid: Node id.
* @list: List head for siblings.
*
* Data structure for getting the current score of the quota tuning goal. The
@@ -169,6 +184,7 @@ struct damos_quota_goal {
/* metric-dependent fields */
union {
u64 last_psi_total;
+ int nid;
};
struct list_head list;
};
@@ -193,11 +209,16 @@ struct damos_quota_goal {
* size quota is set, DAMON tries to apply the action only up to &sz bytes
* within &reset_interval.
*
- * Internally, the time quota is transformed to a size quota using estimated
- * throughput of the scheme's action. DAMON then compares it against &sz and
- * uses smaller one as the effective quota.
+ * To convince the different types of quotas and goals, DAMON internally
+ * converts those into one single size quota called "effective quota". DAMON
+ * internally uses it as the only one real quota. The conversion is made as
+ * follows.
+ *
+ * The time quota is transformed to a size quota using estimated throughput of
+ * the scheme's action. DAMON then compares it against &sz and uses smaller
+ * one as the effective quota.
*
- * If @goals is not empt, DAMON calculates yet another size quota based on the
+ * If @goals is not empty, DAMON calculates yet another size quota based on the
* goals using its internal feedback loop algorithm, for every @reset_interval.
* Then, if the new size quota is smaller than the effective quota, it uses the
* new size quota as the effective quota.
@@ -286,21 +307,44 @@ struct damos_watermarks {
* @sz_tried: Total size of regions that the scheme is tried to be applied.
* @nr_applied: Total number of regions that the scheme is applied.
* @sz_applied: Total size of regions that the scheme is applied.
+ * @sz_ops_filter_passed:
+ * Total bytes that passed ops layer-handled DAMOS filters.
* @qt_exceeds: Total number of times the quota of the scheme has exceeded.
+ *
+ * "Tried an action to a region" in this context means the DAMOS core logic
+ * determined the region as eligible to apply the action. The access pattern
+ * (&struct damos_access_pattern), quotas (&struct damos_quota), watermarks
+ * (&struct damos_watermarks) and filters (&struct damos_filter) that handled
+ * on core logic can affect this. The core logic asks the operation set
+ * (&struct damon_operations) to apply the action to the region.
+ *
+ * "Applied an action to a region" in this context means the operation set
+ * (&struct damon_operations) successfully applied the action to the region, at
+ * least to a part of the region. The filters (&struct damos_filter) that
+ * handled on operation set layer and type of the action and pages of the
+ * region can affect this. For example, if a filter is set to exclude
+ * anonymous pages and the region has only anonymous pages, the region will be
+ * failed at applying the action. If the action is &DAMOS_PAGEOUT and all
+ * pages of the region are already paged out, the region will be failed at
+ * applying the action.
*/
struct damos_stat {
unsigned long nr_tried;
unsigned long sz_tried;
unsigned long nr_applied;
unsigned long sz_applied;
+ unsigned long sz_ops_filter_passed;
unsigned long qt_exceeds;
};
/**
* enum damos_filter_type - Type of memory for &struct damos_filter
* @DAMOS_FILTER_TYPE_ANON: Anonymous pages.
+ * @DAMOS_FILTER_TYPE_ACTIVE: Active pages.
* @DAMOS_FILTER_TYPE_MEMCG: Specific memcg's pages.
* @DAMOS_FILTER_TYPE_YOUNG: Recently accessed pages.
+ * @DAMOS_FILTER_TYPE_HUGEPAGE_SIZE: Page is part of a hugepage.
+ * @DAMOS_FILTER_TYPE_UNMAPPED: Unmapped pages.
* @DAMOS_FILTER_TYPE_ADDR: Address range.
* @DAMOS_FILTER_TYPE_TARGET: Data Access Monitoring target.
* @NR_DAMOS_FILTER_TYPES: Number of filter types.
