Age | Commit message (Collapse) | Author |
|
Pull KVM fixes from Paolo Bonzini:
"Many patches, pretty much all of them small, that accumulated while I
was on vacation.
ARM:
- Remove the last leftovers of the ill-fated FPSIMD host state
mapping at EL2 stage-1
- Fix unexpected advertisement to the guest of unimplemented S2 base
granule sizes
- Gracefully fail initialising pKVM if the interrupt controller isn't
GICv3
- Also gracefully fail initialising pKVM if the carveout allocation
fails
- Fix the computing of the minimum MMIO range required for the host
on stage-2 fault
- Fix the generation of the GICv3 Maintenance Interrupt in nested
mode
x86:
- Reject SEV{-ES} intra-host migration if one or more vCPUs are
actively being created, so as not to create a non-SEV{-ES} vCPU in
an SEV{-ES} VM
- Use a pre-allocated, per-vCPU buffer for handling de-sparsification
of vCPU masks in Hyper-V hypercalls; fixes a "stack frame too
large" issue
- Allow out-of-range/invalid Xen event channel ports when configuring
IRQ routing, to avoid dictating a specific ioctl() ordering to
userspace
- Conditionally reschedule when setting memory attributes to avoid
soft lockups when userspace converts huge swaths of memory to/from
private
- Add back MWAIT as a required feature for the MONITOR/MWAIT selftest
- Add a missing field in struct sev_data_snp_launch_start that
resulted in the guest-visible workarounds field being filled at the
wrong offset
- Skip non-canonical address when processing Hyper-V PV TLB flushes
to avoid VM-Fail on INVVPID
- Advertise supported TDX TDVMCALLs to userspace
- Pass SetupEventNotifyInterrupt arguments to userspace
- Fix TSC frequency underflow"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: x86: avoid underflow when scaling TSC frequency
KVM: arm64: Remove kvm_arch_vcpu_run_map_fp()
KVM: arm64: Fix handling of FEAT_GTG for unimplemented granule sizes
KVM: arm64: Don't free hyp pages with pKVM on GICv2
KVM: arm64: Fix error path in init_hyp_mode()
KVM: arm64: Adjust range correctly during host stage-2 faults
KVM: arm64: nv: Fix MI line level calculation in vgic_v3_nested_update_mi()
KVM: x86/hyper-v: Skip non-canonical addresses during PV TLB flush
KVM: SVM: Add missing member in SNP_LAUNCH_START command structure
Documentation: KVM: Fix unexpected unindent warnings
KVM: selftests: Add back the missing check of MONITOR/MWAIT availability
KVM: Allow CPU to reschedule while setting per-page memory attributes
KVM: x86/xen: Allow 'out of range' event channel ports in IRQ routing table.
KVM: x86/hyper-v: Use preallocated per-vCPU buffer for de-sparsified vCPU masks
KVM: SVM: Initialize vmsa_pa in VMCB to INVALID_PAGE if VMSA page is NULL
KVM: SVM: Reject SEV{-ES} intra host migration if vCPU creation is in-flight
KVM: TDX: Report supported optional TDVMCALLs in TDX capabilities
KVM: TDX: Exit to userspace for SetupEventNotifyInterrupt
|
|
Initialize DR6 by writing its architectural reset value to avoid
incorrectly zeroing DR6 to clear DR6.BLD at boot time, which leads
to a false bus lock detected warning.
The Intel SDM says:
1) Certain debug exceptions may clear bits 0-3 of DR6.
2) BLD induced #DB clears DR6.BLD and any other debug exception
doesn't modify DR6.BLD.
3) RTM induced #DB clears DR6.RTM and any other debug exception
sets DR6.RTM.
To avoid confusion in identifying debug exceptions, debug handlers
should set DR6.BLD and DR6.RTM, and clear other DR6 bits before
returning.
The DR6 architectural reset value 0xFFFF0FF0, already defined as
macro DR6_RESERVED, satisfies these requirements, so just use it to
reinitialize DR6 whenever needed.
Since clear_all_debug_regs() no longer zeros all debug registers,
rename it to initialize_debug_regs() to better reflect its current
behavior.
Since debug_read_clear_dr6() no longer clears DR6, rename it to
debug_read_reset_dr6() to better reflect its current behavior.
Fixes: ebb1064e7c2e9 ("x86/traps: Handle #DB for bus lock")
Reported-by: Sohil Mehta <sohil.mehta@intel.com>
Suggested-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Signed-off-by: Xin Li (Intel) <xin@zytor.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Reviewed-by: Sohil Mehta <sohil.mehta@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/lkml/06e68373-a92b-472e-8fd9-ba548119770c@intel.com/
Cc:stable@vger.kernel.org
Link: https://lore.kernel.org/all/20250620231504.2676902-2-xin%40zytor.com
|
|
Allow userspace to advertise TDG.VP.VMCALL subfunctions that the
kernel also supports. For each output register of GetTdVmCallInfo's
leaf 1, add two fields to KVM_TDX_CAPABILITIES: one for kernel-supported
TDVMCALLs (userspace can set those blindly) and one for user-supported
TDVMCALLs (userspace can set those if it knows how to handle them).
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Pull more kvm updates from Paolo Bonzini:
Generic:
- Clean up locking of all vCPUs for a VM by using the *_nest_lock()
family of functions, and move duplicated code to virt/kvm/. kernel/
patches acked by Peter Zijlstra
- Add MGLRU support to the access tracking perf test
ARM fixes:
- Make the irqbypass hooks resilient to changes in the GSI<->MSI
routing, avoiding behind stale vLPI mappings being left behind. The
fix is to resolve the VGIC IRQ using the host IRQ (which is stable)
and nuking the vLPI mapping upon a routing change
- Close another VGIC race where vCPU creation races with VGIC
creation, leading to in-flight vCPUs entering the kernel w/o
private IRQs allocated
- Fix a build issue triggered by the recently added workaround for
Ampere's AC04_CPU_23 erratum
- Correctly sign-extend the VA when emulating a TLBI instruction
potentially targeting a VNCR mapping
- Avoid dereferencing a NULL pointer in the VGIC debug code, which
can happen if the device doesn't have any mapping yet
s390:
- Fix interaction between some filesystems and Secure Execution
- Some cleanups and refactorings, preparing for an upcoming big
series
x86:
- Wait for target vCPU to ack KVM_REQ_UPDATE_PROTECTED_GUEST_STATE
to fix a race between AP destroy and VMRUN
- Decrypt and dump the VMSA in dump_vmcb() if debugging enabled for
the VM
- Refine and harden handling of spurious faults
- Add support for ALLOWED_SEV_FEATURES
- Add #VMGEXIT to the set of handlers special cased for
CONFIG_RETPOLINE=y
- Treat DEBUGCTL[5:2] as reserved to pave the way for virtualizing
features that utilize those bits
- Don't account temporary allocations in sev_send_update_data()
- Add support for KVM_CAP_X86_BUS_LOCK_EXIT on SVM, via Bus Lock
Threshold
- Unify virtualization of IBRS on nested VM-Exit, and cross-vCPU
IBPB, between SVM and VMX
- Advertise support to userspace for WRMSRNS and PREFETCHI
- Rescan I/O APIC routes after handling EOI that needed to be
intercepted due to the old/previous routing, but not the
new/current routing
- Add a module param to control and enumerate support for device
posted interrupts
- Fix a potential overflow with nested virt on Intel systems running
32-bit kernels
- Flush shadow VMCSes on emergency reboot
- Add support for SNP to the various SEV selftests
- Add a selftest to verify fastops instructions via forced emulation
- Refine and optimize KVM's software processing of the posted
interrupt bitmap, and share the harvesting code between KVM and the
kernel's Posted MSI handler"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (93 commits)
rtmutex_api: provide correct extern functions
KVM: arm64: vgic-debug: Avoid dereferencing NULL ITE pointer
KVM: arm64: vgic-init: Plug vCPU vs. VGIC creation race
KVM: arm64: Unmap vLPIs affected by changes to GSI routing information
KVM: arm64: Resolve vLPI by host IRQ in vgic_v4_unset_forwarding()
KVM: arm64: Protect vLPI translation with vgic_irq::irq_lock
KVM: arm64: Use lock guard in vgic_v4_set_forwarding()
KVM: arm64: Mask out non-VA bits from TLBI VA* on VNCR invalidation
arm64: sysreg: Drag linux/kconfig.h to work around vdso build issue
KVM: s390: Simplify and move pv code
KVM: s390: Refactor and split some gmap helpers
KVM: s390: Remove unneeded srcu lock
s390: Remove unneeded includes
s390/uv: Improve splitting of large folios that cannot be split while dirty
s390/uv: Always return 0 from s390_wiggle_split_folio() if successful
s390/uv: Don't return 0 from make_hva_secure() if the operation was not successful
rust: add helper for mutex_trylock
RISC-V: KVM: use kvm_trylock_all_vcpus when locking all vCPUs
KVM: arm64: use kvm_trylock_all_vcpus when locking all vCPUs
x86: KVM: SVM: use kvm_lock_all_vcpus instead of a custom implementation
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- "Add folio_mk_pte()" from Matthew Wilcox simplifies the act of
creating a pte which addresses the first page in a folio and reduces
the amount of plumbing which architecture must implement to provide
this.
- "Misc folio patches for 6.16" from Matthew Wilcox is a shower of
largely unrelated folio infrastructure changes which clean things up
and better prepare us for future work.
- "memory,x86,acpi: hotplug memory alignment advisement" from Gregory
Price adds early-init code to prevent x86 from leaving physical
memory unused when physical address regions are not aligned to memory
block size.
