summaryrefslogtreecommitdiff
path: root/rust/kernel/mm.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rust/kernel/mm.rs')
-rw-r--r--rust/kernel/mm.rs296
1 files changed, 296 insertions, 0 deletions
diff --git a/rust/kernel/mm.rs b/rust/kernel/mm.rs
new file mode 100644
index 000000000000..43f525c0d16c
--- /dev/null
+++ b/rust/kernel/mm.rs
@@ -0,0 +1,296 @@
+// SPDX-License-Identifier: GPL-2.0
+
+// Copyright (C) 2024 Google LLC.
+
+//! Memory management.
+//!
+//! This module deals with managing the address space of userspace processes. Each process has an
+//! instance of [`Mm`], which keeps track of multiple VMAs (virtual memory areas). Each VMA
+//! corresponds to a region of memory that the userspace process can access, and the VMA lets you
+//! control what happens when userspace reads or writes to that region of memory.
+//!
+//! C header: [`include/linux/mm.h`](srctree/include/linux/mm.h)
+
+use crate::{
+ bindings,
+ types::{ARef, AlwaysRefCounted, NotThreadSafe, Opaque},
+};
+use core::{ops::Deref, ptr::NonNull};
+
+pub mod virt;
+use virt::VmaRef;
+
+#[cfg(CONFIG_MMU)]
+pub use mmput_async::MmWithUserAsync;
+mod mmput_async;
+
+/// A wrapper for the kernel's `struct mm_struct`.
+///
+/// This represents the address space of a userspace process, so each process has one `Mm`
+/// instance. It may hold many VMAs internally.
+///
+/// There is a counter called `mm_users` that counts the users of the address space; this includes
+/// the userspace process itself, but can also include kernel threads accessing the address space.
+/// Once `mm_users` reaches zero, this indicates that the address space can be destroyed. To access
+/// the address space, you must prevent `mm_users` from reaching zero while you are accessing it.
+/// The [`MmWithUser`] type represents an address space where this is guaranteed, and you can
+/// create one using [`mmget_not_zero`].
+///
+/// The `ARef<Mm>` smart pointer holds an `mmgrab` refcount. Its destructor may sleep.
+///
+/// # Invariants
+///
+/// Values of this type are always refcounted using `mmgrab`.
+///
+/// [`mmget_not_zero`]: Mm::mmget_not_zero
+#[repr(transparent)]
+pub struct Mm {
+ mm: Opaque<bindings::mm_struct>,
+}
+
+// SAFETY: It is safe to call `mmdrop` on another thread than where `mmgrab` was called.
+unsafe impl Send for Mm {}
+// SAFETY: All methods on `Mm` can be called in parallel from several threads.
+unsafe impl Sync for Mm {}
+
+// SAFETY: By the type invariants, this type is always refcounted.
+unsafe impl AlwaysRefCounted for Mm {
+ #[inline]
+ fn inc_ref(&self) {
+ // SAFETY: The pointer is valid since self is a reference.
+ unsafe { bindings::mmgrab(self.as_raw()) };
+ }
+
+ #[inline]
+ unsafe fn dec_ref(obj: NonNull<Self>) {
+ // SAFETY: The caller is giving up their refcount.
+ unsafe { bindings::mmdrop(obj.cast().as_ptr()) };
+ }
+}
+
+/// A wrapper for the kernel's `struct mm_struct`.
+///
+/// This type is like [`Mm`], but with non-zero `mm_users`. It can only be used when `mm_users` can
+/// be proven to be non-zero at compile-time, usually because the relevant code holds an `mmget`
+/// refcount. It can be used to access the associated address space.
+///
+/// The `ARef<MmWithUser>` smart pointer holds an `mmget` refcount. Its destructor may sleep.
+///
+/// # Invariants
+///
+/// Values of this type are always refcounted using `mmget`. The value of `mm_users` is non-zero.
+#[repr(transparent)]
+pub struct MmWithUser {
+ mm: Mm,
+}
+
+// SAFETY: It is safe to call `mmput` on another thread than where `mmget` was called.
