diff options
Diffstat (limited to 'kernel')
| -rw-r--r-- | kernel/cgroup/cgroup.c | 11 | ||||
| -rw-r--r-- | kernel/cgroup/namespace.c | 2 | ||||
| -rw-r--r-- | kernel/cred.c | 6 | ||||
| -rw-r--r-- | kernel/exit.c | 3 | ||||
| -rw-r--r-- | kernel/fork.c | 3 | ||||
| -rw-r--r-- | kernel/nscommon.c | 246 | ||||
| -rw-r--r-- | kernel/nsproxy.c | 57 | ||||
| -rw-r--r-- | kernel/nstree.c | 782 | ||||
| -rw-r--r-- | kernel/pid.c | 12 | ||||
| -rw-r--r-- | kernel/pid_namespace.c | 2 | ||||
| -rw-r--r-- | kernel/time/namespace.c | 5 | ||||
| -rw-r--r-- | kernel/user.c | 7 |
12 files changed, 980 insertions, 156 deletions
diff --git a/kernel/cgroup/cgroup.c b/kernel/cgroup/cgroup.c index fdee387f0d6b..2bf3951ca88f 100644 --- a/kernel/cgroup/cgroup.c +++ b/kernel/cgroup/cgroup.c @@ -250,12 +250,9 @@ bool cgroup_enable_per_threadgroup_rwsem __read_mostly; /* cgroup namespace for init task */ struct cgroup_namespace init_cgroup_ns = { - .ns.__ns_ref = REFCOUNT_INIT(2), + .ns = NS_COMMON_INIT(init_cgroup_ns), .user_ns = &init_user_ns, - .ns.ops = &cgroupns_operations, - .ns.inum = ns_init_inum(&init_cgroup_ns), .root_cset = &init_css_set, - .ns.ns_type = ns_common_type(&init_cgroup_ns), }; static struct file_system_type cgroup2_fs_type; @@ -1522,9 +1519,9 @@ static struct cgroup *current_cgns_cgroup_dfl(void) } else { /* * NOTE: This function may be called from bpf_cgroup_from_id() - * on a task which has already passed exit_task_namespaces() and - * nsproxy == NULL. Fall back to cgrp_dfl_root which will make all - * cgroups visible for lookups. + * on a task which has already passed exit_nsproxy_namespaces() + * and nsproxy == NULL. Fall back to cgrp_dfl_root which will + * make all cgroups visible for lookups. */ return &cgrp_dfl_root.cgrp; } diff --git a/kernel/cgroup/namespace.c b/kernel/cgroup/namespace.c index fdbe57578e68..db9617556dd7 100644 --- a/kernel/cgroup/namespace.c +++ b/kernel/cgroup/namespace.c @@ -30,7 +30,6 @@ static struct cgroup_namespace *alloc_cgroup_ns(void) ret = ns_common_init(new_ns); if (ret) return ERR_PTR(ret); - ns_tree_add(new_ns); return no_free_ptr(new_ns); } @@ -86,6 +85,7 @@ struct cgroup_namespace *copy_cgroup_ns(u64 flags, new_ns->ucounts = ucounts; new_ns->root_cset = cset; + ns_tree_add(new_ns); return new_ns; } diff --git a/kernel/cred.c b/kernel/cred.c index dbf6b687dc5c..a6e7f580df14 100644 --- a/kernel/cred.c +++ b/kernel/cred.c @@ -306,6 +306,7 @@ int copy_creds(struct task_struct *p, u64 clone_flags) kdebug("share_creds(%p{%ld})", p->cred, atomic_long_read(&p->cred->usage)); inc_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); + get_cred_namespaces(p); return 0; } @@ -343,6 +344,8 @@ int copy_creds(struct task_struct *p, u64 clone_flags) p->cred = p->real_cred = get_cred(new); inc_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); + get_cred_namespaces(p); + return 0; error_put: @@ -435,10 +438,13 @@ int commit_creds(struct cred *new) */ if (new->user != old->user || new->user_ns != old->user_ns) inc_rlimit_ucounts(new->ucounts, UCOUNT_RLIMIT_NPROC, 1); + rcu_assign_pointer(task->real_cred, new); rcu_assign_pointer(task->cred, new); if (new->user != old->user || new->user_ns != old->user_ns) dec_rlimit_ucounts(old->ucounts, UCOUNT_RLIMIT_NPROC, 1); + if (new->user_ns != old->user_ns) + switch_cred_namespaces(old, new); /* send notifications */ if (!uid_eq(new->uid, old->uid) || diff --git a/kernel/exit.c b/kernel/exit.c index 9f74e8f1c431..988e16efd66b 100644 --- a/kernel/exit.c +++ b/kernel/exit.c @@ -291,6 +291,7 @@ repeat: write_unlock_irq(&tasklist_lock); /* @thread_pid can't go away until free_pids() below */ proc_flush_pid(thread_pid); + exit_cred_namespaces(p); add_device_randomness(&p->se.sum_exec_runtime, sizeof(p->se.sum_exec_runtime)); free_pids(post.pids); @@ -962,7 +963,7 @@ void __noreturn do_exit(long code) exit_fs(tsk); if (group_dead) disassociate_ctty(1); - exit_task_namespaces(tsk); + exit_nsproxy_namespaces(tsk); exit_task_work(tsk); exit_thread(tsk); diff --git a/kernel/fork.c b/kernel/fork.c index 3da0f08615a9..f1857672426e 100644 --- a/kernel/fork.c +++ b/kernel/fork.c @@ -2453,7 +2453,7 @@ bad_fork_cleanup_io: if (p->io_context) exit_io_context(p); bad_fork_cleanup_namespaces: - exit_task_namespaces(p); + exit_nsproxy_namespaces(p); bad_fork_cleanup_mm: if (p->mm) { mm_clear_owner(p->mm, p); @@ -2487,6 +2487,7 @@ bad_fork_cleanup_delayacct: delayacct_tsk_free(p); bad_fork_cleanup_count: dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); + exit_cred_namespaces(p); exit_creds(p); bad_fork_free: WRITE_ONCE(p->__state, TASK_DEAD); diff --git a/kernel/nscommon.c b/kernel/nscommon.c index c1fb2bad6d72..bdc3c86231d3 100644 --- a/kernel/nscommon.c +++ b/kernel/nscommon.c @@ -1,7 +1,10 @@ // SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2025 Christian Brauner <brauner@kernel.org> */ #include <linux/ns_common.h> +#include <linux/nstree.h> #include <linux/proc_ns.h> +#include <linux/user_namespace.h> #include <linux/vfsdebug.h> #ifdef CONFIG_DEBUG_VFS @@ -52,26 +55,257 @@ static void ns_debug(struct ns_common *ns, const struct proc_ns_operations *ops) int __ns_common_init(struct ns_common *ns, u32 ns_type, const struct proc_ns_operations *ops, int inum) { + int ret = 0; + refcount_set(&ns->__ns_ref, 1); ns->stashed = NULL; ns->ops = ops; ns->ns_id = 0; ns->ns_type = ns_type; - RB_CLEAR_NODE(&ns->ns_tree_node); - INIT_LIST_HEAD(&ns->ns_list_node); + ns_tree_node_init(&ns->ns_tree_node); + ns_tree_node_init(&ns->ns_unified_node); + ns_tree_node_init(&ns->ns_owner_node); + ns_tree_root_init(&ns->ns_owner_root); #ifdef CONFIG_DEBUG_VFS ns_debug(ns, ops); #endif - if (inum) { + if (inum) ns->inum = inum; - return 0; - } - return proc_alloc_inum(&ns->inum); + else + ret = proc_alloc_inum(&ns->inum); + if (ret) + return ret; + /* + * Tree ref starts at 0. It's incremented when namespace enters + * active use (installed in nsproxy) and decremented when all + * active uses are gone. Initial namespaces are always active. + */ + if (is_ns_init_inum(ns)) + atomic_set(&ns->__ns_ref_active, 1); + else + atomic_set(&ns->__ns_ref_active, 0); + return 0; } void __ns_common_free(struct ns_common *ns) { proc_free_inum(ns->inum); } + +struct ns_common *__must_check ns_owner(struct ns_common *ns) +{ + struct user_namespace *owner; + + if (unlikely(!ns->ops)) + return NULL; + VFS_WARN_ON_ONCE(!ns->ops->owner); + owner = ns->ops->owner(ns); + VFS_WARN_ON_ONCE(!owner && ns != to_ns_common(&init_user_ns)); + if (!owner) + return NULL; + /* Skip init_user_ns as it's always active */ + if (owner == &init_user_ns) + return NULL; + return to_ns_common(owner); +} + +/* + * The active reference count works by having each namespace that gets + * created take a single active reference on its owning user namespace. + * That single reference is only released once the child namespace's + * active count itself goes down. + * + * A regular namespace tree might look as follow: + * Legend: + * + : adding active reference + * - : dropping active reference + * x : always active (initial namespace) + * + * + * net_ns pid_ns + * \ / + * + + + * user_ns1 (2) + * | + * ipc_ns | uts_ns + * \ | / + * + + + + * user_ns2 (3) + * | + * cgroup_ns | mnt_ns + * \ | / + * x x x + * init_user_ns (1) + * + * If both net_ns and pid_ns put their last active reference on + * themselves it will cascade to user_ns1 dropping its own active + * reference and dropping one active reference on user_ns2: + * + * net_ns pid_ns + * \ / + * - - + * user_ns1 (0) + * | + * ipc_ns | uts_ns + * \ | / + * + - + + * user_ns2 (2) + * | + * cgroup_ns | mnt_ns + * \ | / + * x x x + * init_user_ns (1) + * + * The iteration stops once we reach a namespace that still has active + * references. + */ +void __ns_ref_active_put(struct ns_common *ns) +{ + /* Initial namespaces are always active. */ + if (is_ns_init_id(ns)) + return; + + if (!atomic_dec_and_test(&ns->__ns_ref_active)) { + VFS_WARN_ON_ONCE(__ns_ref_active_read(ns) < 0); + return; + } + + VFS_WARN_ON_ONCE(is_ns_init_id(ns)); + VFS_WARN_ON_ONCE(!__ns_ref_read(ns)); + + for (;;) { + ns = ns_owner(ns); + if (!ns) + return; + VFS_WARN_ON_ONCE(is_ns_init_id(ns)); + if (!atomic_dec_and_test(&ns->__ns_ref_active)) { + VFS_WARN_ON_ONCE(__ns_ref_active_read(ns) < 0); + return; + } + } +} + +/* + * The active reference count works by having each namespace that gets + * created take a single active reference on its owning user namespace. + * That single reference is only released once the child namespace's + * active count itself goes down. This makes it possible to efficiently + * resurrect a namespace tree: + * + * A regular namespace tree might look as follow: + * Legend: + * + : adding active reference + * - : dropping active reference + * x : always active (initial namespace) + * + * + * net_ns pid_ns + * \ / + * + + + * user_ns1 (2) + * | + * ipc_ns | uts_ns + * \ | / + * + + + + * user_ns2 (3) + * | + * cgroup_ns | mnt_ns + * \ | / + * x x x + * init_user_ns (1) + * + * If both net_ns and pid_ns put their last active reference on + * themselves it will cascade to user_ns1 dropping its own active + * reference and dropping one active reference on user_ns2: + * + * net_ns pid_ns + * \ / + * - - + * user_ns1 (0) + * | + * ipc_ns | uts_ns + * \ | / + * + - + + * user_ns2 (2) + * | + * cgroup_ns | mnt_ns + * \ | / + * x x x + * init_user_ns (1) + * + * Assume the whole tree is dead but all namespaces are still active: + * + * net_ns pid_ns + * \ / + * - - + * user_ns1 (0) + * | + * ipc_ns | uts_ns + * \ | / + * - - - + * user_ns2 (0) + * | + * cgroup_ns | mnt_ns + * \ | / + * x x x + * init_user_ns (1) + * + * Now assume the net_ns gets resurrected (.e.g., via the SIOCGSKNS ioctl()): + * + * net_ns pid_ns + * \ / + * + - + * user_ns1 (0) + * | + * ipc_ns | uts_ns + * \ | / + * - + - + * user_ns2 (0) + * | + * cgroup_ns | mnt_ns + * \ | / + * x x x + * init_user_ns (1) + * + * If net_ns had a zero reference count and we bumped it we also need to + * take another reference on its owning user namespace. Similarly, if + * pid_ns had a zero reference count it also needs to take another + * reference on its owning user namespace. So