- "mm/compaction: allow more aggressive proactive compaction" from
Michal Clapinski provides some tuning of the (sadly, hard-coded (more
sadly, not auto-tuned)) thresholds for our invokation of proactive
compaction. In a simple test case, the reduction of a guest VM's
memory consumption was dramatic.
- "Minor cleanups and improvements to swap freeing code" from Kemeng
Shi provides some code cleaups and a small efficiency improvement to
this part of our swap handling code.
- "ptrace: introduce PTRACE_SET_SYSCALL_INFO API" from Dmitry Levin
adds the ability for a ptracer to modify syscalls arguments. At this
time we can alter only "system call information that are used by
strace system call tampering, namely, syscall number, syscall
arguments, and syscall return value.
This series should have been incorporated into mm.git's "non-MM"
branch, but I goofed.
- "fs/proc: extend the PAGEMAP_SCAN ioctl to report guard regions" from
Andrei Vagin extends the info returned by the PAGEMAP_SCAN ioctl
against /proc/pid/pagemap. This permits CRIU to more efficiently get
at the info about guard regions.
- "Fix parameter passed to page_mapcount_is_type()" from Gavin Shan
implements that fix. No runtime effect is expected because
validate_page_before_insert() happens to fix up this error.
- "kernel/events/uprobes: uprobe_write_opcode() rewrite" from David
Hildenbrand basically brings uprobe text poking into the current
decade. Remove a bunch of hand-rolled implementation in favor of
using more current facilities.
- "mm/ptdump: Drop assumption that pxd_val() is u64" from Anshuman
Khandual provides enhancements and generalizations to the pte dumping
code. This might be needed when 128-bit Page Table Descriptors are
enabled for ARM.
- "Always call constructor for kernel page tables" from Kevin Brodsky
ensures that the ctor/dtor is always called for kernel pgtables, as
it already is for user pgtables.
This permits the addition of more functionality such as "insert hooks
to protect page tables". This change does result in various
architectures performing unnecesary work, but this is fixed up where
it is anticipated to occur.
- "Rust support for mm_struct, vm_area_struct, and mmap" from Alice
Ryhl adds plumbing to permit Rust access to core MM structures.
- "fix incorrectly disallowed anonymous VMA merges" from Lorenzo
Stoakes takes advantage of some VMA merging opportunities which we've
been missing for 15 years.
- "mm/madvise: batch tlb flushes for MADV_DONTNEED and MADV_FREE" from
SeongJae Park optimizes process_madvise()'s TLB flushing.
Instead of flushing each address range in the provided iovec, we
batch the flushing across all the iovec entries. The syscall's cost
was approximately halved with a microbenchmark which was designed to
load this particular operation.
- "Track node vacancy to reduce worst case allocation counts" from
Sidhartha Kumar makes the maple tree smarter about its node
preallocation.
stress-ng mmap performance increased by single-digit percentages and
the amount of unnecessarily preallocated memory was dramaticelly
reduced.
- "mm/gup: Minor fix, cleanup and improvements" from Baoquan He removes
a few unnecessary things which Baoquan noted when reading the code.
- ""Enhance sysfs handling for memory hotplug in weighted interleave"
from Rakie Kim "enhances the weighted interleave policy in the memory
management subsystem by improving sysfs handling, fixing memory
leaks, and introducing dynamic sysfs updates for memory hotplug
support". Fixes things on error paths which we are unlikely to hit.
- "mm/damon: auto-tune DAMOS for NUMA setups including tiered memory"
from SeongJae Park introduces new DAMOS quota goal metrics which
eliminate the manual tuning which is required when utilizing DAMON
for memory tiering.
- "mm/vmalloc.c: code cleanup and improvements" from Baoquan He
provides cleanups and small efficiency improvements which Baoquan
found via code inspection.
- "vmscan: enforce mems_effective during demotion" from Gregory Price
changes reclaim to respect cpuset.mems_effective during demotion when
possible. because presently, reclaim explicitly ignores
cpuset.mems_effective when demoting, which may cause the cpuset
settings to violated.
This is useful for isolating workloads on a multi-tenant system from
certain classes of memory more consistently.
- "Clean up split_huge_pmd_locked() and remove unnecessary folio
pointers" from Gavin Guo provides minor cleanups and efficiency gains
in in the huge page splitting and migrating code.
- "Use kmem_cache for memcg alloc" from Huan Yang creates a slab cache
for `struct mem_cgroup', yielding improved memory utilization.
- "add max arg to swappiness in memory.reclaim and lru_gen" from
Zhongkun He adds a new "max" argument to the "swappiness=" argument
for memory.reclaim MGLRU's lru_gen.
This directs proactive reclaim to reclaim from only anon folios
rather than file-backed folios.
- "kexec: introduce Kexec HandOver (KHO)" from Mike Rapoport is the
first step on the path to permitting the kernel to maintain existing
VMs while replacing the host kernel via file-based kexec. At this
time only memblock's reserve_mem is preserved.
- "mm: Introduce for_each_valid_pfn()" from David Woodhouse provides
and uses a smarter way of looping over a pfn range. By skipping
ranges of invalid pfns.
- "sched/numa: Skip VMA scanning on memory pinned to one NUMA node via
cpuset.mems" from Libo Chen removes a lot of pointless VMA scanning
when a task is pinned a single NUMA mode.
Dramatic performance benefits were seen in some real world cases.
- "JFS: Implement migrate_folio for jfs_metapage_aops" from Shivank
Garg addresses a warning which occurs during memory compaction when
using JFS.
- "move all VMA allocation, freeing and duplication logic to mm" from
Lorenzo Stoakes moves some VMA code from kernel/fork.c into the more
appropriate mm/vma.c.
- "mm, swap: clean up swap cache mapping helper" from Kairui Song
provides code consolidation and cleanups related to the folio_index()
function.
- "mm/gup: Cleanup memfd_pin_folios()" from Vishal Moola does that.
- "memcg: Fix test_memcg_min/low test failures" from Waiman Long
addresses some bogus failures which are being reported by the
test_memcontrol selftest.
- "eliminate mmap() retry merge, add .mmap_prepare hook" from Lorenzo
Stoakes commences the deprecation of file_operations.mmap() in favor
of the new file_operations.mmap_prepare().
The latter is more restrictive and prevents drivers from messing with
things in ways which, amongst other problems, may defeat VMA merging.
- "memcg: decouple memcg and objcg stocks"" from Shakeel Butt decouples
the per-cpu memcg charge cache from the objcg's one.
This is a step along the way to making memcg and objcg charging
NMI-safe, which is a BPF requirement.
- "mm/damon: minor fixups and improvements for code, tests, and
documents" from SeongJae Park is yet another batch of miscellaneous
DAMON changes. Fix and improve minor problems in code, tests and
documents.
- "memcg: make memcg stats irq safe" from Shakeel Butt converts memcg
stats to be irq safe. Another step along the way to making memcg
charging and stats updates NMI-safe, a BPF requirement.
- "Let unmap_hugepage_range() and several related functions take folio
instead of page" from Fan Ni provides folio conversions in the
hugetlb code.
* tag 'mm-stable-2025-05-31-14-50' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (285 commits)
mm: pcp: increase pcp->free_count threshold to trigger free_high
mm/hugetlb: convert use of struct page to folio in __unmap_hugepage_range()
mm/hugetlb: refactor __unmap_hugepage_range() to take folio instead of page
mm/hugetlb: refactor unmap_hugepage_range() to take folio instead of page
mm/hugetlb: pass folio instead of page to unmap_ref_private()
memcg: objcg stock trylock without irq disabling
memcg: no stock lock for cpu hot-unplug
memcg: make __mod_memcg_lruvec_state re-entrant safe against irqs
memcg: make count_memcg_events re-entrant safe against irqs
memcg: make mod_memcg_state re-entrant safe against irqs
memcg: move preempt disable to callers of memcg_rstat_updated
memcg: memcg_rstat_updated re-entrant safe against irqs
mm: khugepaged: decouple SHMEM and file folios' collapse
selftests/eventfd: correct test name and improve messages
alloc_tag: check mem_profiling_support in alloc_tag_init
Docs/damon: update titles and brief introductions to explain DAMOS
selftests/damon/_damon_sysfs: read tried regions directories in order
mm/damon/tests/core-kunit: add a test for damos_set_filters_default_reject()
mm/damon/paddr: remove unused variable, folio_list, in damon_pa_stat()
mm/damon/sysfs-schemes: fix wrong comment on damons_sysfs_quota_goal_metric_strs
...
|
|
KVM SVM changes for 6.16:
- Wait for target vCPU to acknowledge KVM_REQ_UPDATE_PROTECTED_GUEST_STATE to
fix a race between AP destroy and VMRUN.
- Decrypt and dump the VMSA in dump_vmcb() if debugging enabled for the VM.
- Add support for ALLOWED_SEV_FEATURES.
- Add #VMGEXIT to the set of handlers special cased for CONFIG_RETPOLINE=y.
- Treat DEBUGCTL[5:2] as reserved to pave the way for virtualizing features
that utilize those bits.
- Don't account temporary allocations in sev_send_update_data().
- Add support for KVM_CAP_X86_BUS_LOCK_EXIT on SVM, via Bus Lock Threshold.
|
|
Virtual machines can exploit bus locks to degrade the performance of
the system. Bus locks can be caused by Non-WB(Write back) and
misaligned locked RMW (Read-modify-Write) instructions and require
systemwide synchronization among all processors which can result into
significant performance penalties.
To address this issue, the Bus Lock Threshold feature is introduced to
provide ability to hypervisor to restrict guests' capability of
initiating mulitple buslocks, thereby preventing system slowdowns.
Support for the buslock threshold is indicated via CPUID function
0x8000000A_EDX[29].
