diff options
Diffstat (limited to 'rust/kernel/mm.rs')
-rw-r--r-- | rust/kernel/mm.rs | 296 |
1 files changed, 296 insertions, 0 deletions
diff --git a/rust/kernel/mm.rs b/rust/kernel/mm.rs new file mode 100644 index 000000000000..43f525c0d16c --- /dev/null +++ b/rust/kernel/mm.rs @@ -0,0 +1,296 @@ +// SPDX-License-Identifier: GPL-2.0 + +// Copyright (C) 2024 Google LLC. + +//! Memory management. +//! +//! This module deals with managing the address space of userspace processes. Each process has an +//! instance of [`Mm`], which keeps track of multiple VMAs (virtual memory areas). Each VMA +//! corresponds to a region of memory that the userspace process can access, and the VMA lets you +//! control what happens when userspace reads or writes to that region of memory. +//! +//! C header: [`include/linux/mm.h`](srctree/include/linux/mm.h) + +use crate::{ + bindings, + types::{ARef, AlwaysRefCounted, NotThreadSafe, Opaque}, +}; +use core::{ops::Deref, ptr::NonNull}; + +pub mod virt; +use virt::VmaRef; + +#[cfg(CONFIG_MMU)] +pub use mmput_async::MmWithUserAsync; +mod mmput_async; + +/// A wrapper for the kernel's `struct mm_struct`. +/// +/// This represents the address space of a userspace process, so each process has one `Mm` +/// instance. It may hold many VMAs internally. +/// +/// There is a counter called `mm_users` that counts the users of the address space; this includes +/// the userspace process itself, but can also include kernel threads accessing the address space. +/// Once `mm_users` reaches zero, this indicates that the address space can be destroyed. To access +/// the address space, you must prevent `mm_users` from reaching zero while you are accessing it. +/// The [`MmWithUser`] type represents an address space where this is guaranteed, and you can +/// create one using [`mmget_not_zero`]. +/// +/// The `ARef<Mm>` smart pointer holds an `mmgrab` refcount. Its destructor may sleep. +/// +/// # Invariants +/// +/// Values of this type are always refcounted using `mmgrab`. +/// +/// [`mmget_not_zero`]: Mm::mmget_not_zero +#[repr(transparent)] +pub struct Mm { + mm: Opaque<bindings::mm_struct>, +} + +// SAFETY: It is safe to call `mmdrop` on another thread than where `mmgrab` was called. +unsafe impl Send for Mm {} +// SAFETY: All methods on `Mm` can be called in parallel from several threads. +unsafe impl Sync for Mm {} + +// SAFETY: By the type invariants, this type is always refcounted. +unsafe impl AlwaysRefCounted for Mm { + #[inline] + fn inc_ref(&self) { + // SAFETY: The pointer is valid since self is a reference. + unsafe { bindings::mmgrab(self.as_raw()) }; + } + + #[inline] + unsafe fn dec_ref(obj: NonNull<Self>) { + // SAFETY: The caller is giving up their refcount. + unsafe { bindings::mmdrop(obj.cast().as_ptr()) }; + } +} + +/// A wrapper for the kernel's `struct mm_struct`. +/// +/// This type is like [`Mm`], but with non-zero `mm_users`. It can only be used when `mm_users` can +/// be proven to be non-zero at compile-time, usually because the relevant code holds an `mmget` +/// refcount. It can be used to access the associated address space. +/// +/// The `ARef<MmWithUser>` smart pointer holds an `mmget` refcount. Its destructor may sleep. +/// +/// # Invariants +/// +/// Values of this type are always refcounted using `mmget`. The value of `mm_users` is non-zero. +#[repr(transparent)] +pub struct MmWithUser { + mm: Mm, +} + +// SAFETY: It is safe to call `mmput` on another thread than where `mmget` was called. +unsafe impl Send for MmWithUser {} +// SAFETY: All methods on `MmWithUser` can be called in parallel from several threads. +unsafe impl Sync for MmWithUser {} + +// SAFETY: By the type invariants, this type is always refcounted. +unsafe impl AlwaysRefCounted for MmWithUser { + #[inline] + fn inc_ref(&self) { + // SAFETY: The pointer is valid since self is a reference. + unsafe { bindings::mmget(self.as_raw()) }; + } + + #[inline] + unsafe fn dec_ref(obj: NonNull<Self>) { + // SAFETY: The caller is giving up their refcount. + unsafe { bindings::mmput(obj.cast().as_ptr()) }; + } +} + +// Make all `Mm` methods available on `MmWithUser`. +impl Deref for MmWithUser { + type Target = Mm; + + #[inline] + fn deref(&self) -> &Mm { + &self.mm + } +} + +// These methods are safe to call even if `mm_users` is zero. +impl Mm { + /// Returns a raw pointer to the inner `mm_struct`. + #[inline] + pub fn as_raw(&self) -> *mut bindings::mm_struct { + self.mm.get() + } + + /// Obtain a reference from a raw pointer. + /// + /// # Safety + /// + /// The caller must ensure that `ptr` points at an `mm_struct`, and that it is not deallocated + /// during the lifetime 'a. + #[inline] + pub unsafe fn from_raw<'a>(ptr: *const bindings::mm_struct) -> &'a Mm { + // SAFETY: Caller promises that