+unsafe impl Send for MmWithUser {}
+// SAFETY: All methods on `MmWithUser` can be called in parallel from several threads.
+unsafe impl Sync for MmWithUser {}
+
+// SAFETY: By the type invariants, this type is always refcounted.
+unsafe impl AlwaysRefCounted for MmWithUser {
+ #[inline]
+ fn inc_ref(&self) {
+ // SAFETY: The pointer is valid since self is a reference.
+ unsafe { bindings::mmget(self.as_raw()) };
+ }
+
+ #[inline]
+ unsafe fn dec_ref(obj: NonNull<Self>) {
+ // SAFETY: The caller is giving up their refcount.
+ unsafe { bindings::mmput(obj.cast().as_ptr()) };
+ }
+}
+
+// Make all `Mm` methods available on `MmWithUser`.
+impl Deref for MmWithUser {
+ type Target = Mm;
+
+ #[inline]
+ fn deref(&self) -> &Mm {
+ &self.mm
+ }
+}
+
+// These methods are safe to call even if `mm_users` is zero.
+impl Mm {
+ /// Returns a raw pointer to the inner `mm_struct`.
+ #[inline]
+ pub fn as_raw(&self) -> *mut bindings::mm_struct {
+ self.mm.get()
+ }
+
+ /// Obtain a reference from a raw pointer.
+ ///
+ /// # Safety
+ ///
+ /// The caller must ensure that `ptr` points at an `mm_struct`, and that it is not deallocated
+ /// during the lifetime 'a.
+ #[inline]
+ pub unsafe fn from_raw<'a>(ptr: *const bindings::mm_struct) -> &'a Mm {
+ // SAFETY: Caller promises that the pointer is valid for 'a. Layouts are compatible due to
+ // repr(transparent).
+ unsafe { &*ptr.cast() }
+ }
+
+ /// Calls `mmget_not_zero` and returns a handle if it succeeds.
+ #[inline]
+ pub fn mmget_not_zero(&self) -> Option<ARef<MmWithUser>> {
+ // SAFETY: The pointer is valid since self is a reference.
+ let success = unsafe { bindings::mmget_not_zero(self.as_raw()) };
+
+ if success {
+ // SAFETY: We just created an `mmget` refcount.
+ Some(unsafe { ARef::from_raw(NonNull::new_unchecked(self.as_raw().cast())) })
+ } else {
+ None
+ }
+ }
+}
+
+// These methods require `mm_users` to be non-zero.
+impl MmWithUser {
+ /// Obtain a reference from a raw pointer.
+ ///
+ /// # Safety
+ ///
+ /// The caller must ensure that `ptr` points at an `mm_struct`, and that `mm_users` remains
+ /// non-zero for the duration of the lifetime 'a.
+ #[inline]
+ pub unsafe fn from_raw<'a>(ptr: *const bindings::mm_struct) -> &'a MmWithUser {
+ // SAFETY: Caller promises that the pointer is valid for 'a. The layout is compatible due
+ // to repr(transparent).
+ unsafe { &*ptr.cast() }
+ }
+
+ /// Attempt to access a vma using the vma read lock.
+ ///
+ /// This is an optimistic trylock operation, so it may fail if there is contention. In that
+ /// case, you should fall back to taking the mmap read lock.
+ ///
+ /// When per-vma locks are disabled, this always returns `None`.
+ #[inline]
+ pub fn lock_vma_under_rcu(&self, vma_addr: usize) -> Option<VmaReadGuard<'_>> {
+ #[cfg(CONFIG_PER_VMA_LOCK)]
+ {
+ // SAFETY: Calling `bindings::lock_vma_under_rcu` is always okay given an mm where
+ // `mm_users` is non-zero.
+ let vma = unsafe { bindings::lock_vma_under_rcu(self.as_raw(), vma_addr) };
+ if !vma.is_null() {
+ return Some(VmaReadGuard {
+ // SAFETY: If `lock_vma_under_rcu` returns a non-null ptr, then it points at a
+ // valid vma. The vma is stable for as long as the vma read lock is held.