On the processors that support the Bus Lock Threshold feature, the
VMCB provides a Bus Lock Threshold enable bit and an unsigned 16-bit
Bus Lock threshold count.
VMCB intercept bit
VMCB Offset Bits Function
14h 5 Intercept bus lock operations
Bus lock threshold count
VMCB Offset Bits Function
120h 15:0 Bus lock counter
When a VMRUN instruction is executed, the bus lock threshold count is
loaded into an internal count register. Before the processor executes
a bus lock in the guest, it checks the value of this register:
- If the value is greater than '0', the processor successfully
executes the bus lock and decrements the count.
- If the value is '0', the bus lock is not executed, and a #VMEXIT to
the VMM is taken.
The bus lock threshold #VMEXIT is reported to the VMM with the VMEXIT
code A5h, SVM_EXIT_BUS_LOCK.
Signed-off-by: Nikunj A Dadhania <nikunj@amd.com>
Co-developed-by: Manali Shukla <manali.shukla@amd.com>
Signed-off-by: Manali Shukla <manali.shukla@amd.com>
Link: https://lore.kernel.org/r/20250502050346.14274-4-manali.shukla@amd.com
[sean: rewrite shortlog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
kexec handover (KHO) creates a metadata that the kernels pass between each
other during kexec. This metadata is stored in memory and kexec image
contains a (physical) pointer to that memory.
In addition, KHO keeps "scratch regions" available for kexec: physically
contiguous memory regions that are guaranteed to not have any memory that
KHO would preserve. The new kernel bootstraps itself using the scratch
regions and sets all handed over memory as in use. When subsystems that
support KHO initialize, they introspect the KHO metadata, restore
preserved memory regions, and retrieve their state stored in the preserved
memory.
Enlighten x86 kexec-file and boot path about the KHO metadata and make
sure it gets passed along to the next kernel.
Link: https://lkml.kernel.org/r/20250509074635.3187114-12-changyuanl@google.com
Signed-off-by: Alexander Graf <graf@amazon.com>
Co-developed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Co-developed-by: Changyuan Lyu <changyuanl@google.com>
Signed-off-by: Changyuan Lyu <changyuanl@google.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Ashish Kalra <ashish.kalra@amd.com>
Cc: Ben Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Gowans <jgowans@amazon.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Marc Rutland <mark.rutland@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pratyush Yadav <ptyadav@amazon.de>
Cc: Rob Herring <robh@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Stanislav Kinsburskii <skinsburskii@linux.microsoft.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Thomas Lendacky <thomas.lendacky@amd.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Extend the SEV library to include support for SNP ioctl() wrappers,
which aid in launching and interacting with a SEV-SNP guest.
Signed-off-by: Pratik R. Sampat <prsampat@amd.com>
Link: https://lore.kernel.org/r/20250305230000.231025-8-prsampat@amd.com
[sean: use BIT()]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
This large commit contains the initial support for TDX in KVM. All x86
parts enable the host-side hypercalls that KVM uses to talk to the TDX
module, a software component that runs in a special CPU mode called SEAM
(Secure Arbitration Mode).
The series is in turn split into multiple sub-series, each with a separate
merge commit:
- Initialization: basic setup for using the TDX module from KVM, plus
ioctls to create TDX VMs and vCPUs.
- MMU: in TDX, private and shared halves of the address space are mapped by
different EPT roots, and the private half is managed by the TDX module.
Using the support that was added to the generic MMU code in 6.14,
add support for TDX's secure page tables to the Intel side of KVM.
Generic KVM code takes care of maintaining a mirror of the secure page
tables so that they can be queried efficiently, and ensuring that changes
are applied to both the mirror and the secure EPT.
- vCPU enter/exit: implement the callbacks that handle the entry of a TDX
vCPU (via the SEAMCALL TDH.VP.ENTER) and the corresponding save/restore
of host state.
- Userspace exits: introduce support for guest TDVMCALLs that KVM forwards to
userspace. These correspond to the usual KVM_EXIT_* "heavyweight vmexits"
but are triggered through a different mechanism, similar to VMGEXIT for
SEV-ES and SEV-SNP.
- Interrupt handling: support for virtual interrupt injection as well as
handling VM-Exits that are caused by vectored events. Exclusive to
TDX are machine-check SMIs, which the kernel already knows how to
handle through the kernel machine check handler (commit 7911f145de5f,
"x86/mce: Implement recovery for errors in TDX/SEAM non-root mode")
- Loose ends: handling of the remaining exits from the TDX module, including
EPT violation/misconfig and several TDVMCALL leaves that are handled in
the kernel (CPUID, HLT, RDMSR/WRMSR, GetTdVmCallInfo); plus returning
an error or ignoring operations that are not supported by TDX guests
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Pull kvm updates from Paolo Bonzini:
"ARM:
- Nested virtualization support for VGICv3, giving the nested
hypervisor control of the VGIC hardware when running an L2 VM
- Removal of 'late' nested virtualization feature register masking,
making the supported feature set directly visible to userspace
- Support for emulating FEAT_PMUv3 on Apple silicon, taking advantage
of an IMPLEMENTATION DEFINED trap that covers all PMUv3 registers
- Paravirtual interface for discovering the set of CPU
implementations where a VM may run, addressing a longstanding issue
of guest CPU errata awareness in big-little systems and
cross-implementation VM migration
- Userspace control of the registers responsible for identifying a
particular CPU implementation (MIDR_EL1, REVIDR_EL1, AIDR_EL1),
allowing VMs to be migrated cross-implementation
- pKVM updates, including support for tracking stage-2 page table
allocations in the protected hypervisor in the 'SecPageTable' stat
- Fixes to vPMU, ensuring that userspace updates to the vPMU after
KVM_RUN are reflected into the backing perf events
LoongArch:
- Remove unnecessary header include path
- Assume constant PGD during VM context switch
- Add perf events support for guest VM
RISC-V:
- Disable the kernel perf counter during configure
- KVM selftests improvements for PMU
- Fix warning at the time of KVM module removal
x86:
- Add support for aging of SPTEs without holding mmu_lock.
Not taking mmu_lock allows multiple aging actions to run in
parallel, and more importantly avoids stalling vCPUs. This includes
an implementation of per-rmap-entry locking; aging the gfn is done
with only a per-rmap single-bin spinlock taken, whereas locking an
rmap for write requires taking both the per-rmap spinlock and the
mmu_lock.
Note that this decreases slightly the accuracy of accessed-page
information, because changes to the SPTE outside aging might not
use atomic operations even if they could race against a clear of
the Accessed bit.
This is deliberate because KVM and mm/ tolerate false
positives/negatives for accessed information, and testing has shown
that reducing the latency of aging is far more beneficial to
overall system performance than providing "perfect" young/old
information.
- Defer runtime CPUID updates until KVM emulates a CPUID instruction,
to coalesce updates when multiple pieces of vCPU state are
changing, e.g. as part of a nested transition
- Fix a variety of nested emulation bugs, and add VMX support for
synthesizing nested VM-Exit on interception (instead of injecting
#UD into L2)
- Drop "support" for async page faults for protected guests that do
not set SEND_ALWAYS (i.e. that only want async page faults at CPL3)
- Bring a bit of sanity to x86's VM teardown code, which has
accumulated a lot of cruft over the years. Particularly, destroy
vCPUs before the MMU, despite the latter being a VM-wide operation
- Add common secure TSC infrastructure for use within SNP and in the
future TDX
- Block KVM_CAP_SYNC_REGS if guest state is protected. It does not
make sense to use the capability if the relevant registers are not
available for reading or writing
- Don't take kvm->lock when iterating over vCPUs in the suspend
notifier to fix a largely theoretical deadlock
- Use the vCPU's actual Xen PV clock information when starting the
Xen timer, as the cached state in arch.hv_clock can be stale/bogus
- Fix a bug where KVM could bleed PVCLOCK_GUEST_STOPPED across
different PV clocks; restrict PVCLOCK_GUEST_STOPPED to kvmclock, as
KVM's suspend notifier only accounts for kvmclock, and there's no
evidence that the flag is actually supported by Xen guests
- Clean up the per-vCPU "cache" of its reference pvclock, and instead
only track the vCPU's TSC scaling (multipler+shift) metadata (which
is moderately expensive to compute, and rarely changes for modern
setups)
- Don't write to the Xen hypercall page on MSR writes that are
initiated by the host (userspace or KVM) to fix a class of bugs
where KVM can write to guest memory at unexpected times, e.g.
during vCPU creation if userspace has set the Xen hypercall MSR
index to collide with an MSR that KVM emulates
- Restrict the Xen hypercall MSR index to the unofficial synthetic
range to reduce the set of possible collisions with MSRs that are
emulated by KVM (collisions can still happen as KVM emulates
Hyper-V MSRs, which also reside in the synthetic range)
- Clean up and optimize KVM's handling of Xen MSR writes and
xen_hvm_config
- Update Xen TSC leaves during CPUID emulation instead of modifying
the CPUID entries when updating PV clocks; there is no guarantee PV
clocks will be updated between TSC frequency changes and CPUID
emulation, and guest reads of the TSC leaves should be rare, i.e.