@@ -318,8 +362,11 @@ struct damos_stat {
*/
enum damos_filter_type {
DAMOS_FILTER_TYPE_ANON,
+ DAMOS_FILTER_TYPE_ACTIVE,
DAMOS_FILTER_TYPE_MEMCG,
DAMOS_FILTER_TYPE_YOUNG,
+ DAMOS_FILTER_TYPE_HUGEPAGE_SIZE,
+ DAMOS_FILTER_TYPE_UNMAPPED,
DAMOS_FILTER_TYPE_ADDR,
DAMOS_FILTER_TYPE_TARGET,
NR_DAMOS_FILTER_TYPES,
@@ -327,31 +374,61 @@ enum damos_filter_type {
/**
* struct damos_filter - DAMOS action target memory filter.
- * @type: Type of the page.
- * @matching: If the matching page should filtered out or in.
+ * @type: Type of the target memory.
+ * @matching: Whether this is for @type-matching memory.
+ * @allow: Whether to include or exclude the @matching memory.
* @memcg_id: Memcg id of the question if @type is DAMOS_FILTER_MEMCG.
* @addr_range: Address range if @type is DAMOS_FILTER_TYPE_ADDR.
* @target_idx: Index of the &struct damon_target of
* &damon_ctx->adaptive_targets if @type is
* DAMOS_FILTER_TYPE_TARGET.
+ * @sz_range: Size range if @type is DAMOS_FILTER_TYPE_HUGEPAGE_SIZE.
* @list: List head for siblings.
*
* Before applying the &damos->action to a memory region, DAMOS checks if each
- * page of the region matches to this and avoid applying the action if so.
- * Support of each filter type depends on the running &struct damon_operations
- * and the type. Refer to &enum damos_filter_type for more detai.
+ * byte of the region matches to this given condition and avoid applying the
+ * action if so. Support of each filter type depends on the running &struct
+ * damon_operations and the type. Refer to &enum damos_filter_type for more
+ * details.
*/
struct damos_filter {
enum damos_filter_type type;
bool matching;
+ bool allow;
union {
unsigned short memcg_id;
struct damon_addr_range addr_range;
int target_idx;
+ struct damon_size_range sz_range;
};
struct list_head list;
};
+struct damon_ctx;
+struct damos;
+
+/**
+ * struct damos_walk_control - Control damos_walk().
+ *
+ * @walk_fn: Function to be called back for each region.
+ * @data: Data that will be passed to walk functions.
+ *
+ * Control damos_walk(), which requests specific kdamond to invoke the given
+ * function to each region that eligible to apply actions of the kdamond's
+ * schemes. Refer to damos_walk() for more details.
+ */
+struct damos_walk_control {
+ void (*walk_fn)(void *data, struct damon_ctx *ctx,
+ struct damon_target *t, struct damon_region *r,
+ struct damos *s, unsigned long sz_filter_passed);
+ void *data;
+/* private: internal use only */
+ /* informs if the kdamond finished handling of the walk request */
+ struct completion completion;
+ /* informs if the walk is canceled. */
+ bool canceled;
+};
+
/**
* struct damos_access_pattern - Target access pattern of the given scheme.
* @min_sz_region: Minimum size of target regions.
@@ -379,6 +456,8 @@ struct damos_access_pattern {
* @wmarks: Watermarks for automated (in)activation of this scheme.
* @target_nid: Destination node if @action is "migrate_{hot,cold}".
* @filters: Additional set of &struct damos_filter for &action.
+ * @ops_filters: ops layer handling &struct damos_filter objects list.
+ * @last_applied: Last @action applied ops-managing entity.
* @stat: Statistics of this scheme.
* @list: List head for siblings.
