diff options
Diffstat (limited to 'lib/crypto/x86')
| -rw-r--r-- | lib/crypto/x86/blake2s-core.S | 275 | ||||
| -rw-r--r-- | lib/crypto/x86/blake2s.h | 22 | ||||
| -rw-r--r-- | lib/crypto/x86/polyval-pclmul-avx.S | 319 | ||||
| -rw-r--r-- | lib/crypto/x86/polyval.h | 83 |
4 files changed, 569 insertions, 130 deletions
diff --git a/lib/crypto/x86/blake2s-core.S b/lib/crypto/x86/blake2s-core.S index ef8e9f427aab..7b1d98ca7482 100644 --- a/lib/crypto/x86/blake2s-core.S +++ b/lib/crypto/x86/blake2s-core.S @@ -6,19 +6,25 @@ #include <linux/linkage.h> -.section .rodata.cst32.BLAKE2S_IV, "aM", @progbits, 32 +.section .rodata.cst32.iv, "aM", @progbits, 32 .align 32 -IV: .octa 0xA54FF53A3C6EF372BB67AE856A09E667 +.Liv: + .octa 0xA54FF53A3C6EF372BB67AE856A09E667 .octa 0x5BE0CD191F83D9AB9B05688C510E527F -.section .rodata.cst16.ROT16, "aM", @progbits, 16 + +.section .rodata.cst16.ror16, "aM", @progbits, 16 .align 16 -ROT16: .octa 0x0D0C0F0E09080B0A0504070601000302 -.section .rodata.cst16.ROR328, "aM", @progbits, 16 +.Lror16: + .octa 0x0D0C0F0E09080B0A0504070601000302 + +.section .rodata.cst16.ror8, "aM", @progbits, 16 .align 16 -ROR328: .octa 0x0C0F0E0D080B0A090407060500030201 -.section .rodata.cst64.BLAKE2S_SIGMA, "aM", @progbits, 160 +.Lror8: + .octa 0x0C0F0E0D080B0A090407060500030201 + +.section .rodata.cst64.sigma, "aM", @progbits, 160 .align 64 -SIGMA: +.Lsigma: .byte 0, 2, 4, 6, 1, 3, 5, 7, 14, 8, 10, 12, 15, 9, 11, 13 .byte 14, 4, 9, 13, 10, 8, 15, 6, 5, 1, 0, 11, 3, 12, 2, 7 .byte 11, 12, 5, 15, 8, 0, 2, 13, 9, 10, 3, 7, 4, 14, 6, 1 @@ -29,9 +35,10 @@ SIGMA: .byte 13, 7, 12, 3, 11, 14, 1, 9, 2, 5, 15, 8, 10, 0, 4, 6 .byte 6, 14, 11, 0, 15, 9, 3, 8, 10, 12, 13, 1, 5, 2, 7, 4 .byte 10, 8, 7, 1, 2, 4, 6, 5, 13, 15, 9, 3, 0, 11, 14, 12 -.section .rodata.cst64.BLAKE2S_SIGMA2, "aM", @progbits, 160 + +.section .rodata.cst64.sigma2, "aM", @progbits, 160 .align 64 -SIGMA2: +.Lsigma2: .byte 0, 2, 4, 6, 1, 3, 5, 7, 14, 8, 10, 12, 15, 9, 11, 13 .byte 8, 2, 13, 15, 10, 9, 12, 3, 6, 4, 0, 14, 5, 11, 1, 7 .byte 11, 13, 8, 6, 5, 10, 14, 3, 2, 4, 12, 15, 1, 0, 7, 9 @@ -43,36 +50,52 @@ SIGMA2: .byte 15, 5, 4, 13, 10, 7, 3, 11, 12, 2, 0, 6, 9, 8, 1, 14 .byte 8, 7, 14, 11, 13, 15, 0, 12, 10, 4, 5, 6, 3, 2, 1, 9 +#define CTX %rdi +#define DATA %rsi +#define NBLOCKS %rdx +#define INC %ecx + .text +// +// void blake2s_compress_ssse3(struct blake2s_ctx *ctx, +// const u8 *data, size_t nblocks, u32 inc); +// +// Only the first three fields of struct blake2s_ctx are used: +// u32 h[8]; (inout) +// u32 t[2]; (inout) +// u32 f[2]; (in) +// SYM_FUNC_START(blake2s_compress_ssse3) - testq %rdx,%rdx - je .Lendofloop - movdqu (%rdi),%xmm0 - movdqu 0x10(%rdi),%xmm1 - movdqa ROT16(%rip),%xmm12 - movdqa ROR328(%rip),%xmm13 - movdqu 0x20(%rdi),%xmm14 - movq %rcx,%xmm15 - leaq SIGMA+0xa0(%rip),%r8 - jmp .Lbeginofloop + movdqu (CTX),%xmm0 // Load h[0..3] + movdqu 16(CTX),%xmm1 // Load h[4..7] + movdqa .Lror16(%rip),%xmm12 + movdqa .Lror8(%rip),%xmm13 + movdqu 32(CTX),%xmm14 // Load t and f + movd INC,%xmm15 // Load inc + leaq .Lsigma+160(%rip),%r8 + jmp .Lssse3_mainloop + .align 32 -.Lbeginofloop: - movdqa %xmm0,%xmm10 - movdqa %xmm1,%xmm11 - paddq %xmm15,%xmm14 - movdqa IV(%rip),%xmm2 +.Lssse3_mainloop: + // Main loop: each iteration processes one 64-byte block. + movdqa %xmm0,%xmm10 // Save h[0..3] and let v[0..3] = h[0..3] + movdqa %xmm1,%xmm11 // Save h[4..7] and let v[4..7] = h[4..7] + paddq %xmm15,%xmm14 // t += inc (64-bit addition) + movdqa .Liv(%rip),%xmm2 // v[8..11] = iv[0..3] movdqa %xmm14,%xmm3 - pxor IV+0x10(%rip),%xmm3 - leaq SIGMA(%rip),%rcx -.Lroundloop: + pxor .Liv+16(%rip),%xmm3 // v[12..15] = iv[4..7] ^ [t, f] + leaq .Lsigma(%rip),%rcx + +.Lssse3_roundloop: + // Round loop: each iteration does 1 round (of 10 rounds total). movzbl (%rcx),%eax - movd (%rsi,%rax,4),%xmm4 - movzbl 0x1(%rcx),%eax - movd (%rsi,%rax,4),%xmm5 - movzbl 0x2(%rcx),%eax - movd (%rsi,%rax,4),%xmm6 - movzbl 0x3(%rcx),%eax - movd (%rsi,%rax,4),%xmm7 + movd (DATA,%rax,4),%xmm4 + movzbl 1(%rcx),%eax + movd (DATA,%rax,4),%xmm5 + movzbl 2(%rcx),%eax + movd (DATA,%rax,4),%xmm6 + movzbl 3(%rcx),%eax + movd (DATA,%rax,4),%xmm7 punpckldq %xmm5,%xmm4 punpckldq %xmm7,%xmm6 punpcklqdq %xmm6,%xmm4 @@ -83,17 +106,17 @@ SYM_FUNC_START(blake2s_compress_ssse3) paddd %xmm3,%xmm2 pxor %xmm2,%xmm1 movdqa %xmm1,%xmm8 - psrld $0xc,%xmm1 - pslld $0x14,%xmm8 + psrld $12,%xmm1 + pslld $20,%xmm8 por %xmm8,%xmm1 - movzbl 0x4(%rcx),%eax - movd (%rsi,%rax,4),%xmm5 - movzbl 0x5(%rcx),%eax - movd (%rsi,%rax,4),%xmm6 - movzbl 0x6(%rcx),%eax - movd (%rsi,%rax,4),%xmm7 - movzbl 0x7(%rcx),%eax - movd (%rsi,%rax,4),%xmm4 + movzbl 4(%rcx),%eax + movd (DATA,%rax,4),%xmm5 + movzbl 5(%rcx),%eax + movd (DATA,%rax,4),%xmm6 + movzbl 6(%rcx),%eax + movd (DATA,%rax,4),%xmm7 + movzbl 7(%rcx),%eax + movd (DATA,%rax,4),%xmm4 punpckldq %xmm6,%xmm5 punpckldq %xmm4,%xmm7 punpcklqdq %xmm7,%xmm5 @@ -104,20 +127,20 @@ SYM_FUNC_START(blake2s_compress_ssse3) paddd %xmm3,%xmm2 pxor %xmm2,%xmm1 movdqa %xmm1,%xmm8 - psrld $0x7,%xmm1 - pslld $0x19,%xmm8 + psrld $7,%xmm1 + pslld $25,%xmm8 por %xmm8,%xmm1 pshufd $0x93,%xmm0,%xmm0 pshufd $0x4e,%xmm3,%xmm3 pshufd $0x39,%xmm2,%xmm2 - movzbl 0x8(%rcx),%eax - movd (%rsi,%rax,4),%xmm6 - movzbl 0x9(%rcx),%eax - movd (%rsi,%rax,4),%xmm7 - movzbl 0xa(%rcx),%eax - movd (%rsi,%rax,4),%xmm4 - movzbl 0xb(%rcx),%eax - movd (%rsi,%rax,4),%xmm5 + movzbl 8(%rcx),%eax + movd (DATA,%rax,4),%xmm6 + movzbl 9(%rcx),%eax + movd (DATA,%rax,4),%xmm7 + movzbl 10(%rcx),%eax + movd (DATA,%rax,4),%xmm4 + movzbl 11(%rcx),%eax + movd (DATA,%rax,4),%xmm5 punpckldq %xmm7,%xmm6 punpckldq %xmm5,%xmm4 punpcklqdq %xmm4,%xmm6 @@ -128,17 +151,17 @@ SYM_FUNC_START(blake2s_compress_ssse3) paddd %xmm3,%xmm2 pxor %xmm2,%xmm1 movdqa %xmm1,%xmm8 - psrld $0xc,%xmm1 - pslld $0x14,%xmm8 + psrld $12,%xmm1 + pslld $20,%xmm8 por %xmm8,%xmm1 - movzbl 0xc(%rcx),%eax - movd (%rsi,%rax,4),%xmm7 - movzbl 0xd(%rcx),%eax - movd (%rsi,%rax,4),%xmm4 - movzbl 0xe(%rcx),%eax - movd (%rsi,%rax,4),%xmm5 - movzbl 0xf(%rcx),%eax - movd (%rsi,%rax,4),%xmm6 + movzbl 12(%rcx),%eax + movd (DATA,%rax,4),%xmm7 + movzbl 13(%rcx),%eax + movd (DATA,%rax,4),%xmm4 + movzbl 14(%rcx),%eax + movd (DATA,%rax,4),%xmm5 + movzbl 15(%rcx),%eax + movd (DATA,%rax,4),%xmm6 punpckldq %xmm4,%xmm7 punpckldq %xmm6,%xmm5 punpcklqdq %xmm5,%xmm7 @@ -149,53 +172,68 @@ SYM_FUNC_START(blake2s_compress_ssse3) paddd %xmm3,%xmm2 pxor %xmm2,%xmm1 movdqa %xmm1,%xmm8 - psrld $0x7,%xmm1 - pslld $0x19,%xmm8 + psrld $7,%xmm1 + pslld $25,%xmm8 por %xmm8,%xmm1 pshufd $0x39,%xmm0,%xmm0 pshufd $0x4e,%xmm3,%xmm3 pshufd $0x93,%xmm2,%xmm2 - addq $0x10,%rcx + addq $16,%rcx cmpq %r8,%rcx - jnz .Lroundloop + jnz .Lssse3_roundloop + + // Compute the new h: h[0..7] ^= v[0..7] ^ v[8..15] pxor %xmm2,%xmm0 pxor %xmm3,%xmm1 pxor %xmm10,%xmm0 pxor %xmm11,%xmm1 - addq $0x40,%rsi - decq %rdx - jnz .Lbeginofloop - movdqu %xmm0,(%rdi) - movdqu %xmm1,0x10(%rdi) - movdqu %xmm14,0x20(%rdi) -.Lendofloop: + addq $64,DATA + decq NBLOCKS + jnz .Lssse3_mainloop + + movdqu %xmm0,(CTX) // Store new h[0..3] + movdqu %xmm1,16(CTX) // Store new h[4..7] + movq %xmm14,32(CTX) // Store new t (f is unchanged) RET SYM_FUNC_END(blake2s_compress_ssse3) +// +// void blake2s_compress_avx512(struct blake2s_ctx *ctx, +// const u8 *data, size_t nblocks, u32 inc); +// +// Only the first three fields of struct blake2s_ctx are used: +// u32 h[8]; (inout) +// u32 t[2]; (inout) +// u32 f[2]; (in) +// SYM_FUNC_START(blake2s_compress_avx512) - vmovdqu (%rdi),%xmm0 - vmovdqu 0x10(%rdi),%xmm1 - vmovdqu 0x20(%rdi),%xmm4 - vmovq %rcx,%xmm5 - vmovdqa IV(%rip),%xmm14 - vmovdqa IV+16(%rip),%xmm15 - jmp .Lblake2s_compress_avx512_mainloop -.align 32 -.Lblake2s_compress_avx512_mainloop: - vmovdqa %xmm0,%xmm10 - vmovdqa %xmm1,%xmm11 - vpaddq %xmm5,%xmm4,%xmm4 - vmovdqa %xmm14,%xmm2 - vpxor %xmm15,%xmm4,%xmm3 - vmovdqu (%rsi),%ymm6 - vmovdqu 0x20(%rsi),%ymm7 - addq $0x40,%rsi - leaq SIGMA2(%rip),%rax - movb $0xa,%cl -.Lblake2s_compress_avx512_roundloop: + vmovdqu (CTX),%xmm0 // Load h[0..3] + vmovdqu 16(CTX),%xmm1 // Load h[4..7] + vmovdqu 32(CTX),%xmm4 // Load t and f + vmovd INC,%xmm5 // Load inc + vmovdqa .Liv(%rip),%xmm14 // Load iv[0..3] + vmovdqa .Liv+16(%rip),%xmm15 // Load iv[4..7] + jmp .Lavx512_mainloop + + .align 32 +.Lavx512_mainloop: + // Main loop: each iteration processes one 64-byte block. + vmovdqa %xmm0,%xmm10 // Save h[0..3] and let v[0..3] = h[0..3] + vmovdqa %xmm1,%xmm11 // Save h[4..7] and let v[4..7] = h[4..7] + vpaddq %xmm5,%xmm4,%xmm4 // t += inc (64-bit addition) + vmovdqa %xmm14,%xmm2 // v[8..11] = iv[0..3] + vpxor %xmm15,%xmm4,%xmm3 // v[12..15] = iv[4..7] ^ [t, f] + vmovdqu (DATA),%ymm6 // Load first 8 data words + vmovdqu 32(DATA),%ymm7 // Load second 8 data words + addq $64,DATA + leaq .Lsigma2(%rip),%rax + movb $10,%cl // Set num rounds remaining + +.Lavx512_roundloop: + // Round loop: each iteration does 1 round (of 10 rounds total). vpmovzxbd (%rax),%ymm8 - vpmovzxbd 0x8(%rax),%ymm9 - addq $0x10,%rax + vpmovzxbd 8(%rax),%ymm9 + addq $16,%rax vpermi2d %ymm7,%ymm6,%ymm8 vpermi2d %ymm7,%ymm6,%ymm9 vmovdqa %ymm8,%ymm6 @@ -203,50 +241,51 @@ SYM_FUNC_START(blake2s_compress_avx512) vpaddd %xmm8,%xmm0,%xmm0 vpaddd %xmm1,%xmm0,%xmm0 vpxor %xmm0,%xmm3,%xmm3 - vprord $0x10,%xmm3,%xmm3 + vprord $16,%xmm3,%xmm3 vpaddd %xmm3,%xmm2,%xmm2 vpxor %xmm2,%xmm1,%xmm1 - vprord $0xc,%xmm1,%xmm1 - vextracti128 $0x1,%ymm8,%xmm8 + vprord $12,%xmm1,%xmm1 + vextracti128 $1,%ymm8,%xmm8 vpaddd %xmm8,%xmm0,%xmm0 vpaddd %xmm1,%xmm0,%xmm0 vpxor %xmm0,%xmm3,%xmm3 - vprord $0x8,%xmm3,%xmm3 + vprord $8,%xmm3,%xmm3 vpaddd %xmm3,%xmm2,%xmm2 vpxor %xmm2,%xmm1,%xmm1 - vprord $0x7,%xmm1,%xmm1 + vprord $7,%xmm1,%xmm1 vpshufd $0x93,%xmm0,%xmm0 vpshufd $0x4e,%xmm3,%xmm3 vpshufd $0x39,%xmm2,%xmm2 vpaddd %xmm9,%xmm0,%xmm0 vpaddd %xmm1,%xmm0,%xmm0 vpxor %xmm0,%xmm3,%xmm3 - vprord $0x10,%xmm3,%xmm3 + vprord $16,%xmm3,%xmm3 vpaddd %xmm3,%xmm2,%xmm2 vpxor %xmm2,%xmm1,%xmm1 - vprord $0xc,%xmm1,%xmm1 - vextracti128 $0x1,%ymm9,%xmm9 + vprord $12,%xmm1,%xmm1 + vextracti128 $1,%ymm9,%xmm9 vpaddd %xmm9,%xmm0,%xmm0 vpaddd %xmm1,%xmm0,%xmm0 vpxor %xmm0,%xmm3,%xmm3 - vprord $0x8,%xmm3,%xmm3 + vprord $8,%xmm3,%xmm3 vpaddd %xmm3,%xmm2,%xmm2 vpxor %xmm2,%xmm1,%xmm1 - vprord $0x7,%xmm1,%xmm1 + vprord $7,%xmm1,%xmm1 vpshufd $0x39,%xmm0,%xmm0 vpshufd $0x4e,%xmm3,%xmm3 vpshufd $0x93,%xmm2,%xmm2 decb %cl - jne .Lblake2s_compress_avx512_roundloop - vpxor %xmm10,%xmm0,%xmm0 - vpxor %xmm11,%xmm1,%xmm1 - vpxor %xmm2,%xmm0,%xmm0 - vpxor %xmm3,%xmm1,%xmm1 - decq %rdx - jne .Lblake2s_compress_avx512_mainloop - vmovdqu %xmm0,(%rdi) - vmovdqu %xmm1,0x10(%rdi) - vmovdqu %xmm4,0x20(%rdi) + jne .Lavx512_roundloop + + // Compute the new h: h[0..7] ^= v[0..7] ^ v[8..15] + vpternlogd $0x96,%xmm10,%xmm2,%xmm0 + vpternlogd $0x96,%xmm11,%xmm3,%xmm1 + decq NBLOCKS + jne .Lavx512_mainloop + + vmovdqu %xmm0,(CTX) // Store new h[0..3] + vmovdqu %xmm1,16(CTX) // Store new h[4..7] + vmovq %xmm4,32(CTX) // Store new t (f is unchanged) vzeroupper RET SYM_FUNC_END(blake2s_compress_avx512) diff --git a/lib/crypto/x86/blake2s.h b/lib/crypto/x86/blake2s.h index b6d30d2fa045..f8eed6cb042e 100644 --- a/lib/crypto/x86/blake2s.h +++ b/lib/crypto/x86/blake2s.h @@ -11,24 +11,22 @@ #include <linux/kernel.h> #include <linux/sizes.h> -asmlinkage void blake2s_compress_ssse3(struct blake2s_state *state, - const u8 *block, const size_t nblocks, - const u32 inc); -asmlinkage void blake2s_compress_avx512(struct blake2s_state *state, - const u8 *block, const size_t nblocks, - const u32 inc); +asmlinkage void blake2s_compress_ssse3(struct blake2s_ctx *ctx, + const u8 *data, size_t nblocks, u32 inc); +asmlinkage void blake2s_compress_avx512(struct blake2s_ctx *ctx, + const u8 *data, size_t nblocks, u32 inc); static __ro_after_init DEFINE_STATIC_KEY_FALSE(blake2s_use_ssse3); static __ro_after_init DEFINE_STATIC_KEY_FALSE(blake2s_use_avx512); -static void blake2s_compress(struct blake2s_state *state, const u8 *block, - size_t nblocks, const u32 inc) +static void blake2s_compress(struct blake2s_ctx *ctx, + const u8 *data, size_t nblocks, u32 inc) { /* SIMD disables preemption, so relax after processing each page. */ BUILD_BUG_ON(SZ_4K / BLAKE2S_BLOCK_SIZE < 8); if (!static_branch_likely(&blake2s_use_ssse3) || !may_use_simd()) { - blake2s_compress_generic(state, block, nblocks, inc); + blake2s_compress_generic(ctx, data, nblocks, inc); return; } @@ -38,13 +36,13 @@ static void blake2s_compress(struct blake2s_state *state, const u8 *block, kernel_fpu_begin(); if (static_branch_likely(&blake2s_use_avx512)) - blake2s_compress_avx512(state, block, blocks, inc); + blake2s_compress_avx512(ctx, data, blocks, inc); else - blake2s_compress_ssse3(state, block, blocks, inc); + blake2s_compress_ssse3(ctx, data, blocks, inc); kernel_fpu_end(); + data += blocks * BLAKE2S_BLOCK_SIZE; nblocks -= blocks; - block += blocks * BLAKE2S_BLOCK_SIZE; } while (nblocks); } diff --git a/lib/crypto/x86/polyval-pclmul-avx.S b/lib/crypto/x86/polyval-pclmul-avx.S new file mode 100644 index 000000000000..7f739465ad35 --- /dev/null +++ b/lib/crypto/x86/polyval-pclmul-avx.S @@ -0,0 +1,319 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright 2021 Google LLC + */ +/* + * This is an efficient implementation of POLYVAL using intel PCLMULQDQ-NI + * instructions. It works on 8 blocks at a time, by precomputing the first 8 + * keys powers h^8, ..., h^1 in the POLYVAL finite field. This precomputation + * allows us to split finite field multiplication into two steps. + * + * In the first step, we consider h^i, m_i as normal polynomials of degree less + * than 128. We then compute p(x) = h^8m_0 + ... + h^1m_7 where multiplication + * is simply polynomial multiplication. + * + * In the second step, we compute the reduction of p(x) modulo the finite field + * modulus g(x) = x^128 + x^127 + x^126 + x^121 + 1. + * + * This two step process is equivalent to computing h^8m_0 + ... + h^1m_7 where + * multiplication is finite field multiplication. The advantage is that the + * two-step process only requires 1 finite field reduction for every 8 + * polynomial multiplications. Further parallelism is gained by interleaving the + * multiplications and polynomial reductions. + */ + +#include <linux/linkage.h> +#include <asm/frame.h> + +#define STRIDE_BLOCKS 8 + +#define GSTAR %xmm7 +#define PL %xmm8 +#define PH %xmm9 +#define TMP_XMM %xmm11 +#define LO %xmm12 +#define HI %xmm13 +#define MI %xmm14 +#define SUM %xmm15 + +#define ACCUMULATOR %rdi +#define KEY_POWERS %rsi +#define MSG %rdx +#define BLOCKS_LEFT %rcx +#define TMP %rax + +.section .rodata.cst16.gstar, "aM", @progbits, 16 +.align 16 + +.Lgstar: + .quad 0xc200000000000000, 0xc200000000000000 + +.text + +/* + * Performs schoolbook1_iteration on two lists of 128-bit polynomials of length + * count pointed to by MSG and KEY_POWERS. + */ +.macro schoolbook1 count + .set i, 0 + .rept (\count) + schoolbook1_iteration i 0 + .set i, (i +1) + .endr +.endm + +/* + * Computes the product of two 128-bit polynomials at the memory locations + * specified by (MSG + 16*i) and (KEY_POWERS + 16*i) and XORs the components of + * the 256-bit product into LO, MI, HI. + * + * Given: + * X = [X_1 : X_0] + * Y = [Y_1 : Y_0] + * + * We compute: + * LO += X_0 * Y_0 + * MI += X_0 * Y_1 + X_1 * Y_0 + * HI += X_1 * Y_1 + * + * Later, the 256-bit result can be extracted as: + * [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0] + * This step is done when computing the polynomial reduction for efficiency + * reasons. + * + * If xor_sum == 1, then also XOR the value of SUM into m_0. This avoids an + * extra multiplication of SUM and h^8. + */ +.macro schoolbook1_iteration i xor_sum + movups (16*\i)(MSG), %xmm0 + .if (\i == 0 && \xor_sum == 1) + pxor SUM, %xmm0 + .endif + vpclmulqdq $0x01, (16*\i)(KEY_POWERS), %xmm0, %xmm2 + vpclmulqdq $0x00, (16*\i)(KEY_POWERS), %xmm0, %xmm1 + vpclmulqdq $0x10, (16*\i)(KEY_POWERS), %xmm0, %xmm3 + vpclmulqdq $0x11, (16*\i)(KEY_POWERS), %xmm0, %xmm4 + vpxor %xmm2, MI, MI + vpxor %xmm1, LO, LO + vpxor %xmm4, HI, HI + vpxor %xmm3, MI, MI +.endm + +/* + * Performs the same computation as schoolbook1_iteration, except we expect the + * arguments to already be loaded into xmm0 and xmm1 and we set the result + * registers LO, MI, and HI directly rather than XOR'ing into them. + */ +.macro schoolbook1_noload + vpclmulqdq $0x01, %xmm0, %xmm1, MI + vpclmulqdq $0x10, %xmm0, %xmm1, %xmm2 + vpclmulqdq $0x00, %xmm0, %xmm1, LO + vpclmulqdq $0x11, %xmm0, %xmm1, HI + vpxor %xmm2, MI, MI +.endm + +/* + * Computes the 256-bit polynomial represented by LO, HI, MI. Stores + * the result in PL, PH. + * [PH : PL] = [HI_1 : HI_0 + MI_1 : LO_1 + MI_0 : LO_0] + */ +.macro schoolbook2 + vpslldq $8, MI, PL + vpsrldq $8, MI, PH + pxor LO, PL + pxor HI, PH +.endm + +/* + * Computes the 128-bit reduction of PH : PL. Stores the result in dest. + * + * This macro computes p(x) mod g(x) where p(x) is in montgomery form and g(x) = + * x^128 + x^127 + x^126 + x^121 + 1. + * + * We have a 256-bit polynomial PH : PL = P_3 : P_2 : P_1 : P_0 that is the + * product of two 128-bit polynomials in Montgomery form. We need to reduce it + * mod g(x). Also, since polynomials in Montgomery form have an "extra" factor + * of x^128, this product has two extra factors of x^128. To get it back into + * Montgomery form, we need to remove one of these factors by dividing by x^128. + * + * To accomplish both of these goals, we add multiples of g(x) that cancel out + * the low 128 bits P_1 : P_0, leaving just the high 128 bits. Since the low + * bits are zero, the polynomial division by x^128 can be done by right shifting. + * + * Since the only nonzero term in the low 64 bits of g(x) is the constant term, + * the multiple of g(x) needed to cancel out P_0 is P_0 * g(x). The CPU can + * only do 64x64 bit multiplications, so split P_0 * g(x) into x^128 * P_0 + + * x^64 * g*(x) * P_0 + P_0, where g*(x) is bits 64-127 of g(x). Adding this to + * the original polynomial gives P_3 : P_2 + P_0 + T_1 : P_1 + T_0 : 0, where T + * = T_1 : T_0 = g*(x) * P_0. Thus, bits 0-63 got "folded" into bits 64-191. + * + * Repeating this same process on the next 64 bits "folds" bits 64-127 into bits + * 128-255, giving the answer in bits 128-255. This time, we need to cancel P_1 + * + T_0 in bits 64-127. The multiple of g(x) required is (P_1 + T_0) * g(x) * + * x^64. Adding this to our previous computation gives P_3 + P_1 + T_0 + V_1 : + * P_2 + P_0 + T_1 + V_0 : 0 : 0, where V = V_1 : V_0 = g*(x) * (P_1 + T_0). + * + * So our final computation is: + * T = T_1 : T_0 = g*(x) * P_0 + * V = V_1 : V_0 = g*(x) * (P_1 + T_0) + * p(x) / x^{128} mod g(x) = P_3 + P_1 + T_0 + V_1 : P_2 + P_0 + T_1 + V_0 + * + * The implementation below saves a XOR instruction by computing P_1 + T_0 : P_0 + * + T_1 and XORing into dest, rather than separately XORing P_1 : P_0 and T_0 : + * T_1 into dest. This allows us to reuse P_1 + T_0 when