are not a hot path
x86 (Intel):
- Fix a bug where KVM unnecessarily reads XFD_ERR from hardware and
thus modifies the vCPU's XFD_ERR on a #NM due to CR0.TS=1
- Pass XFD_ERR as the payload when injecting #NM, as a preparatory
step for upcoming FRED virtualization support
- Decouple the EPT entry RWX protection bit macros from the EPT
Violation bits, both as a general cleanup and in anticipation of
adding support for emulating Mode-Based Execution Control (MBEC)
- Reject KVM_RUN if userspace manages to gain control and stuff
invalid guest state while KVM is in the middle of emulating nested
VM-Enter
- Add a macro to handle KVM's sanity checks on entry/exit VMCS
control pairs in anticipation of adding sanity checks for secondary
exit controls (the primary field is out of bits)
x86 (AMD):
- Ensure the PSP driver is initialized when both the PSP and KVM
modules are built-in (the initcall framework doesn't handle
dependencies)
- Use long-term pins when registering encrypted memory regions, so
that the pages are migrated out of MIGRATE_CMA/ZONE_MOVABLE and
don't lead to excessive fragmentation
- Add macros and helpers for setting GHCB return/error codes
- Add support for Idle HLT interception, which elides interception if
the vCPU has a pending, unmasked virtual IRQ when HLT is executed
- Fix a bug in INVPCID emulation where KVM fails to check for a
non-canonical address
- Don't attempt VMRUN for SEV-ES+ guests if the vCPU's VMSA is
invalid, e.g. because the vCPU was "destroyed" via SNP's AP
Creation hypercall
- Reject SNP AP Creation if the requested SEV features for the vCPU
don't match the VM's configured set of features
Selftests:
- Fix again the Intel PMU counters test; add a data load and do
CLFLUSH{OPT} on the data instead of executing code. The theory is
that modern Intel CPUs have learned new code prefetching tricks
that bypass the PMU counters
- Fix a flaw in the Intel PMU counters test where it asserts that an
event is counting correctly without actually knowing what the event
counts on the underlying hardware
- Fix a variety of flaws, bugs, and false failures/passes
dirty_log_test, and improve its coverage by collecting all dirty
entries on each iteration
- Fix a few minor bugs related to handling of stats FDs
- Add infrastructure to make vCPU and VM stats FDs available to tests
by default (open the FDs during VM/vCPU creation)
- Relax an assertion on the number of HLT exits in the xAPIC IPI test
when running on a CPU that supports AMD's Idle HLT (which elides
interception of HLT if a virtual IRQ is pending and unmasked)"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (216 commits)
RISC-V: KVM: Optimize comments in kvm_riscv_vcpu_isa_disable_allowed
RISC-V: KVM: Teardown riscv specific bits after kvm_exit
LoongArch: KVM: Register perf callbacks for guest
LoongArch: KVM: Implement arch-specific functions for guest perf
LoongArch: KVM: Add stub for kvm_arch_vcpu_preempted_in_kernel()
LoongArch: KVM: Remove PGD saving during VM context switch
LoongArch: KVM: Remove unnecessary header include path
KVM: arm64: Tear down vGIC on failed vCPU creation
KVM: arm64: PMU: Reload when resetting
KVM: arm64: PMU: Reload when user modifies registers
KVM: arm64: PMU: Fix SET_ONE_REG for vPMC regs
KVM: arm64: PMU: Assume PMU presence in pmu-emul.c
KVM: arm64: PMU: Set raw values from user to PM{C,I}NTEN{SET,CLR}, PMOVS{SET,CLR}
KVM: arm64: Create each pKVM hyp vcpu after its corresponding host vcpu
KVM: arm64: Factor out pKVM hyp vcpu creation to separate function
KVM: arm64: Initialize HCRX_EL2 traps in pKVM
KVM: arm64: Factor out setting HCRX_EL2 traps into separate function
KVM: x86: block KVM_CAP_SYNC_REGS if guest state is protected
KVM: x86: Add infrastructure for secure TSC
KVM: x86: Push down setting vcpu.arch.user_set_tsc
...
|
|
KVM Xen changes for 6.15
- Don't write to the Xen hypercall page on MSR writes that are initiated by
the host (userspace or KVM) to fix a class of bugs where KVM can write to
guest memory at unexpected times, e.g. during vCPU creation if userspace has
set the Xen hypercall MSR index to collide with an MSR that KVM emulates.
- Restrict the Xen hypercall MSR indx to the unofficial synthetic range to
reduce the set of possible collisions with MSRs that are emulated by KVM
(collisions can still happen as KVM emulates Hyper-V MSRs, which also reside
in the synthetic range).
- Clean up and optimize KVM's handling of Xen MSR writes and xen_hvm_config.
- Update Xen TSC leaves during CPUID emulation instead of modifying the CPUID
entries when updating PV clocks, as there is no guarantee PV clocks will be
updated between TSC frequency changes and CPUID emulation, and guest reads
of Xen TSC should be rare, i.e. are not a hot path.
|
|
__ASSEMBLY__ is only defined by the Makefile of the kernel, so
this is not really useful for UAPI headers (unless the userspace
Makefile defines it, too). Let's switch to __ASSEMBLER__ which
gets set automatically by the compiler when compiling assembly
code.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Brian Gerst <brgerst@gmail.com>
Link: https://lore.kernel.org/r/20250310104256.123527-1-thuth@redhat.com
|
|
Introduce an Intel specific quirk KVM_X86_QUIRK_IGNORE_GUEST_PAT to have
KVM ignore guest PAT when this quirk is enabled.
On AMD platforms, KVM always honors guest PAT. On Intel however there are
two issues. First, KVM *cannot* honor guest PAT if CPU feature self-snoop
is not supported. Second, UC access on certain Intel platforms can be very
slow[1] and honoring guest PAT on those platforms may break some old
guests that accidentally specify video RAM as UC. Those old guests may
never expect the slowness since KVM always forces WB previously. See [2].
So, introduce a quirk that KVM can enable by default on all Intel platforms
to avoid breaking old unmodifiable guests. Newer userspace can disable this
quirk if it wishes KVM to honor guest PAT; disabling the quirk will fail
if self-snoop is not supported, i.e. if KVM cannot obey the wish.
The quirk is a no-op on AMD and also if any assigned devices have
non-coherent DMA. This is not an issue, as KVM_X86_QUIRK_CD_NW_CLEARED is
another example of a quirk that is sometimes automatically disabled.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Cc: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Link: https://lore.kernel.org/all/Ztl9NWCOupNfVaCA@yzhao56-desk.sh.intel.com # [1]
Link: https://lore.kernel.org/all/87jzfutmfc.fsf@redhat.com # [2]
Message-ID: <20250224070946.31482-1-yan.y.zhao@intel.com>
[Use supported_quirks/inapplicable_quirks to support both AMD and
no-self-snoop cases, as well as to remove the shadow_memtype_mask check
from kvm_mmu_may_ignore_guest_pat(). - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Handle VM exit caused by "other SMI" for TDX, by returning back to
userspace for Machine Check System Management Interrupt (MSMI) case or
ignoring it and resume vCPU for non-MSMI case.
For VMX, SMM transition can happen in both VMX non-root mode and VMX
root mode. Unlike VMX, in SEAM root mode (TDX module), all interrupts
are blocked. If an SMI occurs in SEAM non-root mode (TD guest), the SMI
causes VM exit to TDX module, then SEAMRET to KVM. Once it exits to KVM,
SMI is delivered and handled by kernel handler right away.
An SMI can be "I/O SMI" or "other SMI". For TDX, there will be no I/O SMI
because I/O instructions inside TDX guest trigger #VE and TDX guest needs
to use TDVMCALL to request VMM to do I/O emulation.
For "other SMI", there are two cases:
- MSMI case. When BIOS eMCA MCE-SMI morphing is enabled, the #MC occurs in
TDX guest will be delivered as an MSMI. It causes an
EXIT_REASON_OTHER_SMI VM exit with MSMI (bit 0) set in the exit
qualification. On VM exit, TDX module checks whether the "other SMI" is
caused by an MSMI or not. If so, TDX module marks TD as fatal,
preventing further TD entries, and then completes the TD exit flow to KVM
with the TDH.VP.ENTER outputs indicating TDX_NON_RECOVERABLE_TD. After
TD exit, the MSMI is delivered and eventually handled by the kernel
machine check handler (7911f145de5f x86/mce: Implement recovery for
errors in TDX/SEAM non-root mode), i.e., the memory page is marked as
poisoned and it won't be freed to the free list when the TDX guest is
terminated. Since the TDX guest is dead, follow other non-recoverable
cases, exit to userspace.
- For non-MSMI case, KVM doesn't need to do anything, just continue TDX
vCPU execution.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Binbin Wu <binbin.wu@linux.intel.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20250222014757.897978-17-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add a place holder and related helper functions for preparation of
TDG.VP.VMCALL handling.
The TDX module specification defines TDG.VP.VMCALL API (TDVMCALL for short)
for the guest TD to call hypercall to VMM. When the guest TD issues a
TDVMCALL, the guest TD exits to VMM with a new exit reason. The arguments
from the guest TD and returned values from the VMM are passed in the guest
registers. The guest RCX register indicates which registers are used.
Define helper functions to access those registers.
A new VMX exit reason TDCALL is added to indicate the exit is due to
TDVMCALL from the guest TD. Define the TDCALL exit reason and add a place
holder to handle such exit.
Some leafs of TDCALL will be morphed to another VMX exit reason instead of
EXIT_REASON_TDCALL, add a helper tdcall_to_vmx_exit_reason() as a place
holder to do the conversion.
Suggested-by: Sean Christopherson <seanjc@google.com>
Co-developed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Binbin Wu <binbin.wu@linux.intel.com>
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Message-ID: <20250222014225.897298-5-binbin.wu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add a new VM-scoped KVM_MEMORY_ENCRYPT_OP IOCTL subcommand,
KVM_TDX_FINALIZE_VM, to perform TD Measurement Finalization.
Documentation for the API is added in another patch:
"Documentation/virt/kvm: Document on Trust Domain Extensions(TDX)"
For the purpose of attestation, a measurement must be made of the TDX VM
initial state. This is referred to as TD Measurement Finalization, and
uses SEAMCALL TDH.MR.FINALIZE, after which:
1. The VMM adding TD private pages with arbitrary content is no longer
allowed
2. The TDX VM is runnable
Co-developed-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Message-ID: <20240904030751.117579-21-rick.p.edgecombe@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add a new ioctl for the user space VMM to initialize guest memory with the
specified memory contents.