*
@@ -401,6 +480,15 @@ struct damos_access_pattern {
* implementation could check pages of the region and skip &action to respect
* &filters
*
+ * The minimum entity that @action can be applied depends on the underlying
+ * &struct damon_operations. Since it may not be aligned with the core layer
+ * abstract, namely &struct damon_region, &struct damon_operations could apply
+ * @action to same entity multiple times. Large folios that underlying on
+ * multiple &struct damon region objects could be such examples. The &struct
+ * damon_operations can use @last_applied to avoid that. DAMOS core logic
+ * unsets @last_applied when each regions walking for applying the scheme is
+ * finished.
+ *
* After applying the &action to each region, &stat_count and &stat_sz is
* updated to reflect the number of regions and total size of regions that the
* &action is applied.
@@ -415,6 +503,16 @@ struct damos {
* @action
*/
unsigned long next_apply_sis;
+ /* informs if ongoing DAMOS walk for this scheme is finished */
+ bool walk_completed;
+ /*
+ * If the current region in the filtering stage is allowed by core
+ * layer-handled filters. If true, operations layer allows it, too.
+ */
+ bool core_filters_allowed;
+ /* whether to reject core/ops filters umatched regions */
+ bool core_filters_default_reject;
+ bool ops_filters_default_reject;
/* public: */
struct damos_quota quota;
struct damos_watermarks wmarks;
@@ -422,6 +520,8 @@ struct damos {
int target_nid;
};
struct list_head filters;
+ struct list_head ops_filters;
+ void *last_applied;
struct damos_stat stat;
struct list_head list;
};
@@ -442,8 +542,6 @@ enum damon_ops_id {
NR_DAMON_OPS,
};
-struct damon_ctx;
-
/**
* struct damon_operations - Monitoring operations for given use cases.
*
@@ -452,7 +550,6 @@ struct damon_ctx;
* @update: Update operations-related data structures.
* @prepare_access_checks: Prepare next access check of target regions.
* @check_accesses: Check the accesses to target regions.
- * @reset_aggregated: Reset aggregated accesses monitoring results.
* @get_scheme_score: Get the score of a region for a scheme.
* @apply_scheme: Apply a DAMON-based operation scheme.
* @target_valid: Determine if the target is valid.
@@ -464,8 +561,7 @@ struct damon_ctx;
* (&damon_ctx.kdamond) calls @init and @prepare_access_checks before starting
* the monitoring, @update after each &damon_attrs.ops_update_interval, and
* @check_accesses, @target_valid and @prepare_access_checks after each
- * &damon_attrs.sample_interval. Finally, @reset_aggregated is called after
- * each &damon_attrs.aggr_interval.
+ * &damon_attrs.sample_interval.
*
* Each &struct damon_operations instance having valid @id can be registered
* via damon_register_ops() and selected by damon_select_ops() later.
@@ -480,14 +576,13 @@ struct damon_ctx;
* last preparation and update the number of observed accesses of each region.
* It should also return max number of observed accesses that made as a result
* of its update. The value will be used for regions adjustment threshold.
- * @reset_aggregated should reset the access monitoring results that aggregated
- * by @check_accesses.
* @get_scheme_score should return the priority score of a region for a scheme
* as an integer in [0, &DAMOS_MAX_SCORE].
* @apply_scheme is called from @kdamond when a region for user provided
* DAMON-based operation scheme is found. It should apply the scheme's action
* to the region and return bytes of the region that the action is successfully
- * applied.
+ * applied. It should also report how many bytes of the region has passed
+ * filters (&struct damos_filter) that handled by itself.
* @target_valid should check whether the target is still valid for the
* monitoring.
* @cleanup is called from @kdamond just before its termination.
@@ -498,13 +593,12 @@ struct damon_operations {
void (*update)(struct damon_ctx *context);
void (*prepare_access_checks)(struct damon_ctx *context);
unsigned int (*check_accesses)(struct damon_ctx *context);
- void (*reset_aggregated)(struct damon_ctx *context);
int (*get_scheme_score)(struct damon_ctx *context,
struct damon_target *t, struct damon_region *r,
struct damos *scheme);
unsigned long (*apply_scheme)(struct damon_ctx *context,
struct damon_target *t, struct damon_region *r,
- struct damos *scheme);
+ struct damos *scheme, unsigned long *sz_filter_passed);
bool (*target_valid)(struct damon_target *t);
void (*cleanup)(struct damon_ctx *context);
};
@@ -512,52 +606,84 @@ struct damon_operations {
/**
* struct damon_callback - Monitoring events notification callbacks.