both net_ns and pid_ns + * will each have their own reference on the owning user namespace. + * + * If the owning user namespace user_ns1 had a zero reference count then + * it also needs to take another reference on its owning user namespace + * and so on. + */ +void __ns_ref_active_get(struct ns_common *ns) +{ + int prev; + + /* Initial namespaces are always active. */ + if (is_ns_init_id(ns)) + return; + + /* If we didn't resurrect the namespace we're done. */ + prev = atomic_fetch_add(1, &ns->__ns_ref_active); + VFS_WARN_ON_ONCE(prev < 0); + if (likely(prev)) + return; + + /* + * We did resurrect it. Walk the ownership hierarchy upwards + * until we found an owning user namespace that is active. + */ + for (;;) { + ns = ns_owner(ns); + if (!ns) + return; + + VFS_WARN_ON_ONCE(is_ns_init_id(ns)); + prev = atomic_fetch_add(1, &ns->__ns_ref_active); + VFS_WARN_ON_ONCE(prev < 0); + if (likely(prev)) + return; + } +} diff --git a/kernel/nsproxy.c b/kernel/nsproxy.c index 19aa64ab08c8..259c4b4f1eeb 100644 --- a/kernel/nsproxy.c +++ b/kernel/nsproxy.c @@ -26,6 +26,7 @@ #include <linux/syscalls.h> #include <linux/cgroup.h> #include <linux/perf_event.h> +#include <linux/nstree.h> static struct kmem_cache *nsproxy_cachep; @@ -59,6 +60,25 @@ static inline struct nsproxy *create_nsproxy(void) return nsproxy; } +static inline void nsproxy_free(struct nsproxy *ns) +{ + put_mnt_ns(ns->mnt_ns); + put_uts_ns(ns->uts_ns); + put_ipc_ns(ns->ipc_ns); + put_pid_ns(ns->pid_ns_for_children); + put_time_ns(ns->time_ns); + put_time_ns(ns->time_ns_for_children); + put_cgroup_ns(ns->cgroup_ns); + put_net(ns->net_ns); + kmem_cache_free(nsproxy_cachep, ns); +} + +void deactivate_nsproxy(struct nsproxy *ns) +{ + nsproxy_ns_active_put(ns); + nsproxy_free(ns); +} + /* * Create new nsproxy and all of its the associated namespaces. * Return the newly created nsproxy. Do not attach this to the task, @@ -179,23 +199,11 @@ int copy_namespaces(u64 flags, struct task_struct *tsk) if ((flags & CLONE_VM) == 0) timens_on_fork(new_ns, tsk); + nsproxy_ns_active_get(new_ns); tsk->nsproxy = new_ns; return 0; } -void free_nsproxy(struct nsproxy *ns) -{ - put_mnt_ns(ns->mnt_ns); - put_uts_ns(ns->uts_ns); - put_ipc_ns(ns->ipc_ns); - put_pid_ns(ns->pid_ns_for_children); - put_time_ns(ns->time_ns); - put_time_ns(ns->time_ns_for_children); - put_cgroup_ns(ns->cgroup_ns); - put_net(ns->net_ns); - kmem_cache_free(nsproxy_cachep, ns); -} - /* * Called from unshare. Unshare all the namespaces part of nsproxy. * On success, returns the new nsproxy. @@ -232,6 +240,9 @@ void switch_task_namespaces(struct task_struct *p, struct nsproxy *new) might_sleep(); + if (new) + nsproxy_ns_active_get(new); + task_lock(p); ns = p->nsproxy; p->nsproxy = new; @@ -241,11 +252,27 @@ void switch_task_namespaces(struct task_struct *p, struct nsproxy *new) put_nsproxy(ns); } -void exit_task_namespaces(struct task_struct *p) +void exit_nsproxy_namespaces(struct task_struct *p) { switch_task_namespaces(p, NULL); } +void switch_cred_namespaces(const struct cred *old, const struct cred *new) +{ + ns_ref_active_get(new->user_ns); + ns_ref_active_put(old->user_ns); +} + +void get_cred_namespaces(struct task_struct *tsk) +{ + ns_ref_active_get(tsk->real_cred->user_ns); +} + +void exit_cred_namespaces(struct task_struct *tsk) +{ + ns_ref_active_put(tsk->real_cred->user_ns); +} + int exec_task_namespaces(void) { struct task_struct *tsk = current; @@ -315,7 +342,7 @@ static void put_nsset(struct nsset *nsset) if (nsset->fs && (flags & CLONE_NEWNS) && (flags & ~CLONE_NEWNS)) free_fs_struct(nsset->fs); if (nsset->nsproxy) - free_nsproxy(nsset->nsproxy); + nsproxy_free(nsset->nsproxy); } static int prepare_nsset(unsigned flags, struct nsset *nsset) diff --git a/kernel/nstree.c b/kernel/nstree.c index b24a320a11a6..f36c59e6951d 100644 --- a/kernel/nstree.c +++ b/kernel/nstree.c @@ -1,140 +1,261 @@ // SPDX-License-Identifier: GPL-2.0-only +/* Copyright (c) 2025 Christian Brauner <brauner@kernel.org> */ #include <linux/nstree.h> #include <linux/proc_ns.h> +#include <linux/rculist.h> #include <linux/vfsdebug.h> +#include <linux/syscalls.h> +#include <linux/user_namespace.h> -/** - * struct ns_tree - Namespace tree - * @ns_tree: Rbtree of namespaces of a particular type - * @ns_list: Sequentially walkable list of all namespaces of this type - * @ns_tree_lock: Seqlock to protect the tree and list - * @type: type of namespaces in this tree - */ -struct ns_tree { - struct rb_root ns_tree; - struct list_head ns_list; - seqlock_t ns_tree_lock; - int type; +static __cacheline_aligned_in_smp DEFINE_SEQLOCK(ns_tree_lock); + +DEFINE_LOCK_GUARD_0(ns_tree_writer, + write_seqlock(&ns_tree_lock), + write_sequnlock(&ns_tree_lock)) + +DEFINE_LOCK_GUARD_0(ns_tree_locked_reader, + read_seqlock_excl(&ns_tree_lock), + read_sequnlock_excl(&ns_tree_lock)) + +static struct ns_tree_root ns_unified_root = { /* protected by ns_tree_lock */ + .ns_rb = RB_ROOT, + .ns_list_head = LIST_HEAD_INIT(ns_unified_root.ns_list_head), }; -struct ns_tree mnt_ns_tree = { - .ns_tree = RB_ROOT, - .ns_list = LIST_HEAD_INIT(mnt_ns_tree.ns_list), - .ns_tree_lock = __SEQLOCK_UNLOCKED(mnt_ns_tree.ns_tree_lock), - .type = CLONE_NEWNS, +struct ns_tree_root mnt_ns_tree = { + .ns_rb = RB_ROOT, + .ns_list_head = LIST_HEAD_INIT(mnt_ns_tree.ns_list_head), }; -struct ns_tree net_ns_tree = { - .ns_tree = RB_ROOT, - .ns_list = LIST_HEAD_INIT(net_ns_tree.ns_list), - .ns_tree_lock = __SEQLOCK_UNLOCKED(net_ns_tree.ns_tree_lock), - .type = CLONE_NEWNET, +struct ns_tree_root net_ns_tree = { + .ns_rb = RB_ROOT, + .ns_list_head = LIST_HEAD_INIT(net_ns_tree.ns_list_head), }; EXPORT_SYMBOL_GPL(net_ns_tree); -struct ns_tree uts_ns_tree = { - .ns_tree = RB_ROOT, - .ns_list = LIST_HEAD_INIT(uts_ns_tree.ns_list), - .ns_tree_lock = __SEQLOCK_UNLOCKED(uts_ns_tree.ns_tree_lock), - .type = CLONE_NEWUTS, +struct ns_tree_root uts_ns_tree = { + .ns_rb = RB_ROOT, + .ns_list_head = LIST_HEAD_INIT(uts_ns_tree.ns_list_head), }; -struct ns_tree user_ns_tree = { - .ns_tree = RB_ROOT, - .ns_list = LIST_HEAD_INIT(user_ns_tree.ns_list), - .ns_tree_lock = __SEQLOCK_UNLOCKED(user_ns_tree.ns_tree_lock), - .type = CLONE_NEWUSER, +struct ns_tree_root user_ns_tree = { + .ns_rb = RB_ROOT, + .ns_list_head = LIST_HEAD_INIT(user_ns_tree.ns_list_head), }; -struct ns_tree ipc_ns_tree = { - .ns_tree = RB_ROOT, - .ns_list = LIST_HEAD_INIT(ipc_ns_tree.ns_list), - .ns_tree_lock = __SEQLOCK_UNLOCKED(ipc_ns_tree.ns_tree_lock), - .type = CLONE_NEWIPC, +struct ns_tree_root ipc_ns_tree = { + .ns_rb = RB_ROOT, + .ns_list_head = LIST_HEAD_INIT(ipc_ns_tree.ns_list_head), }; -struct ns_tree pid_ns_tree = { - .ns_tree = RB_ROOT, - .ns_list = LIST_HEAD_INIT(pid_ns_tree.ns_list), - .ns_tree_lock = __SEQLOCK_UNLOCKED(pid_ns_tree.ns_tree_lock), - .type = CLONE_NEWPID, +struct ns_tree_root pid_ns_tree = { + .ns_rb = RB_ROOT, + .ns_list_head = LIST_HEAD_INIT(pid_ns_tree.ns_list_head), }; -struct ns_tree cgroup_ns_tree = { - .ns_tree = RB_ROOT, - .ns_list = LIST_HEAD_INIT(cgroup_ns_tree.ns_list), - .ns_tree_lock = __SEQLOCK_UNLOCKED(cgroup_ns_tree.ns_tree_lock), - .type = CLONE_NEWCGROUP, +struct ns_tree_root cgroup_ns_tree = { + .ns_rb = RB_ROOT, + .ns_list_head = LIST_HEAD_INIT(cgroup_ns_tree.ns_list_head), }; -struct ns_tree time_ns_tree = { - .ns_tree = RB_ROOT, - .ns_list = LIST_HEAD_INIT(time_ns_tree.ns_list), - .ns_tree_lock = __SEQLOCK_UNLOCKED(time_ns_tree.ns_tree_lock), - .type = CLONE_NEWTIME, +struct ns_tree_root time_ns_tree = { + .ns_rb = RB_ROOT, + .ns_list_head = LIST_HEAD_INIT(time_ns_tree.ns_list_head), }; -DEFINE_COOKIE(namespace_cookie); +/** + * ns_tree_node_init - Initialize a namespace tree node + * @node: The node to initialize + * + * Initializes both the rbtree node and list entry. + */ +void ns_tree_node_init(struct ns_tree_node *node) +{ + RB_CLEAR_NODE(&node->ns_node); + INIT_LIST_HEAD(&node->ns_list_entry); +} + +/** + * ns_tree_root_init - Initialize a namespace tree root + * @root: The root to initialize + * + * Initializes both the rbtree root and list head. + */ +void ns_tree_root_init(struct ns_tree_root *root) +{ + root->ns_rb = RB_ROOT; + INIT_LIST_HEAD(&root->ns_list_head); +} + +/** + * ns_tree_node_empty - Check if a namespace tree node is empty + * @node: The node to check + * + * Returns true if the node is not in any tree. + */ +bool ns_tree_node_empty(const struct ns_tree_node *node) +{ + return RB_EMPTY_NODE(&node->ns_node); +} + +/** + * ns_tree_node_add - Add a node to a namespace tree + * @node: The node to add + * @root: The tree root to add to + * @cmp: Comparison function for rbtree insertion + * + * Adds the node to both the rbtree and the list, maintaining sorted order. + * The list is maintained in the same order as the rbtree to enable efficient + * iteration. + * + * Returns: NULL if insertion succeeded, existing node if duplicate found + */ +struct rb_node *ns_tree_node_add(struct ns_tree_node *node, + struct ns_tree_root *root, + int (*cmp)(struct rb_node *, const struct rb_node *)) +{ + struct rb_node *ret, *prev; + + /* Add to rbtree */ + ret = rb_find_add_rcu(&node->ns_node, &root->ns_rb, cmp); + + /* Add to list in sorted order */ + prev = rb_prev(&node->ns_node); + if (!prev) { + /* No previous node, add at head */ + list_add_rcu(&node->ns_list_entry, &root->ns_list_head); + } else { + /* Add after previous node */ + struct ns_tree_node *prev_node; + prev_node = rb_entry(prev, struct ns_tree_node, ns_node); + list_add_rcu(&node->ns_list_entry, &prev_node->ns_list_entry); + } + + return ret; +} + +/** + * ns_tree_node_del - Remove a node from a namespace tree + * @node: The node to remove + * @root: The tree root to remove from + * + * Removes the node from both the rbtree and the list atomically. + */ +void ns_tree_node_del(struct ns_tree_node *node, struct ns_tree_root *root) +{ + rb_erase(&node->ns_node, &root->ns_rb); + RB_CLEAR_NODE(&node->ns_node); + list_bidir_del_rcu(&node->ns_list_entry); +} static inline struct ns_common *node_to_ns(const struct rb_node *node) { if (!node) return NULL; - return rb_entry(node, struct ns_common, ns_tree_node); + return rb_entry(node, struct ns_common, ns_tree_node.ns_node); } -static