Because TDX protects the guest's memory, the creation of the initial guest
memory requires a dedicated TDX module API, TDH.MEM.PAGE.ADD(), instead of
directly copying the memory contents into the guest's memory in the case of
the default VM type.
Define a new subcommand, KVM_TDX_INIT_MEM_REGION, of vCPU-scoped
KVM_MEMORY_ENCRYPT_OP. Check if the GFN is already pre-allocated, assign
the guest page in Secure-EPT, copy the initial memory contents into the
guest memory, and encrypt the guest memory. Optionally, extend the memory
measurement of the TDX guest.
The ioctl uses the vCPU file descriptor because of the TDX module's
requirement that the memory is added to the S-EPT (via TDH.MEM.SEPT.ADD)
prior to initialization (TDH.MEM.PAGE.ADD). Accessing the MMU in turn
requires a vCPU file descriptor, just like for KVM_PRE_FAULT_MEMORY. In
fact, the post-populate callback is able to reuse the same logic used by
KVM_PRE_FAULT_MEMORY, so that userspace can do everything with a single
ioctl.
Note that this is the only way to invoke TDH.MEM.SEPT.ADD before the TD
in finalized, as userspace cannot use KVM_PRE_FAULT_MEMORY at that
point. This ensures that there cannot be pages in the S-EPT awaiting
TDH.MEM.PAGE.ADD, which would be treated incorrectly as spurious by
tdp_mmu_map_handle_target_level() (KVM would see the SPTE as PRESENT,
but the corresponding S-EPT entry will be !PRESENT).
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Co-developed-by: Yan Zhao <yan.y.zhao@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
---
- KVM_BUG_ON() for kvm_tdx->nr_premapped (Paolo)
- Use tdx_operand_busy()
- Merge first patch in SEPT SEAMCALL retry series in to this base
(Paolo)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Implement an IOCTL to allow userspace to read the CPUID bit values for a
configured TD.
The TDX module doesn't provide the ability to set all CPUID bits. Instead
some are configured indirectly, or have fixed values. But it does allow
for the final resulting CPUID bits to be read. This information will be
useful for userspace to understand the configuration of the TD, and set
KVM's copy via KVM_SET_CPUID2.
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Co-developed-by: Tony Lindgren <tony.lindgren@linux.intel.com>
Signed-off-by: Tony Lindgren <tony.lindgren@linux.intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
---
- Fix subleaf mask check (Binbin)
- Search all possible sub-leafs (Francesco Lavra)
- Reduce off-by-one error sensitve code (Francesco, Xiaoyao)
- Handle buffers too small from userspace (Xiaoyao)
- Read max CPUID from TD instead of using fixed values (Xiaoyao)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
TD guest vcpu needs TDX specific initialization before running. Repurpose
KVM_MEMORY_ENCRYPT_OP to vcpu-scope, add a new sub-command
KVM_TDX_INIT_VCPU, and implement the callback for it.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Tony Lindgren <tony.lindgren@linux.intel.com>
Signed-off-by: Tony Lindgren <tony.lindgren@linux.intel.com>
Co-developed-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
---
- Fix comment: https://lore.kernel.org/kvm/Z36OYfRW9oPjW8be@google.com/
(Sean)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
After the crypto-protection key has been configured, TDX requires a
VM-scope initialization as a step of creating the TDX guest. This
"per-VM" TDX initialization does the global configurations/features that
the TDX guest can support, such as guest's CPUIDs (emulated by the TDX
module), the maximum number of vcpus etc.
Because there is no room in KVM_CREATE_VM to pass all the required
parameters, introduce a new ioctl KVM_TDX_INIT_VM and mark the VM as
TD_STATE_UNINITIALIZED until it is invoked.
This "per-VM" TDX initialization must be done before any "vcpu-scope" TDX
initialization; KVM_TDX_INIT_VM IOCTL must be invoked before the creation
of vCPUs.
Co-developed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
TDX KVM needs system-wide information about the TDX module. Generate the
data based on tdx_sysinfo td_conf CPUID data.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Co-developed-by: Tony Lindgren <tony.lindgren@linux.intel.com>
Signed-off-by: Tony Lindgren <tony.lindgren@linux.intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
---
- Clarify comment about EAX[23:16] in td_init_cpuid_entry2() (Xiaoyao)
- Add comment for configurable CPUID bits (Xiaoyao)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
KVM_MEMORY_ENCRYPT_OP was introduced for VM-scoped operations specific for
guest state-protected VM. It defined subcommands for technology-specific
operations under KVM_MEMORY_ENCRYPT_OP. Despite its name, the subcommands
are not limited to memory encryption, but various technology-specific
operations are defined. It's natural to repurpose KVM_MEMORY_ENCRYPT_OP
for TDX specific operations and define subcommands.
Add a place holder function for TDX specific VM-scoped ioctl as mem_enc_op.
TDX specific sub-commands will be added to retrieve/pass TDX specific
parameters. Make mem_enc_ioctl non-optional as it's always filled.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Tony Lindgren <tony.lindgren@linux.intel.com>
Signed-off-by: Tony Lindgren <tony.lindgren@linux.intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
---
- Drop the misleading "defined for consistency" line. It's a copy-paste
error introduced in the earlier patches. Earlier there was padding at
the end to match struct kvm_sev_cmd size. (Tony)
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add support for "Idle HLT" interception on AMD CPUs, and enable Idle HLT
interception instead of "normal" HLT interception for all VMs for which
HLT-exiting is enabled. Idle HLT provides a mild performance boost for
all VM types, by avoiding a VM-Exit in the scenario where KVM would
immediately "wake" and resume the vCPU.
Idle HLT makes HLT-exiting conditional on the vCPU not having a valid,
unmasked interrupt. Specifically, a VM-Exit occurs on execution of HLT
if and only if there are no pending V_IRQ or V_NMI events. Note, Idle
is a replacement for full HLT interception, i.e. enabling HLT interception
would result in all HLT instructions causing unconditional VM-Exits. Per
the APM:
When both HLT and Idle HLT intercepts are active at the same time, the
HLT intercept takes priority. This intercept occurs only if a virtual
interrupt is not pending (V_INTR or V_NMI).
For KVM's use of V_IRQ (also called V_INTR in the APM) to detect interrupt
windows, the net effect of enabling Idle HLT is that, if a virtual
interupt is pending and unmasked at the time of HLT, the vCPU will take
a V_IRQ intercept instead of a HLT intercept.
When AVIC is enabled, Idle HLT works as intended: the vCPU continues
unimpeded and services the pending virtual interrupt.
Note, the APM's description of V_IRQ interaction with AVIC is quite
confusing, and requires piecing together implied behavior. Per the APM,
when AVIC is enabled, V_IRQ *from the VMCB* is ignored:
When AVIC mode is enabled for a virtual processor, the V_IRQ, V_INTR_PRIO,
V_INTR_VECTOR, and V_IGN_TPR fields in the VMCB are ignored.
Which seems to contradict the behavior of Idle HLT:
This intercept occurs only if a virtual interrupt is not pending (V_INTR
or V_NMI).
What's not explicitly stated is that hardware's internal copy of V_IRQ
(and related fields) *are* still active, i.e. are presumably used to cache
information from the virtual APIC.
Handle Idle HLT exits as if they were normal HLT exits, e.g. don't try to
optimize the handling under the assumption that there isn't a pending IRQ.
Irrespective of AVIC, Idle HLT is inherently racy with respect to the vIRR,
as KVM can set vIRR bits asychronously.
No changes are required to support KVM's use Idle HLT while running
L2. In fact, supporting Idle HLT is actually a bug fix to some extent.
If L1 wants to intercept HLT, recalc_intercepts() will enable HLT
interception in vmcb02 and forward the intercept to L1 as normal.
But if L1 does not want to intercept HLT, then KVM will run L2 with Idle
HLT enabled and HLT interception disabled. If a V_IRQ or V_NMI for L2
becomes pending and L2 executes HLT, then use of Idle HLT will do the
right thing, i.e. not #VMEXIT and instead deliver the virtual event. KVM
currently doesn't handle this scenario correctly, e.g. doesn't check V_IRQ
or V_NMI in vmcs02 as part of kvm_vcpu_has_events().
Do not expose Idle HLT to L1 at this time, as supporting nested Idle HLT is
more complex than just enumerating the feature, e.g. requires KVM to handle
the aforementioned scenarios of V_IRQ and V_NMI at the time of exit.
Signed-off-by: Manali Shukla <Manali.Shukla@amd.com>
Reviewed-by: Nikunj A Dadhania <nikunj@amd.com>
Link: https://bugzilla.kernel.org/attachment.cgi?id=306250
Link: https://lore.kernel.org/r/20250128124812.7324-3-manali.shukla@amd.com
[sean: rewrite changelog, drop nested "support"]
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Reject userspace attempts to set the Xen hypercall page MSR to an index
outside of the "standard" virtualization range [0x40000000, 0x4fffffff],
as KVM is not equipped to handle collisions with real MSRs, e.g. KVM
doesn't update MSR interception, conflicts with VMCS/VMCB fields, special
case writes in KVM, etc.
While the MSR index isn't strictly ABI, i.e. can theoretically float to
any value, in practice no known VMM sets the MSR index to anything other
than 0x40000000 or 0x40000200.