*
- * @before_start: Called before starting the monitoring.
* @after_wmarks_check: Called after each schemes' watermarks check.
- * @after_sampling: Called after each sampling.
* @after_aggregation: Called after each aggregation.
- * @before_damos_apply: Called before applying DAMOS action.
* @before_terminate: Called before terminating the monitoring.
- * @private: User private data.
*
- * The monitoring thread (&damon_ctx.kdamond) calls @before_start and
- * @before_terminate just before starting and finishing the monitoring,
- * respectively. Therefore, those are good places for installing and cleaning
- * @private.
+ * The monitoring thread (&damon_ctx.kdamond) calls @before_terminate just
+ * before finishing the monitoring.
*
* The monitoring thread calls @after_wmarks_check after each DAMON-based
* operation schemes' watermarks check. If users need to make changes to the
* attributes of the monitoring context while it's deactivated due to the
* watermarks, this is the good place to do.
*
- * The monitoring thread calls @after_sampling and @after_aggregation for each
- * of the sampling intervals and aggregation intervals, respectively.
- * Therefore, users can safely access the monitoring results without additional
- * protection. For the reason, users are recommended to use these callback for
- * the accesses to the results.
+ * The monitoring thread calls @after_aggregation for each of the aggregation
+ * intervals. Therefore, users can safely access the monitoring results
+ * without additional protection. For the reason, users are recommended to use
+ * these callback for the accesses to the results.
*
* If any callback returns non-zero, monitoring stops.
*/
struct damon_callback {
- void *private;
-
- int (*before_start)(struct damon_ctx *context);
int (*after_wmarks_check)(struct damon_ctx *context);
- int (*after_sampling)(struct damon_ctx *context);
int (*after_aggregation)(struct damon_ctx *context);
- int (*before_damos_apply)(struct damon_ctx *context,
- struct damon_target *target,
- struct damon_region *region,
- struct damos *scheme);
void (*before_terminate)(struct damon_ctx *context);
};
+/*
+ * struct damon_call_control - Control damon_call().
+ *
+ * @fn: Function to be called back.
+ * @data: Data that will be passed to @fn.
+ * @return_code: Return code from @fn invocation.
+ *
+ * Control damon_call(), which requests specific kdamond to invoke a given
+ * function. Refer to damon_call() for more details.
+ */
+struct damon_call_control {
+ int (*fn)(void *data);
+ void *data;
+ int return_code;
+/* private: internal use only */
+ /* informs if the kdamond finished handling of the request */
+ struct completion completion;
+ /* informs if the kdamond canceled @fn infocation */
+ bool canceled;
+};
+
+/**
+ * struct damon_intervals_goal - Monitoring intervals auto-tuning goal.
+ *
+ * @access_bp: Access events observation ratio to achieve in bp.
+ * @aggrs: Number of aggregations to acheive @access_bp within.
+ * @min_sample_us: Minimum resulting sampling interval in microseconds.
+ * @max_sample_us: Maximum resulting sampling interval in microseconds.
+ *
+ * DAMON automatically tunes &damon_attrs->sample_interval and
+ * &damon_attrs->aggr_interval aiming the ratio in bp (1/10,000) of
+ * DAMON-observed access events to theoretical maximum amount within @aggrs
+ * aggregations be same to @access_bp. The logic increases
+ * &damon_attrs->aggr_interval and &damon_attrs->sampling_interval in same
+ * ratio if the current access events observation ratio is lower than the
+ * target for each @aggrs aggregations, and vice versa.