the pointer is valid for 'a. Layouts are compatible due to + // repr(transparent). + unsafe { &*ptr.cast() } + } + + /// Calls `mmget_not_zero` and returns a handle if it succeeds. + #[inline] + pub fn mmget_not_zero(&self) -> Option<ARef<MmWithUser>> { + // SAFETY: The pointer is valid since self is a reference. + let success = unsafe { bindings::mmget_not_zero(self.as_raw()) }; + + if success { + // SAFETY: We just created an `mmget` refcount. + Some(unsafe { ARef::from_raw(NonNull::new_unchecked(self.as_raw().cast())) }) + } else { + None + } + } +} + +// These methods require `mm_users` to be non-zero. +impl MmWithUser { + /// Obtain a reference from a raw pointer. + /// + /// # Safety + /// + /// The caller must ensure that `ptr` points at an `mm_struct`, and that `mm_users` remains + /// non-zero for the duration of the lifetime 'a. + #[inline] + pub unsafe fn from_raw<'a>(ptr: *const bindings::mm_struct) -> &'a MmWithUser { + // SAFETY: Caller promises that the pointer is valid for 'a. The layout is compatible due + // to repr(transparent). + unsafe { &*ptr.cast() } + } + + /// Attempt to access a vma using the vma read lock. + /// + /// This is an optimistic trylock operation, so it may fail if there is contention. In that + /// case, you should fall back to taking the mmap read lock. + /// + /// When per-vma locks are disabled, this always returns `None`. + #[inline] + pub fn lock_vma_under_rcu(&self, vma_addr: usize) -> Option<VmaReadGuard<'_>> { + #[cfg(CONFIG_PER_VMA_LOCK)] + { + // SAFETY: Calling `bindings::lock_vma_under_rcu` is always okay given an mm where + // `mm_users` is non-zero. + let vma = unsafe { bindings::lock_vma_under_rcu(self.as_raw(), vma_addr) }; + if !vma.is_null() { + return Some(VmaReadGuard { + // SAFETY: If `lock_vma_under_rcu` returns a non-null ptr, then it points at a + // valid vma. The vma is stable for as long as the vma read lock is held. + vma: unsafe { VmaRef::from_raw(vma) }, + _nts: NotThreadSafe, + }); + } + } + + // Silence warnings about unused variables. + #[cfg(not(CONFIG_PER_VMA_LOCK))] + let _ = vma_addr; + + None + } + + /// Lock the mmap read lock. + #[inline] + pub fn mmap_read_lock(&self) -> MmapReadGuard<'_> { + // SAFETY: The pointer is valid since self is a reference. + unsafe { bindings::mmap_read_lock(self.as_raw()) }; + + // INVARIANT: We just acquired the read lock. + MmapReadGuard { + mm: self, + _nts: NotThreadSafe, + } + } + + /// Try to lock the mmap read lock. + #[inline] + pub fn mmap_read_trylock(&self) -> Option<MmapReadGuard<'_>> { + // SAFETY: The pointer is valid since self is a reference. + let success = unsafe { bindings::mmap_read_trylock(self.as_raw()) }; + + if success { + // INVARIANT: We just acquired the read lock. + Some(MmapReadGuard { + mm: self, + _nts: NotThreadSafe, + }) + } else { + None + } + } +} + +/// A guard for the mmap read lock. +/// +/// # Invariants +/// +/// This `MmapReadGuard` guard owns the mmap read lock. +pub struct MmapReadGuard<'a> { + mm: &'a MmWithUser, + // `mmap_read_lock` and `mmap_read_unlock` must be called on the same thread + _nts: NotThreadSafe, +} + +impl<'a> MmapReadGuard<'a> { + /// Look up a vma at the given address. + #[inline] + pub fn vma_lookup(&self, vma_addr: usize) -> Option<&virt::VmaRef> { + // SAFETY: By the type invariants we hold the mmap read guard, so we can safely call this + // method. Any value is okay for `vma_addr`. + let vma = unsafe { bindings::vma_lookup(self.mm.as_raw(), vma_addr) }; + + if vma.is_null() { + None + } else { + // SAFETY: We just checked that a vma was found, so the pointer references a valid vma. + // + // Furthermore, the returned vma is still under the protection of the read lock guard + // and can be used while the mmap read lock is still held. That the vma is not used + // after the MmapReadGuard gets dropped is enforced by the borrow-checker. + unsafe { Some(virt::VmaRef::from_raw(vma)) } + } + } +} + +impl Drop for MmapReadGuard<'_> { + #[inline] + fn drop(&mut self) { + // SAFETY: We hold the read lock by the type invariants. + unsafe { bindings::mmap_read_unlock(self.mm.as_raw()) }; + } +} + +/// A guard for the vma read lock. +/// +/// # Invariants +/// +/// This `VmaReadGuard` guard owns the vma read lock. +pub struct VmaReadGuard<'a> { + vma: &'a VmaRef, + // `vma_end_read` must be called on the same thread as where the lock was taken + _nts: NotThreadSafe, +} + +// Make all `VmaRef` methods available on `VmaReadGuard`. +impl Deref for VmaReadGuard<'_> { + type Target = VmaRef; + + #[inline] + fn deref(&self) -> &VmaRef { + self.vma + } +} + +impl Drop for VmaReadGuard<'_> { + #[inline] + fn drop(&mut self) { + // SAFETY: We hold the read lock by the type invariants. + unsafe { bindings::vma_end_read(self.vma.as_ptr()) }; + } +} |