Cc: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Paul Durrant <paul@xen.org>
Link: https://lore.kernel.org/r/20250215011437.1203084-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Pull kvm updates from Paolo Bonzini:
"Loongarch:
- Clear LLBCTL if secondary mmu mapping changes
- Add hypercall service support for usermode VMM
x86:
- Add a comment to kvm_mmu_do_page_fault() to explain why KVM
performs a direct call to kvm_tdp_page_fault() when RETPOLINE is
enabled
- Ensure that all SEV code is compiled out when disabled in Kconfig,
even if building with less brilliant compilers
- Remove a redundant TLB flush on AMD processors when guest CR4.PGE
changes
- Use str_enabled_disabled() to replace open coded strings
- Drop kvm_x86_ops.hwapic_irr_update() as KVM updates hardware's
APICv cache prior to every VM-Enter
- Overhaul KVM's CPUID feature infrastructure to track all vCPU
capabilities instead of just those where KVM needs to manage state
and/or explicitly enable the feature in hardware. Along the way,
refactor the code to make it easier to add features, and to make it
more self-documenting how KVM is handling each feature
- Rework KVM's handling of VM-Exits during event vectoring; this
plugs holes where KVM unintentionally puts the vCPU into infinite
loops in some scenarios (e.g. if emulation is triggered by the
exit), and brings parity between VMX and SVM
- Add pending request and interrupt injection information to the
kvm_exit and kvm_entry tracepoints respectively
- Fix a relatively benign flaw where KVM would end up redoing RDPKRU
when loading guest/host PKRU, due to a refactoring of the kernel
helpers that didn't account for KVM's pre-checking of the need to
do WRPKRU
- Make the completion of hypercalls go through the complete_hypercall
function pointer argument, no matter if the hypercall exits to
userspace or not.
Previously, the code assumed that KVM_HC_MAP_GPA_RANGE specifically
went to userspace, and all the others did not; the new code need
not special case KVM_HC_MAP_GPA_RANGE and in fact does not care at
all whether there was an exit to userspace or not
- As part of enabling TDX virtual machines, support support
separation of private/shared EPT into separate roots.
When TDX will be enabled, operations on private pages will need to
go through the privileged TDX Module via SEAMCALLs; as a result,
they are limited and relatively slow compared to reading a PTE.
The patches included in 6.14 allow KVM to keep a mirror of the
private EPT in host memory, and define entries in kvm_x86_ops to
operate on external page tables such as the TDX private EPT
- The recently introduced conversion of the NX-page reclamation
kthread to vhost_task moved the task under the main process. The
task is created as soon as KVM_CREATE_VM was invoked and this, of
course, broke userspace that didn't expect to see any child task of
the VM process until it started creating its own userspace threads.
In particular crosvm refuses to fork() if procfs shows any child
task, so unbreak it by creating the task lazily. This is arguably a
userspace bug, as there can be other kinds of legitimate worker
tasks and they wouldn't impede fork(); but it's not like userspace
has a way to distinguish kernel worker tasks right now. Should they
show as "Kthread: 1" in proc/.../status?
x86 - Intel:
- Fix a bug where KVM updates hardware's APICv cache of the highest
ISR bit while L2 is active, while ultimately results in a
hardware-accelerated L1 EOI effectively being lost
- Honor event priority when emulating Posted Interrupt delivery
during nested VM-Enter by queueing KVM_REQ_EVENT instead of
immediately handling the interrupt
- Rework KVM's processing of the Page-Modification Logging buffer to
reap entries in the same order they were created, i.e. to mark gfns
dirty in the same order that hardware marked the page/PTE dirty
- Misc cleanups
Generic:
- Cleanup and harden kvm_set_memory_region(); add proper lockdep
assertions when setting memory regions and add a dedicated API for
setting KVM-internal memory regions. The API can then explicitly
disallow all flags for KVM-internal memory regions
- Explicitly verify the target vCPU is online in kvm_get_vcpu() to
fix a bug where KVM would return a pointer to a vCPU prior to it
being fully online, and give kvm_for_each_vcpu() similar treatment
to fix a similar flaw
- Wait for a vCPU to come online prior to executing a vCPU ioctl, to
fix a bug where userspace could coerce KVM into handling the ioctl
on a vCPU that isn't yet onlined
- Gracefully handle xarray insertion failures; even though such
failures are impossible in practice after xa_reserve(), reserving
an entry is always followed by xa_store() which does not know (or
differentiate) whether there was an xa_reserve() before or not
RISC-V:
- Zabha, Svvptc, and Ziccrse extension support for guests. None of
them require anything in KVM except for detecting them and marking
them as supported; Zabha adds byte and halfword atomic operations,
while the others are markers for specific operation of the TLB and
of LL/SC instructions respectively
- Virtualize SBI system suspend extension for Guest/VM
- Support firmware counters which can be used by the guests to
collect statistics about traps that occur in the host
Selftests:
- Rework vcpu_get_reg() to return a value instead of using an
out-param, and update all affected arch code accordingly
- Convert the max_guest_memory_test into a more generic
mmu_stress_test. The basic gist of the "conversion" is to have the
test do mprotect() on guest memory while vCPUs are accessing said
memory, e.g. to verify KVM and mmu_notifiers are working as
intended
- Play nice with treewrite builds of unsupported architectures, e.g.
arm (32-bit), as KVM selftests' Makefile doesn't do anything to
ensure the target architecture is actually one KVM selftests
supports
- Use the kernel's $(ARCH) definition instead of the target triple
for arch specific directories, e.g. arm64 instead of aarch64,
mainly so as not to be different from the rest of the kernel
- Ensure that format strings for logging statements are checked by
the compiler even when the logging statement itself is disabled
- Attempt to whack the last LLC references/misses mole in the Intel
PMU counters test by adding a data load and doing CLFLUSH{OPT} on
the data instead of the code being executed. It seems that modern
Intel CPUs have learned new code prefetching tricks that bypass the
PMU counters
- Fix a flaw in the Intel PMU counters test where it asserts that
events are counting correctly without actually knowing what the
events count given the underlying hardware; this can happen if
Intel reuses a formerly microarchitecture-specific event encoding
as an architectural event, as was the case for Top-Down Slots"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (151 commits)
kvm: defer huge page recovery vhost task to later
KVM: x86/mmu: Return RET_PF* instead of 1 in kvm_mmu_page_fault()
KVM: Disallow all flags for KVM-internal memslots
KVM: x86: Drop double-underscores from __kvm_set_memory_region()
KVM: Add a dedicated API for setting KVM-internal memslots
KVM: Assert slots_lock is held when setting memory regions
KVM: Open code kvm_set_memory_region() into its sole caller (ioctl() API)
LoongArch: KVM: Add hypercall service support for usermode VMM
LoongArch: KVM: Clear LLBCTL if secondary mmu mapping is changed
KVM: SVM: Use str_enabled_disabled() helper in svm_hardware_setup()
KVM: VMX: read the PML log in the same order as it was written
KVM: VMX: refactor PML terminology
KVM: VMX: Fix comment of handle_vmx_instruction()
KVM: VMX: Reinstate __exit attribute for vmx_exit()
KVM: SVM: Use str_enabled_disabled() helper in sev_hardware_setup()
KVM: x86: Avoid double RDPKRU when loading host/guest PKRU
KVM: x86: Use LVT_TIMER instead of an open coded literal
RISC-V: KVM: Add new exit statstics for redirected traps
RISC-V: KVM: Update firmware counters for various events
RISC-V: KVM: Redirect instruction access fault trap to guest
...
|
|
Add a VM type define for TDX.
Future changes will need to lay the ground work for TDX support by
making some behavior conditional on the VM being a TDX guest.
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Message-ID: <20240718211230.1492011-4-rick.p.edgecombe@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Following new HSMP messages are available on family 0x1A, model 0x00-0x1F
platforms with protocol version 7. Add support for them in the driver.
- SetXgmiPstateRange(26h)
- CpuRailIsoFreqPolicy(27h)
- DfcEnable(28h)
- GetRaplUnit(30h)
- GetRaplCoreCounter(31h)
- GetRaplPackageCounter(32h)
Also update HSMP message PwrEfficiencyModeSelection-21h. This message is
updated to include GET option in recent firmware.
Signed-off-by: Suma Hegde <suma.hegde@amd.com>
Reviewed-by: Naveen Krishna Chatradhi <naveenkrishna.chatradhi@amd.com>
Link: https://lore.kernel.org/r/20241118102752.11703-1-suma.hegde@amd.com
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
|
|
Pull kvm updates from Paolo Bonzini:
"The biggest change here is eliminating the awful idea that KVM had of
essentially guessing which pfns are refcounted pages.
The reason to do so was that KVM needs to map both non-refcounted
pages (for example BARs of VFIO devices) and VM_PFNMAP/VM_MIXMEDMAP
VMAs that contain refcounted pages.
However, the result was security issues in the past, and more recently
the inability to map VM_IO and VM_PFNMAP memory that _is_ backed by
struct page but is not refcounted. In particular this broke virtio-gpu
blob resources (which directly map host graphics buffers into the
guest as "vram" for the virtio-gpu device) with the amdgpu driver,
because amdgpu allocates non-compound higher order pages and the tail
pages could not be mapped into KVM.
This requires adjusting all uses of struct page in the
per-architecture code, to always work on the pfn whenever possible.
The large series that did this, from David Stevens and Sean
Christopherson, also cleaned up substantially the set of functions
that provided arch code with the pfn for a host virtual addresses.
The previous maze of twisty little passages, all different, is
replaced by five functions (__gfn_to_page, __kvm_faultin_pfn, the
non-__ versions of these two, and kvm_prefetch_pages) saving almost
200 lines of code.