+ *
+ * If @aggrs is zero, the tuning is disabled and hence this struct is ignored.
+ */
+struct damon_intervals_goal {
+ unsigned long access_bp;
+ unsigned long aggrs;
+ unsigned long min_sample_us;
+ unsigned long max_sample_us;
+};
+
/**
* struct damon_attrs - Monitoring attributes for accuracy/overhead control.
*
* @sample_interval: The time between access samplings.
* @aggr_interval: The time between monitor results aggregations.
* @ops_update_interval: The time between monitoring operations updates.
+ * @intervals_goal: Intervals auto-tuning goal.
* @min_nr_regions: The minimum number of adaptive monitoring
* regions.
* @max_nr_regions: The maximum number of adaptive monitoring
@@ -577,8 +703,20 @@ struct damon_attrs {
unsigned long sample_interval;
unsigned long aggr_interval;
unsigned long ops_update_interval;
+ struct damon_intervals_goal intervals_goal;
unsigned long min_nr_regions;
unsigned long max_nr_regions;
+/* private: internal use only */
+ /*
+ * @aggr_interval to @sample_interval ratio.
+ * Core-external components call damon_set_attrs() with &damon_attrs
+ * that this field is unset. In the case, damon_set_attrs() sets this
+ * field of resulting &damon_attrs. Core-internal components such as
+ * kdamond_tune_intervals() calls damon_set_attrs() with &damon_attrs
+ * that this field is set. In the case, damon_set_attrs() just keep
+ * it.
+ */
+ unsigned long aggr_samples;
};
/**
@@ -627,11 +765,22 @@ struct damon_ctx {
* update
*/
unsigned long next_ops_update_sis;
+ /*
+ * number of sample intervals that should be passed before next
+ * intervals tuning
+ */
+ unsigned long next_intervals_tune_sis;
/* for waiting until the execution of the kdamond_fn is started */
struct completion kdamond_started;
/* for scheme quotas prioritization */
unsigned long *regions_score_histogram;
+ struct damon_call_control *call_control;
+ struct mutex call_control_lock;
+
+ struct damos_walk_control *walk_control;
+ struct mutex walk_control_lock;
+
/* public: */
struct task_struct *kdamond;
struct mutex kdamond_lock;
@@ -702,6 +851,12 @@ static inline unsigned long damon_sz_region(struct damon_region *r)
#define damos_for_each_filter_safe(f, next, scheme) \
list_for_each_entry_safe(f, next, &(scheme)->filters, list)
+#define damos_for_each_ops_filter(f, scheme) \
+ list_for_each_entry(f, &(scheme)->ops_filters, list)
+
+#define damos_for_each_ops_filter_safe(f, next, scheme) \
+ list_for_each_entry_safe(f, next, &(scheme)->ops_filters, list)
+
#ifdef CONFIG_DAMON
struct damon_region *damon_new_region(unsigned long start, unsigned long end);
@@ -725,8 +880,9 @@ void damon_update_region_access_rate(struct damon_region *r, bool accessed,
struct damon_attrs *attrs);
struct damos_filter *damos_new_filter(enum damos_filter_type type,
- bool matching);
+ bool matching, bool allow);
void damos_add_filter(struct damos *s, struct damos_filter *f);
+bool damos_filter_for_ops(enum damos_filter_type type);
void damos_destroy_filter(struct damos_filter *f);
struct damos_quota_goal *damos_new_quota_goal(
@@ -779,6 +935,9 @@ static inline unsigned int damon_max_nr_accesses(const struct damon_attrs *attrs
int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive);
int damon_stop(struct damon_ctx **ctxs, int nr_ctxs);
+int damon_call(struct damon_ctx *ctx, struct damon_call_control *control);
+int damos_walk(struct damon_ctx *ctx, struct damos_walk_control *control);
+
int damon_set_region_biggest_system_ram_default(struct damon_target *t,
unsigned long *start, unsigned long *end);