+ vma: unsafe { VmaRef::from_raw(vma) },
+ _nts: NotThreadSafe,
+ });
+ }
+ }
+
+ // Silence warnings about unused variables.
+ #[cfg(not(CONFIG_PER_VMA_LOCK))]
+ let _ = vma_addr;
+
+ None
+ }
+
+ /// Lock the mmap read lock.
+ #[inline]
+ pub fn mmap_read_lock(&self) -> MmapReadGuard<'_> {
+ // SAFETY: The pointer is valid since self is a reference.
+ unsafe { bindings::mmap_read_lock(self.as_raw()) };
+
+ // INVARIANT: We just acquired the read lock.
+ MmapReadGuard {
+ mm: self,
+ _nts: NotThreadSafe,
+ }
+ }
+
+ /// Try to lock the mmap read lock.
+ #[inline]
+ pub fn mmap_read_trylock(&self) -> Option<MmapReadGuard<'_>> {
+ // SAFETY: The pointer is valid since self is a reference.
+ let success = unsafe { bindings::mmap_read_trylock(self.as_raw()) };
+
+ if success {
+ // INVARIANT: We just acquired the read lock.
+ Some(MmapReadGuard {
+ mm: self,
+ _nts: NotThreadSafe,
+ })
+ } else {
+ None
+ }
+ }
+}
+
+/// A guard for the mmap read lock.
+///
+/// # Invariants
+///
+/// This `MmapReadGuard` guard owns the mmap read lock.
+pub struct MmapReadGuard<'a> {
+ mm: &'a MmWithUser,
+ // `mmap_read_lock` and `mmap_read_unlock` must be called on the same thread
+ _nts: NotThreadSafe,
+}
+
+impl<'a> MmapReadGuard<'a> {
+ /// Look up a vma at the given address.
+ #[inline]
+ pub fn vma_lookup(&self, vma_addr: usize) -> Option<&virt::VmaRef> {
+ // SAFETY: By the type invariants we hold the mmap read guard, so we can safely call this
+ // method. Any value is okay for `vma_addr`.
+ let vma = unsafe { bindings::vma_lookup(self.mm.as_raw(), vma_addr) };
+
+ if vma.is_null() {
+ None
+ } else {
+ // SAFETY: We just checked that a vma was found, so the pointer references a valid vma.
+ //
+ // Furthermore, the returned vma is still under the protection of the read lock guard
+ // and can be used while the mmap read lock is still held. That the vma is not used
+ // after the MmapReadGuard gets dropped is enforced by the borrow-checker.
+ unsafe { Some(virt::VmaRef::from_raw(vma)) }
+ }
+ }
+}
+
+impl Drop for MmapReadGuard<'_> {
+ #[inline]
+ fn drop(&mut self) {
+ // SAFETY: We hold the read lock by the type invariants.
+ unsafe { bindings::mmap_read_unlock(self.mm.as_raw()) };
+ }
+}
+
+/// A guard for the vma read lock.
+///
+/// # Invariants
+///
+/// This `VmaReadGuard` guard owns the vma read lock.
+pub struct VmaReadGuard<'a> {
+ vma: &'a VmaRef,
+ // `vma_end_read` must be called on the same thread as where the lock was taken
+ _nts: NotThreadSafe,
+}
+
+// Make all `VmaRef` methods available on `VmaReadGuard`.
+impl Deref for VmaReadGuard<'_> {
+ type Target = VmaRef;
+
+ #[inline]
+ fn deref(&self) -> &VmaRef {
+ self.vma
+ }
+}
+
+impl Drop for VmaReadGuard<'_> {
+ #[inline]
+ fn drop(&mut self) {
+ // SAFETY: We hold the read lock by the type invariants.
+ unsafe { bindings::vma_end_read(self.vma.as_ptr()) };
+ }
+}