inline int ns_cmp(struct rb_node *a, const struct rb_node *b) +static inline struct ns_common *node_to_ns_unified(const struct rb_node *node) { - struct ns_common *ns_a = node_to_ns(a); - struct ns_common *ns_b = node_to_ns(b); - u64 ns_id_a = ns_a->ns_id; - u64 ns_id_b = ns_b->ns_id; + if (!node) + return NULL; + return rb_entry(node, struct ns_common, ns_unified_node.ns_node); +} - if (ns_id_a < ns_id_b) +static inline struct ns_common *node_to_ns_owner(const struct rb_node *node) +{ + if (!node) + return NULL; + return rb_entry(node, struct ns_common, ns_owner_node.ns_node); +} + +static int ns_id_cmp(u64 id_a, u64 id_b) +{ + if (id_a < id_b) return -1; - if (ns_id_a > ns_id_b) + if (id_a > id_b) return 1; return 0; } -void __ns_tree_add_raw(struct ns_common *ns, struct ns_tree *ns_tree) +static int ns_cmp(struct rb_node *a, const struct rb_node *b) +{ + return ns_id_cmp(node_to_ns(a)->ns_id, node_to_ns(b)->ns_id); +} + +static int ns_cmp_unified(struct rb_node *a, const struct rb_node *b) +{ + return ns_id_cmp(node_to_ns_unified(a)->ns_id, node_to_ns_unified(b)->ns_id); +} + +static int ns_cmp_owner(struct rb_node *a, const struct rb_node *b) { - struct rb_node *node, *prev; + return ns_id_cmp(node_to_ns_owner(a)->ns_id, node_to_ns_owner(b)->ns_id); +} + +void __ns_tree_add_raw(struct ns_common *ns, struct ns_tree_root *ns_tree) +{ + struct rb_node *node; + const struct proc_ns_operations *ops = ns->ops; VFS_WARN_ON_ONCE(!ns->ns_id); - write_seqlock(&ns_tree->ns_tree_lock); + guard(ns_tree_writer)(); - VFS_WARN_ON_ONCE(ns->ns_type != ns_tree->type); + /* Add to per-type tree and list */ + node = ns_tree_node_add(&ns->ns_tree_node, ns_tree, ns_cmp); - node = rb_find_add_rcu(&ns->ns_tree_node, &ns_tree->ns_tree, ns_cmp); - /* - * If there's no previous entry simply add it after the - * head and if there is add it after the previous entry. - */ - prev = rb_prev(&ns->ns_tree_node); - if (!prev) - list_add_rcu(&ns->ns_list_node, &ns_tree->ns_list); - else - list_add_rcu(&ns->ns_list_node, &node_to_ns(prev)->ns_list_node); + /* Add to unified tree and list */ + ns_tree_node_add(&ns->ns_unified_node, &ns_unified_root, ns_cmp_unified); + + /* Add to owner's tree if applicable */ + if (ops) { + struct user_namespace *user_ns; - write_sequnlock(&ns_tree->ns_tree_lock); + VFS_WARN_ON_ONCE(!ops->owner); + user_ns = ops->owner(ns); + if (user_ns) { + struct ns_common *owner = &user_ns->ns; + VFS_WARN_ON_ONCE(owner->ns_type != CLONE_NEWUSER); + + /* Insert into owner's tree and list */ + ns_tree_node_add(&ns->ns_owner_node, &owner->ns_owner_root, ns_cmp_owner); + } else { + /* Only the initial user namespace doesn't have an owner. */ + VFS_WARN_ON_ONCE(ns != to_ns_common(&init_user_ns)); + } + } VFS_WARN_ON_ONCE(node); } -void __ns_tree_remove(struct ns_common *ns, struct ns_tree *ns_tree) +void __ns_tree_remove(struct ns_common *ns, struct ns_tree_root *ns_tree) { - VFS_WARN_ON_ONCE(RB_EMPTY_NODE(&ns->ns_tree_node)); - VFS_WARN_ON_ONCE(list_empty(&ns->ns_list_node)); - VFS_WARN_ON_ONCE(ns->ns_type != ns_tree->type); + const struct proc_ns_operations *ops = ns->ops; + struct user_namespace *user_ns; + + VFS_WARN_ON_ONCE(ns_tree_node_empty(&ns->ns_tree_node)); + VFS_WARN_ON_ONCE(list_empty(&ns->ns_tree_node.ns_list_entry)); + + write_seqlock(&ns_tree_lock); + + /* Remove from per-type tree and list */ + ns_tree_node_del(&ns->ns_tree_node, ns_tree); + + /* Remove from unified tree and list */ + ns_tree_node_del(&ns->ns_unified_node, &ns_unified_root); - write_seqlock(&ns_tree->ns_tree_lock); - rb_erase(&ns->ns_tree_node, &ns_tree->ns_tree); - list_bidir_del_rcu(&ns->ns_list_node); - RB_CLEAR_NODE(&ns->ns_tree_node); - write_sequnlock(&ns_tree->ns_tree_lock); + /* Remove from owner's tree if applicable */ + if (ops) { + user_ns = ops->owner(ns); + if (user_ns) { + struct ns_common *owner = &user_ns->ns; + ns_tree_node_del(&ns->ns_owner_node, &owner->ns_owner_root); + } + } + + write_sequnlock(&ns_tree_lock); } EXPORT_SYMBOL_GPL(__ns_tree_remove); @@ -150,8 +271,19 @@ static int ns_find(const void *key, const struct rb_node *node) return 0; } +static int ns_find_unified(const void *key, const struct rb_node *node) +{ + const u64 ns_id = *(u64 *)key; + const struct ns_common *ns = node_to_ns_unified(node); -static struct ns_tree *ns_tree_from_type(int ns_type) + if (ns_id < ns->ns_id) + return -1; + if (ns_id > ns->ns_id) + return 1; + return 0; +} + +static struct ns_tree_root *ns_tree_from_type(int ns_type) { switch (ns_type) { case CLONE_NEWCGROUP: @@ -175,73 +307,507 @@ static struct ns_tree *ns_tree_from_type(int ns_type) return NULL; } -struct ns_common *ns_tree_lookup_rcu(u64 ns_id, int ns_type) +static struct ns_common *__ns_unified_tree_lookup_rcu(u64 ns_id) { - struct ns_tree *ns_tree; struct rb_node *node; unsigned int seq; - RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "suspicious ns_tree_lookup_rcu() usage"); + do { + seq = read_seqbegin(&ns_tree_lock); + node = rb_find_rcu(&ns_id, &ns_unified_root.ns_rb, ns_find_unified); + if (node) + break; + } while (read_seqretry(&ns_tree_lock, seq)); + + return node_to_ns_unified(node); +} + +static struct ns_common *__ns_tree_lookup_rcu(u64 ns_id, int ns_type) +{ + struct ns_tree_root *ns_tree; + struct rb_node *node; + unsigned int seq; ns_tree = ns_tree_from_type(ns_type); if (!ns_tree) return NULL; do { - seq = read_seqbegin(&ns_tree->ns_tree_lock); - node = rb_find_rcu(&ns_id, &ns_tree->ns_tree, ns_find); + seq = read_seqbegin(&ns_tree_lock); + node = rb_find_rcu(&ns_id, &ns_tree->ns_rb, ns_find); if (node) break; - } while (read_seqretry(&ns_tree->ns_tree_lock, seq)); + } while (read_seqretry(&ns_tree_lock, seq)); - if (!node) - return NULL; + return node_to_ns(node); +} - VFS_WARN_ON_ONCE(node_to_ns(node)->ns_type != ns_type); +struct ns_common *ns_tree_lookup_rcu(u64 ns_id, int ns_type) +{ + RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "suspicious ns_tree_lookup_rcu() usage"); - return node_to_ns(node); + if (ns_type) + return __ns_tree_lookup_rcu(ns_id, ns_type); + + return __ns_unified_tree_lookup_rcu(ns_id); } /** - * ns_tree_adjoined_rcu - find the next/previous namespace in the same + * __ns_tree_adjoined_rcu - find the next/previous namespace in the same * tree * @ns: namespace to start from + * @ns_tree: namespace tree to search in * @previous: if true find the previous namespace, otherwise the next * * Find the next or previous namespace in the same tree as @ns. If * there is no next/previous namespace, -ENOENT is returned. */ struct ns_common *__ns_tree_adjoined_rcu(struct ns_common *ns, - struct ns_tree *ns_tree, bool previous) + struct ns_tree_root *ns_tree, bool previous) { struct list_head *list; RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "suspicious ns_tree_adjoined_rcu() usage"); if (previous) - list = rcu_dereference(list_bidir_prev_rcu(&ns->ns_list_node)); + list = rcu_dereference(list_bidir_prev_rcu(&ns->ns_tree_node.ns_list_entry)); else - list = rcu_dereference(list_next_rcu(&ns->ns_list_node)); - if (list_is_head(list, &ns_tree->ns_list)) + list = rcu_dereference(list_next_rcu(&ns->ns_tree_node.ns_list_entry)); + if (list_is_head(list, &ns_tree->ns_list_head)) return ERR_PTR(-ENOENT); - VFS_WARN_ON_ONCE(list_entry_rcu(list, struct ns_common, ns_list_node)->ns_type != ns_tree->type); - - return list_entry_rcu(list, struct ns_common, ns_list_node); + return list_entry_rcu(list, struct ns_common, ns_tree_node.ns_list_entry); } /** - * ns_tree_gen_id - generate a new namespace id + * __ns_tree_gen_id - generate a new namespace id * @ns: namespace to generate id for + * @id: if non-zero, this is the initial namespace and this is a fixed id * * Generates a new namespace id and assigns it to the namespace. All * namespaces types share the same id space and thus can be compared * directly. IOW, when two ids of two namespace are equal, they are * identical. */ -u64 ns_tree_gen_id(struct ns_common *ns) +u64 __ns_tree_gen_id(struct ns_common *ns, u64 id) { - guard(preempt)(); - ns->ns_id = gen_cookie_next(&namespace_cookie); + static atomic64_t namespace_cookie = ATOMIC64_INIT(NS_LAST_INIT_ID + 1); + + if (id) + ns->ns_id = id; + else + ns->ns_id = atomic64_inc_return(&namespace_cookie); return ns->ns_id; } + +struct klistns { + u64 __user *uns_ids; + u32 nr_ns_ids; + u64 last_ns_id; + u64 user_ns_id; + u32 ns_type; + struct user_namespace *user_ns; + bool userns_capable; + struct ns_common *first_ns; +}; + +static void __free_klistns_free(const struct klistns *kls) +{ + if (kls->user_ns_id != LISTNS_CURRENT_USER) + put_user_ns(kls->user_ns); + if (kls->first_ns && kls->first_ns->ops) + kls->first_ns->ops->put(kls->first_ns); +} + +#define NS_ALL (PID_NS | USER_NS | MNT_NS | UTS_NS | IPC_NS | NET_NS | CGROUP_NS | TIME_NS) + +static int copy_ns_id_req(const struct ns_id_req __user *req, + struct ns_id_req *kreq) +{ + int ret; + size_t usize; + + BUILD_BUG_ON(sizeof(struct ns_id_req) != NS_ID_REQ_SIZE_VER0); + + ret = get_user(usize, &req->size); + if (ret) + return -EFAULT; + if (unlikely(usize > PAGE_SIZE)) + return -E2BIG; + if (unlikely(usize < NS_ID_REQ_SIZE_VER0)) + return -EINVAL; + memset(kreq, 0, sizeof(*kreq)); + ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize); + if (ret) + return ret; + if (kreq->spare != 0) + return -EINVAL; + if (kreq->ns_type & ~NS_ALL) + return -EOPNOTSUPP; + return 0; +} + +static inline int prepare_klistns(struct klistns *kls, struct ns_id_req *kreq, + u64 __user *ns_ids, size_t nr_ns_ids) +{ + kls->last_ns_id = kreq->ns_id; + kls->user_ns_id = kreq->user_ns_id; + kls->nr_ns_ids = nr_ns_ids; + kls->ns_type = kreq->ns_type; + kls->uns_ids = ns_ids; + return 0; +} + +/* + * Lookup a namespace owned by owner with id >= ns_id. + * Returns the namespace with the smallest id that is >= ns_id. + */ +static struct ns_common *lookup_ns_owner_at(u64 ns_id, struct ns_common *owner) +{ + struct ns_common *ret = NULL; + struct rb_node *node; + + VFS_WARN_ON_ONCE(owner->ns_type != CLONE_NEWUSER); + + guard(ns_tree_locked_reader)(); + + node = owner->ns_owner_root.ns_rb.rb_node; + while (node) { + struct ns_common *ns; + + ns = node_to_ns_owner(node); + if (ns_id <= ns->ns_id) { + ret = ns; + if (ns_id == ns->ns_id) + break; + node = node->rb_left; + } else { + node = node->rb_right; + } + } + + if (ret) + ret = ns_get_unless_inactive(ret); + return ret; +} + +static struct ns_common *lookup_ns_id(u64 mnt_ns_id, int ns_type) +{ + struct ns_common *ns; + + guard(rcu)(); + ns = ns_tree_lookup_rcu(mnt_ns_id, ns_type); + if (!ns) + return NULL; + + if (!ns_get_unless_inactive(ns)) + return NULL; + + return ns; +} + +static inline bool __must_check ns_requested(const struct klistns *kls, + const struct ns_common *ns) +{ + return !kls->ns_type || (kls->ns_type & ns->ns_type); +} + +static inline bool __must_check may_list_ns(const struct klistns *kls, + struct ns_common *ns) +{ + if (kls->user_ns) { + if (kls->userns_capable) + return true; + } else { + struct ns_common *owner; + struct user_namespace *user_ns; + + owner = ns_owner(ns); + if (owner) + user_ns = to_user_ns(owner); + else + user_ns = &init_user_ns; + if (ns_capable_noaudit(user_ns, CAP_SYS_ADMIN)) + return true; + } + + if (is_current_namespace(ns)) + return true; + + if (ns->ns_type != CLONE_NEWUSER) + return false; + + if (ns_capable_noaudit(to_user_ns(ns), CAP_SYS_ADMIN)) + return true; + + return false; +} + +static inline void ns_put(struct ns_common *ns) +{ + if (ns && ns->ops) + ns->ops->put(ns); +} + +DEFINE_FREE(ns_put, struct ns_common *, if (!IS_ERR_OR_NULL(_T)) ns_put(_T)) + +static inline struct ns_common *__must_check legitimize_ns(const struct klistns *kls, + struct ns_common *candidate) +{ + struct ns_common *ns __free(ns_put) = NULL; + + if (!ns_requested(kls, candidate)) + return NULL; + + ns = ns_get_unless_inactive(candidate); + if (!ns) + return NULL; + + if (!may_list_ns(kls, ns)) + return NULL; + + return no_free_ptr(ns); +} + +static ssize_t do_listns_userns(struct klistns *kls) +{ + u64 __user *ns_ids = kls->uns_ids; + size_t nr_ns_ids = kls->nr_ns_ids; + struct ns_common *ns = NULL, *first_ns = NULL, *prev = NULL; + const struct list_head *head; + ssize_t ret; + + VFS_WARN_ON_ONCE(!kls->user_ns_id); + + if (kls->user_ns_id == LISTNS_CURRENT_USER) + ns = to_ns_common(current_user_ns()); + else if (kls->user_ns_id) + ns = lookup_ns_id(kls->user_ns_id, CLONE_NEWUSER); + if (!ns) + return -EINVAL; + kls->user_ns = to_user_ns(ns); + + /* + * Use the rbtree to find the first namespace we care about and + * then use it's list entry to iterate from there. + */ + if (kls->last_ns_id) { + kls->first_ns = lookup_ns_owner_at(kls->last_ns_id + 1, ns); + if (!kls->first_ns) + return -ENOENT; + first_ns = kls->first_ns; + } + + ret = 0; + head = &to_ns_common(kls->user_ns)->ns_owner_root.ns_list_head; + kls->userns_capable = ns_capable_noaudit(kls->user_ns, CAP_SYS_ADMIN); + + rcu_read_lock(); + + if (!first_ns) + first_ns = list_entry_rcu(head->next, typeof(*first_ns), ns_owner_node.ns_list_entry); + + ns = first_ns; + list_for_each_entry_from_rcu(ns, head, ns_owner_node.ns_list_entry) { + struct ns_common *valid; + + if (!nr_ns_ids) + break; + + valid = legitimize_ns(kls, ns); + if (!valid) + continue; + + rcu_read_unlock(); + + ns_put(prev); + prev = valid; + + if (put_user(valid->ns_id, ns_ids + ret)) { + ns_put(prev); + return -EFAULT; + } + + nr_ns_ids--; + ret++; + + rcu_read_lock(); + } + + rcu_read_unlock(); + ns_put(prev); + return ret; +} + +/* + * Lookup a namespace with id >= ns_id in either the unified tree or a type-specific tree. + * Returns the namespace with the smallest id that is >= ns_id. + */ +static struct ns_common *lookup_ns_id_at(u64 ns_id, int ns_type) +{ + struct ns_common *ret = NULL; + struct ns_tree_root *ns_tree = NULL; + struct rb_node *node; + + if (ns_type) { + ns_tree = ns_tree_from_type(ns_type); + if (!ns_tree) + return NULL; + } + + guard(ns_tree_locked_reader)(); + + if (ns_tree) + node = ns_tree->ns_rb.rb_node; + else + node = ns_unified_root.ns_rb.rb_node; + + while (node) { + struct ns_common *ns; + + if (ns_type) + ns = node_to_ns(node); + else + ns = node_to_ns_unified(node); + + if (ns_id <= ns->ns_id) { + if (ns_type) + ret = node_to_ns(node); + else + ret = node_to_ns_unified(node); + if (ns_id == ns->ns_id) + break; + node = node->rb_left; + } else { + node = node->rb_right; + } + } + + if (ret) + ret = ns_get_unless_inactive(ret); + return ret; +} + +static inline struct ns_common *first_ns_common(const struct list_head *head, + struct ns_tree_root *ns_tree) +{ + if (ns_tree) + return list_entry_rcu(head->next, struct ns_common, ns_tree_node.ns_list_entry); + return list_entry_rcu(head->next, struct ns_common, ns_unified_node.ns_list_entry); +} + +static inline struct ns_common *next_ns_common(struct ns_common *ns, + struct ns_tree_root *ns_tree) +{ + if (ns_tree) + return list_entry_rcu(ns->ns_tree_node.ns_list_entry.next, struct ns_common, ns_tree_node.ns_list_entry); + return list_entry_rcu(ns->ns_unified_node.ns_list_entry.next, struct ns_common, ns_unified_node.ns_list_entry); +} + +static inline bool ns_common_is_head(struct ns_common *ns, + const struct list_head *head, + struct ns_tree_root *ns_tree) +{ + if (ns_tree) + return &ns->ns_tree_node.ns_list_entry == head; + return &ns->ns_unified_node.ns_list_entry == head; +} + +static ssize_t do_listns(struct klistns *kls) +{ + u64 __user *ns_ids = kls->uns_ids; + size_t nr_ns_ids = kls->nr_ns_ids; + struct ns_common *ns, *first_ns = NULL, *prev = NULL; + struct ns_tree_root *ns_tree = NULL; + const struct list_head *head; + u32 ns_type; + ssize_t ret; + + if (hweight32(kls->ns_type) == 1) + ns_type = kls->ns_type; + else + ns_type = 0; + + if (ns_type) { + ns_tree = ns_tree_from_type(ns_type); + if (!ns_tree) + return -EINVAL; + } + + if (kls->last_ns_id) { + kls->first_ns = lookup_ns_id_at(kls->last_ns_id + 1, ns_type); + if (!kls->first_ns) + return -ENOENT; + first_ns = kls->first_ns; + } + + ret = 0; + if (ns_tree) + head = &ns_tree->ns_list_head; + else + head = &ns_unified_root.ns_list_head; + + rcu_read_lock(); + + if (!first_ns) + first_ns = first_ns_common(head, ns_tree); + + for (ns = first_ns; !ns_common_is_head(ns, head, ns_tree) && nr_ns_ids; + ns = next_ns_common(ns, ns_tree)) { + struct ns_common *valid; + + valid = legitimize_ns(kls, ns); + if (!valid) + continue; + + rcu_read_unlock(); + + ns_put(prev); + prev = valid; + + if (put_user(valid->ns_id, ns_ids + ret)) { + ns_put(prev); + return -EFAULT; + } + + nr_ns_ids--; + ret++; + + rcu_read_lock(); + } + + rcu_read_unlock(); + ns_put(prev); + return ret; +} + +SYSCALL_DEFINE4(listns, const struct ns_id_req __user *, req, + u64 __user *, ns_ids, size_t, nr_ns_ids, unsigned int, flags) +{ + struct klistns klns __free(klistns_free) = {}; + const size_t maxcount = 1000000; + struct ns_id_req kreq; + ssize_t ret; + + if (flags) + return -EINVAL; + + if (unlikely(nr_ns_ids > maxcount)) + return -EOVERFLOW; + + if (!access_ok(ns_ids, nr_ns_ids * sizeof(*ns_ids))) + return -EFAULT; + + ret = copy_ns_id_req(req, &kreq); + if (ret) + return ret; + + ret = prepare_klistns(&klns, &kreq, ns_ids, nr_ns_ids); + if (ret) + return ret; + + if (kreq.user_ns_id) + return do_listns_userns(&klns); + + return do_listns(&klns); +} diff --git a/kernel/pid.c b/kernel/pid.c index 4fffec767a63..a31771bc89c1 100644 --- a/kernel/pid.c +++ b/kernel/pid.c @@ -71,21 +71,16 @@ static int pid_max_max = PID_MAX_LIMIT; * the scheme scales to up to 4 million PIDs, runtime. */ struct pid_namespace init_pid_ns = { - .ns.__ns_ref = REFCOUNT_INIT(2), + .ns = NS_COMMON_INIT(init_pid_ns), .idr = IDR_INIT(init_pid_ns.idr), .pid_allocated = PIDNS_ADDING, .level = 0, .child_reaper = &init_task, .user_ns = &init_user_ns, - .ns.inum = ns_init_inum(&init_pid_ns), -#ifdef CONFIG_PID_NS - .ns.ops = &pidns_operations, -#endif .pid_max = PID_MAX_DEFAULT, #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE) .memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC, #endif - .ns.ns_type = ns_common_type(&init_pid_ns), }; EXPORT_SYMBOL_GPL(init_pid_ns); @@ -117,9 +112,13 @@ static void delayed_put_pid(struct rcu_head *rhp) void free_pid(struct pid *pid) { int i; + struct pid_namespace *active_ns; lockdep_assert_not_held(&tasklist_lock); + active_ns = pid->numbers[pid->level].ns; + ns_ref_active_put(active_ns); + spin_lock(&pidmap_lock); for (i = 0; i <= pid->level; i++) { struct upid *upid = pid->numbers + i; @@ -283,6 +282,7 @@ struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, } spin_unlock(&pidmap_lock); idr_preload_end(); + ns_ref_active_get(ns); return pid; diff --git a/kernel/pid_namespace.c b/kernel/pid_namespace.c index 650be58d8d18..e48f5de41361 100644 --- a/kernel/pid_namespace.c +++ b/kernel/pid_namespace.c @@ -184,7 +184,7 @@ struct pid_namespace *copy_pid_ns(u64 flags, void put_pid_ns(struct pid_namespace *ns) { - if (ns && ns != &init_pid_ns && ns_ref_put(ns)) + if (ns && ns_ref_put(ns)) schedule_work(&ns->work); } EXPORT_SYMBOL_GPL(put_pid_ns); diff --git a/kernel/time/namespace.c b/kernel/time/namespace.c index 5b6997f4dc3d..e76be24b132c 100644 --- a/kernel/time/namespace.c +++ b/kernel/time/namespace.c @@ -478,11 +478,8 @@ const struct proc_ns_operations timens_for_children_operations = { }; struct time_namespace init_time_ns = { - .ns.ns_type = ns_common_type(&init_time_ns), - .ns.__ns_ref = REFCOUNT_INIT(3), + .ns = NS_COMMON_INIT(init_time_ns), .user_ns = &init_user_ns, - .ns.inum = ns_init_inum(&init_time_ns), - .ns.ops = &timens_operations, .frozen_offsets = true, }; diff --git a/kernel/user.c b/kernel/user.c index 0163665914c9..7aef4e679a6a 100644 --- a/kernel/user.c +++ b/kernel/user.c @@ -35,6 +35,7 @@ EXPORT_SYMBOL_GPL(init_binfmt_misc); * and 1 for... ? */ struct user_namespace init_user_ns = { + .ns = NS_COMMON_INIT(init_user_ns), .uid_map = { { .extent[0] = { @@ -65,14 +66,8 @@ struct user_namespace init_user_ns = { .nr_extents = 1, }, }, - .ns.ns_type = ns_common_type(&init_user_ns), - .ns.__ns_ref = REFCOUNT_INIT(3), .owner = GLOBAL_ROOT_UID, .group = GLOBAL_ROOT_GID, - .ns.inum = ns_init_inum(&init_user_ns), -#ifdef CONFIG_USER_NS - .ns.ops = &userns_operations, -#endif .flags = USERNS_INIT_FLAGS, #ifdef CONFIG_KEYS .keyring_name_list = LIST_HEAD_INIT(init_user_ns.keyring_name_list), |