ARM:
- Support for stage-1 permission indirection (FEAT_S1PIE) and
permission overlays (FEAT_S1POE), including nested virt + the
emulated page table walker
- Introduce PSCI SYSTEM_OFF2 support to KVM + client driver. This
call was introduced in PSCIv1.3 as a mechanism to request
hibernation, similar to the S4 state in ACPI
- Explicitly trap + hide FEAT_MPAM (QoS controls) from KVM guests. As
part of it, introduce trivial initialization of the host's MPAM
context so KVM can use the corresponding traps
- PMU support under nested virtualization, honoring the guest
hypervisor's trap configuration and event filtering when running a
nested guest
- Fixes to vgic ITS serialization where stale device/interrupt table
entries are not zeroed when the mapping is invalidated by the VM
- Avoid emulated MMIO completion if userspace has requested
synchronous external abort injection
- Various fixes and cleanups affecting pKVM, vCPU initialization, and
selftests
LoongArch:
- Add iocsr and mmio bus simulation in kernel.
- Add in-kernel interrupt controller emulation.
- Add support for virtualization extensions to the eiointc irqchip.
PPC:
- Drop lingering and utterly obsolete references to PPC970 KVM, which
was removed 10 years ago.
- Fix incorrect documentation references to non-existing ioctls
RISC-V:
- Accelerate KVM RISC-V when running as a guest
- Perf support to collect KVM guest statistics from host side
s390:
- New selftests: more ucontrol selftests and CPU model sanity checks
- Support for the gen17 CPU model
- List registers supported by KVM_GET/SET_ONE_REG in the
documentation
x86:
- Cleanup KVM's handling of Accessed and Dirty bits to dedup code,
improve documentation, harden against unexpected changes.
Even if the hardware A/D tracking is disabled, it is possible to
use the hardware-defined A/D bits to track if a PFN is Accessed
and/or Dirty, and that removes a lot of special cases.
- Elide TLB flushes when aging secondary PTEs, as has been done in
x86's primary MMU for over 10 years.
- Recover huge pages in-place in the TDP MMU when dirty page logging
is toggled off, instead of zapping them and waiting until the page
is re-accessed to create a huge mapping. This reduces vCPU jitter.
- Batch TLB flushes when dirty page logging is toggled off. This
reduces the time it takes to disable dirty logging by ~3x.
- Remove the shrinker that was (poorly) attempting to reclaim shadow
page tables in low-memory situations.
- Clean up and optimize KVM's handling of writes to
MSR_IA32_APICBASE.
- Advertise CPUIDs for new instructions in Clearwater Forest
- Quirk KVM's misguided behavior of initialized certain feature MSRs
to their maximum supported feature set, which can result in KVM
creating invalid vCPU state. E.g. initializing PERF_CAPABILITIES to
a non-zero value results in the vCPU having invalid state if
userspace hides PDCM from the guest, which in turn can lead to
save/restore failures.
- Fix KVM's handling of non-canonical checks for vCPUs that support
LA57 to better follow the "architecture", in quotes because the
actual behavior is poorly documented. E.g. most MSR writes and
descriptor table loads ignore CR4.LA57 and operate purely on
whether the CPU supports LA57.
- Bypass the register cache when querying CPL from kvm_sched_out(),
as filling the cache from IRQ context is generally unsafe; harden
the cache accessors to try to prevent similar issues from occuring
in the future. The issue that triggered this change was already
fixed in 6.12, but was still kinda latent.
- Advertise AMD_IBPB_RET to userspace, and fix a related bug where
KVM over-advertises SPEC_CTRL when trying to support cross-vendor
VMs.
- Minor cleanups
- Switch hugepage recovery thread to use vhost_task.
These kthreads can consume significant amounts of CPU time on
behalf of a VM or in response to how the VM behaves (for example
how it accesses its memory); therefore KVM tried to place the
thread in the VM's cgroups and charge the CPU time consumed by that
work to the VM's container.
However the kthreads did not process SIGSTOP/SIGCONT, and therefore
cgroups which had KVM instances inside could not complete freezing.
Fix this by replacing the kthread with a PF_USER_WORKER thread, via
the vhost_task abstraction. Another 100+ lines removed, with
generally better behavior too like having these threads properly
parented in the process tree.
- Revert a workaround for an old CPU erratum (Nehalem/Westmere) that
didn't really work; there was really nothing to work around anyway:
the broken patch was meant to fix nested virtualization, but the
PERF_GLOBAL_CTRL MSR is virtualized and therefore unaffected by the
erratum.
- Fix 6.12 regression where CONFIG_KVM will be built as a module even
if asked to be builtin, as long as neither KVM_INTEL nor KVM_AMD is
'y'.
x86 selftests:
- x86 selftests can now use AVX.
Documentation:
- Use rST internal links
- Reorganize the introduction to the API document
Generic:
- Protect vcpu->pid accesses outside of vcpu->mutex with a rwlock
instead of RCU, so that running a vCPU on a different task doesn't
encounter long due to having to wait for all CPUs become quiescent.
In general both reads and writes are rare, but userspace that
supports confidential computing is introducing the use of "helper"
vCPUs that may jump from one host processor to another. Those will
be very happy to trigger a synchronize_rcu(), and the effect on
performance is quite the disaster"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (298 commits)
KVM: x86: Break CONFIG_KVM_X86's direct dependency on KVM_INTEL || KVM_AMD
KVM: x86: add back X86_LOCAL_APIC dependency
Revert "KVM: VMX: Move LOAD_IA32_PERF_GLOBAL_CTRL errata handling out of setup_vmcs_config()"
KVM: x86: switch hugepage recovery thread to vhost_task
KVM: x86: expose MSR_PLATFORM_INFO as a feature MSR
x86: KVM: Advertise CPUIDs for new instructions in Clearwater Forest
Documentation: KVM: fix malformed table
irqchip/loongson-eiointc: Add virt extension support
LoongArch: KVM: Add irqfd support
LoongArch: KVM: Add PCHPIC user mode read and write functions
LoongArch: KVM: Add PCHPIC read and write functions
LoongArch: KVM: Add PCHPIC device support
LoongArch: KVM: Add EIOINTC user mode read and write functions
LoongArch: KVM: Add EIOINTC read and write functions
LoongArch: KVM: Add EIOINTC device support
LoongArch: KVM: Add IPI user mode read and write function
LoongArch: KVM: Add IPI read and write function
LoongArch: KVM: Add IPI device support
LoongArch: KVM: Add iocsr and mmio bus simulation in kernel
KVM: arm64: Pass on SVE mapping failures
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/pdx86/platform-drivers-x86
Pull x86 platform driver updates from Ilpo Järvinen:
- alienware WMAX thermal interface support
- Split ACPI and platform device based amd/hsmp drivers
- AMD X3D frequency/cache mode switching support
- asus thermal policy fixes
- Disable C1 auto-demotion in suspend to allow entering the deepest
C-states
- Fix volume buttons on Thinkpad X12 Detachable Tablet Gen 1
- Replace intel_scu_ipc "workaround" with 32-bit IO
- Correct *_show() function error handling in panasonic-laptop
- Gemini Lake P2SB devfn correction
- think-lmi Admin/System certificate authentication support
- Disable WMI devices for shutdown, refactoring continues
- Vexia EDU ATLA 10 tablet support
- Surface Pro 9 5G (Arm/QCOM) support
- Misc cleanups / refactoring / improvements
* tag 'platform-drivers-x86-v6.13-1' of git://git.kernel.org/pub/scm/linux/kernel/git/pdx86/platform-drivers-x86: (69 commits)
platform/x86: p2sb: Cache correct PCI bar for P2SB on Gemini Lake
platform/x86: panasonic-laptop: Return errno correctly in show callback
Documentation: alienware-wmi: Describe THERMAL_INFORMATION operation 0x02
alienware-wmi: create_thermal_profile() no longer brute-forces IDs
alienware-wmi: Adds support to Alienware x17 R2
alienware-wmi: extends the list of supported models
alienware-wmi: order alienware_quirks[] alphabetically
platform/x86/intel/pmt: allow user offset for PMT callbacks
platform/x86/amd/hsmp: Change the error type
platform/x86/amd/hsmp: Add new error code and error logs
platform/x86/amd: amd_3d_vcache: Add sysfs ABI documentation
platform/x86/amd: amd_3d_vcache: Add AMD 3D V-Cache optimizer driver
intel-hid: fix volume buttons on Thinkpad X12 Detachable Tablet Gen 1
platform/x86/amd/hsmp: mark hsmp_msg_desc_table[] as maybe_unused
platform/x86: asus-wmi: Use platform_profile_cycle()
platform/x86: asus-wmi: Fix inconsistent use of thermal policies
platform/x86: hp: hp-bioscfg: remove redundant if statement
MAINTAINERS: Update ISHTP ECLITE maintainer entry
platform/x86: x86-android-tablets: Add support for Vexia EDU ATLA 10 tablet
platform/x86: x86-android-tablets: Add support for getting i2c_adapter by PCI parent devname()
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RAS updates from Borislav Petkov:
- Log and handle twp new AMD-specific MCA registers: SYND1 and SYND2
and report the Field Replaceable Unit text info reported through them
- Add support for handling variable-sized SMCA BERT records
- Add the capability for reporting vendor-specific RAS error info
without adding vendor-specific fields to struct mce
- Cleanups
* tag 'ras_core_for_v6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
EDAC/mce_amd: Add support for FRU text in MCA
x86/mce/apei: Handle variable SMCA BERT record size
x86/MCE/AMD: Add support for new MCA_SYND{1,2} registers
tracing: Add __print_dynamic_array() helper
x86/mce: Add wrapper for struct mce to export vendor specific info
x86/mce/intel: Use MCG_BANKCNT_MASK instead of 0xff
x86/mce/mcelog: Use xchg() to get and clear the flags
|
|
After the file got split, there are now W=1 warnings for users that
include it without referencing hsmp_msg_desc_table:
In file included from arch/x86/include/asm/amd_hsmp.h:6,
from drivers/platform/x86/amd/hsmp/plat.c:12:
arch/x86/include/uapi/asm/amd_hsmp.h:91:35: error: 'hsmp_msg_desc_table' defined but not used [-Werror=unused-const-variable=]
91 | static const struct hsmp_msg_desc hsmp_msg_desc_table[] = {
| ^~~~~~~~~~~~~~~~~~~
Mark it as __attribute__((maybe_unused)) to shut up the warning but
keep it in the file in case it is used from userland. The __maybe_unused
shorthand unfortunately isn't available in userspace, so this has to
be the long form.