computing V. + */ +.macro montgomery_reduction dest + vpclmulqdq $0x00, PL, GSTAR, TMP_XMM # TMP_XMM = T_1 : T_0 = P_0 * g*(x) + pshufd $0b01001110, TMP_XMM, TMP_XMM # TMP_XMM = T_0 : T_1 + pxor PL, TMP_XMM # TMP_XMM = P_1 + T_0 : P_0 + T_1 + pxor TMP_XMM, PH # PH = P_3 + P_1 + T_0 : P_2 + P_0 + T_1 + pclmulqdq $0x11, GSTAR, TMP_XMM # TMP_XMM = V_1 : V_0 = V = [(P_1 + T_0) * g*(x)] + vpxor TMP_XMM, PH, \dest +.endm + +/* + * Compute schoolbook multiplication for 8 blocks + * m_0h^8 + ... + m_7h^1 + * + * If reduce is set, also computes the montgomery reduction of the + * previous full_stride call and XORs with the first message block. + * (m_0 + REDUCE(PL, PH))h^8 + ... + m_7h^1. + * I.e., the first multiplication uses m_0 + REDUCE(PL, PH) instead of m_0. + */ +.macro full_stride reduce + pxor LO, LO + pxor HI, HI + pxor MI, MI + + schoolbook1_iteration 7 0 + .if \reduce + vpclmulqdq $0x00, PL, GSTAR, TMP_XMM + .endif + + schoolbook1_iteration 6 0 + .if \reduce + pshufd $0b01001110, TMP_XMM, TMP_XMM + .endif + + schoolbook1_iteration 5 0 + .if \reduce + pxor PL, TMP_XMM + .endif + + schoolbook1_iteration 4 0 + .if \reduce + pxor TMP_XMM, PH + .endif + + schoolbook1_iteration 3 0 + .if \reduce + pclmulqdq $0x11, GSTAR, TMP_XMM + .endif + + schoolbook1_iteration 2 0 + .if \reduce + vpxor TMP_XMM, PH, SUM + .endif + + schoolbook1_iteration 1 0 + + schoolbook1_iteration 0 1 + + addq $(8*16), MSG + schoolbook2 +.endm + +/* + * Process BLOCKS_LEFT blocks, where 0 < BLOCKS_LEFT < STRIDE_BLOCKS + */ +.macro partial_stride + mov BLOCKS_LEFT, TMP + shlq $4, TMP + addq $(16*STRIDE_BLOCKS), KEY_POWERS + subq TMP, KEY_POWERS + + movups (MSG), %xmm0 + pxor SUM, %xmm0 + movups (KEY_POWERS), %xmm1 + schoolbook1_noload + dec BLOCKS_LEFT + addq $16, MSG + addq $16, KEY_POWERS + + test $4, BLOCKS_LEFT + jz .Lpartial4BlocksDone + schoolbook1 4 + addq $(4*16), MSG + addq $(4*16), KEY_POWERS +.Lpartial4BlocksDone: + test $2, BLOCKS_LEFT + jz .Lpartial2BlocksDone + schoolbook1 2 + addq $(2*16), MSG + addq $(2*16), KEY_POWERS +.Lpartial2BlocksDone: + test $1, BLOCKS_LEFT + jz .LpartialDone + schoolbook1 1 +.LpartialDone: + schoolbook2 + montgomery_reduction SUM +.endm + +/* + * Computes a = a * b * x^{-128} mod x^128 + x^127 + x^126 + x^121 + 1. + * + * void polyval_mul_pclmul_avx(struct polyval_elem *a, + * const struct polyval_elem *b); + */ +SYM_FUNC_START(polyval_mul_pclmul_avx) + FRAME_BEGIN + vmovdqa .Lgstar(%rip), GSTAR + movups (%rdi), %xmm0 + movups (%rsi), %xmm1 + schoolbook1_noload + schoolbook2 + montgomery_reduction SUM + movups SUM, (%rdi) + FRAME_END + RET +SYM_FUNC_END(polyval_mul_pclmul_avx) + +/* + * Perform polynomial evaluation as specified by POLYVAL. This computes: + * h^n * accumulator + h^n * m_0 + ... + h^1 * m_{n-1} + * where n=nblocks, h is the hash key, and m_i are the message blocks. + * + * rdi - pointer to the accumulator + * rsi - pointer to precomputed key powers h^8 ... h^1 + * rdx - pointer to message blocks + * rcx - number of blocks to hash + * + * void polyval_blocks_pclmul_avx(struct polyval_elem *acc, + * const struct polyval_key *key, + * const u8 *data, size_t nblocks); + */ +SYM_FUNC_START(polyval_blocks_pclmul_avx) + FRAME_BEGIN + vmovdqa .Lgstar(%rip), GSTAR + movups (ACCUMULATOR), SUM + subq $STRIDE_BLOCKS, BLOCKS_LEFT + js .LstrideLoopExit + full_stride 0 + subq $STRIDE_BLOCKS, BLOCKS_LEFT + js .LstrideLoopExitReduce +.LstrideLoop: + full_stride 1 + subq $STRIDE_BLOCKS, BLOCKS_LEFT + jns .LstrideLoop +.LstrideLoopExitReduce: + montgomery_reduction SUM +.LstrideLoopExit: + add $STRIDE_BLOCKS, BLOCKS_LEFT + jz .LskipPartial + partial_stride +.LskipPartial: + movups SUM, (ACCUMULATOR) + FRAME_END + RET +SYM_FUNC_END(polyval_blocks_pclmul_avx) diff --git a/lib/crypto/x86/polyval.h b/lib/crypto/x86/polyval.h new file mode 100644 index 000000000000..ef8797521420 --- /dev/null +++ b/lib/crypto/x86/polyval.h @@ -0,0 +1,83 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * POLYVAL library functions, x86_64 optimized + * + * Copyright 2025 Google LLC + */ +#include <asm/fpu/api.h> +#include <linux/cpufeature.h> + +#define NUM_H_POWERS 8 + +static __ro_after_init DEFINE_STATIC_KEY_FALSE(have_pclmul_avx); + +asmlinkage void polyval_mul_pclmul_avx(struct polyval_elem *a, + const struct polyval_elem *b); +asmlinkage void polyval_blocks_pclmul_avx(struct polyval_elem *acc, + const struct polyval_key *key, + const u8 *data, size_t nblocks); + +static void polyval_preparekey_arch(struct polyval_key *key, + const u8 raw_key[POLYVAL_BLOCK_SIZE]) +{ + static_assert(ARRAY_SIZE(key->h_powers) == NUM_H_POWERS); + memcpy(&key->h_powers[NUM_H_POWERS - 1], raw_key, POLYVAL_BLOCK_SIZE); + if (static_branch_likely(&have_pclmul_avx) && irq_fpu_usable()) { + kernel_fpu_begin(); + for (int i = NUM_H_POWERS - 2; i >= 0; i--) { + key->h_powers[i] = key->h_powers[i + 1]; + polyval_mul_pclmul_avx( + &key->h_powers[i], + &key->h_powers[NUM_H_POWERS - 1]); + } + kernel_fpu_end(); + } else { + for (int i = NUM_H_POWERS - 2; i >= 0; i--) { + key->h_powers[i] = key->h_powers[i + 1]; + polyval_mul_generic(&key->h_powers[i], + &key->h_powers[NUM_H_POWERS - 1]); + } + } +} + +static void polyval_mul_arch(struct polyval_elem *acc, + const struct polyval_key *key) +{ + if (static_branch_likely(&have_pclmul_avx) && irq_fpu_usable()) { + kernel_fpu_begin(); + polyval_mul_pclmul_avx(acc, &key->h_powers[NUM_H_POWERS - 1]); + kernel_fpu_end(); + } else { + polyval_mul_generic(acc, &key->h_powers[NUM_H_POWERS - 1]); + } +} + +static void polyval_blocks_arch(struct polyval_elem *acc, + const struct polyval_key *key, + const u8 *data, size_t nblocks) +{ + if (static_branch_likely(&have_pclmul_avx) && irq_fpu_usable()) { + do { + /* Allow rescheduling every 4 KiB. */ + size_t n = min_t(size_t, nblocks, + 4096 / POLYVAL_BLOCK_SIZE); + + kernel_fpu_begin(); + polyval_blocks_pclmul_avx(acc, key, data, n); + kernel_fpu_end(); + data += n * POLYVAL_BLOCK_SIZE; + nblocks -= n; + } while (nblocks); + } else { + polyval_blocks_generic(acc, &key->h_powers[NUM_H_POWERS - 1], + data, nblocks); + } +} + +#define polyval_mod_init_arch polyval_mod_init_arch +static void polyval_mod_init_arch(void) +{ + if (boot_cpu_has(X86_FEATURE_PCLMULQDQ) && + boot_cpu_has(X86_FEATURE_AVX)) + static_branch_enable(&have_pclmul_avx); +} |