While it is not envisioned a normal userspace program could benefit
from having this table as part of UAPI, it seems there is non-zero
chance this array is used by some userspace tests so it is retained for
now (see the Link below).
Fixes: e47c018a0ee6 ("platform/x86/amd/hsmp: Move platform device specific code to plat.c")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/platform-driver-x86/CAPhsuW7mDRswhVjYf+4iinO+sph_rQ1JykEof+apoiSOVwOXXQ@mail.gmail.com/
Link: https://lore.kernel.org/r/20241028163553.2452486-1-arnd@kernel.org
Reviewed-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
|
|
Add a quirk to control KVM's misguided initialization of select feature
MSRs to KVM's max configuration, as enabling features by default violates
KVM's approach of letting userspace own the vCPU model, and is actively
problematic for MSRs that are conditionally supported, as the vCPU will
end up with an MSR value that userspace can't restore. E.g. if the vCPU
is configured with PDCM=0, userspace will save and attempt to restore a
non-zero PERF_CAPABILITIES, thanks to KVM's meddling.
Link: https://lore.kernel.org/r/20240802185511.305849-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
Starting with Zen4, AMD's Scalable MCA systems incorporate two new registers:
MCA_SYND1 and MCA_SYND2.
These registers will include supplemental error information in addition to the
existing MCA_SYND register. The data within these registers is considered
valid if MCA_STATUS[SyndV] is set.
Userspace error decoding tools like rasdaemon gather related hardware error
information through the tracepoints.
Therefore, export these two registers through the mce_record tracepoint so
that tools like rasdaemon can parse them and output the supplemental error
information like FRU text contained in them.
[ bp: Massage. ]
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Avadhut Naik <avadhut.naik@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Link: https://lore.kernel.org/r/20241022194158.110073-4-avadhut.naik@amd.com
|
|
In preparation for adding arm64 GCS support make the map_shadow_stack()
SHADOW_STACK_SET_TOKEN flag generic and add _SET_MARKER. The existing
flag indicates that a token usable for stack switch should be added to
the top of the newly mapped GCS region while the new flag indicates that
a top of stack marker suitable for use by unwinders should be added
above that.
For arm64 the top of stack marker is all bits 0.
Reviewed-by: Thiago Jung Bauermann <thiago.bauermann@linaro.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Yury Khrustalev <yury.khrustalev@arm.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20241001-arm64-gcs-v13-5-222b78d87eee@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Pull x86 kvm updates from Paolo Bonzini:
"x86:
- KVM currently invalidates the entirety of the page tables, not just
those for the memslot being touched, when a memslot is moved or
deleted.
This does not traditionally have particularly noticeable overhead,
but Intel's TDX will require the guest to re-accept private pages
if they are dropped from the secure EPT, which is a non starter.
Actually, the only reason why this is not already being done is a
bug which was never fully investigated and caused VM instability
with assigned GeForce GPUs, so allow userspace to opt into the new
behavior.
- Advertise AVX10.1 to userspace (effectively prep work for the
"real" AVX10 functionality that is on the horizon)
- Rework common MSR handling code to suppress errors on userspace
accesses to unsupported-but-advertised MSRs
This will allow removing (almost?) all of KVM's exemptions for
userspace access to MSRs that shouldn't exist based on the vCPU
model (the actual cleanup is non-trivial future work)
- Rework KVM's handling of x2APIC ICR, again, because AMD (x2AVIC)
splits the 64-bit value into the legacy ICR and ICR2 storage,
whereas Intel (APICv) stores the entire 64-bit value at the ICR
offset
- Fix a bug where KVM would fail to exit to userspace if one was
triggered by a fastpath exit handler
- Add fastpath handling of HLT VM-Exit to expedite re-entering the
guest when there's already a pending wake event at the time of the
exit
- Fix a WARN caused by RSM entering a nested guest from SMM with
invalid guest state, by forcing the vCPU out of guest mode prior to
signalling SHUTDOWN (the SHUTDOWN hits the VM altogether, not the
nested guest)
- Overhaul the "unprotect and retry" logic to more precisely identify
cases where retrying is actually helpful, and to harden all retry
paths against putting the guest into an infinite retry loop
- Add support for yielding, e.g. to honor NEED_RESCHED, when zapping
rmaps in the shadow MMU
- Refactor pieces of the shadow MMU related to aging SPTEs in
prepartion for adding multi generation LRU support in KVM
- Don't stuff the RSB after VM-Exit when RETPOLINE=y and AutoIBRS is
enabled, i.e. when the CPU has already flushed the RSB
- Trace the per-CPU host save area as a VMCB pointer to improve
readability and cleanup the retrieval of the SEV-ES host save area
- Remove unnecessary accounting of temporary nested VMCB related
allocations
- Set FINAL/PAGE in the page fault error code for EPT violations if
and only if the GVA is valid. If the GVA is NOT valid, there is no
guest-side page table walk and so stuffing paging related metadata
is nonsensical
- Fix a bug where KVM would incorrectly synthesize a nested VM-Exit
instead of emulating posted interrupt delivery to L2
- Add a lockdep assertion to detect unsafe accesses of vmcs12
structures
- Harden eVMCS loading against an impossible NULL pointer deref
(really truly should be impossible)
- Minor SGX fix and a cleanup
- Misc cleanups
Generic:
- Register KVM's cpuhp and syscore callbacks when enabling
virtualization in hardware, as the sole purpose of said callbacks
is to disable and re-enable virtualization as needed
- Enable virtualization when KVM is loaded, not right before the
first VM is created
Together with the previous change, this simplifies a lot the logic
of the callbacks, because their very existence implies
virtualization is enabled
- Fix a bug that results in KVM prematurely exiting to userspace for
coalesced MMIO/PIO in many cases, clean up the related code, and
add a testcase
- Fix a bug in kvm_clear_guest() where it would trigger a buffer
overflow _if_ the gpa+len crosses a page boundary, which thankfully
is guaranteed to not happen in the current code base. Add WARNs in
more helpers that read/write guest memory to detect similar bugs
Selftests:
- Fix a goof that caused some Hyper-V tests to be skipped when run on
bare metal, i.e. NOT in a VM
- Add a regression test for KVM's handling of SHUTDOWN for an SEV-ES
guest
- Explicitly include one-off assets in .gitignore. Past Sean was
completely wrong about not being able to detect missing .gitignore
entries
- Verify userspace single-stepping works when KVM happens to handle a
VM-Exit in its fastpath
- Misc cleanups"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (127 commits)
Documentation: KVM: fix warning in "make htmldocs"
s390: Enable KVM_S390_UCONTROL config in debug_defconfig
selftests: kvm: s390: Add VM run test case
KVM: SVM: let alternatives handle the cases when RSB filling is required
KVM: VMX: Set PFERR_GUEST_{FINAL,PAGE}_MASK if and only if the GVA is valid
KVM: x86/mmu: Use KVM_PAGES_PER_HPAGE() instead of an open coded equivalent
KVM: x86/mmu: Add KVM_RMAP_MANY to replace open coded '1' and '1ul' literals
KVM: x86/mmu: Fold mmu_spte_age() into kvm_rmap_age_gfn_range()
KVM: x86/mmu: Morph kvm_handle_gfn_range() into an aging specific helper
KVM: x86/mmu: Honor NEED_RESCHED when zapping rmaps and blocking is allowed
KVM: x86/mmu: Add a helper to walk and zap rmaps for a memslot
KVM: x86/mmu: Plumb a @can_yield parameter into __walk_slot_rmaps()
KVM: x86/mmu: Move walk_slot_rmaps() up near for_each_slot_rmap_range()
KVM: x86/mmu: WARN on MMIO cache hit when emulating write-protected gfn
KVM: x86/mmu: Detect if unprotect will do anything based on invalid_list
KVM: x86/mmu: Subsume kvm_mmu_unprotect_page() into the and_retry() version
KVM: x86: Rename reexecute_instruction()=>kvm_unprotect_and_retry_on_failure()
KVM: x86: Update retry protection fields when forcing retry on emulation failure
KVM: x86: Apply retry protection to "unprotect on failure" path
KVM: x86: Check EMULTYPE_WRITE_PF_TO_SP before unprotecting gfn
...
|
|
Introduce the quirk KVM_X86_QUIRK_SLOT_ZAP_ALL to allow users to select
KVM's behavior when a memslot is moved or deleted for KVM_X86_DEFAULT_VM
VMs. Make sure KVM behave as if the quirk is always disabled for
non-KVM_X86_DEFAULT_VM VMs.
The KVM_X86_QUIRK_SLOT_ZAP_ALL quirk offers two behavior options:
- when enabled: Invalidate/zap all SPTEs ("zap-all"),
- when disabled: Precisely zap only the leaf SPTEs within the range of the
moving/deleting memory slot ("zap-slot-leafs-only").
"zap-all" is today's KVM behavior to work around a bug [1] where the
changing the zapping behavior of memslot move/deletion would cause VM
instability for VMs with an Nvidia GPU assigned; while
"zap-slot-leafs-only" allows for more precise zapping of SPTEs within the
memory slot range, improving performance in certain scenarios [2], and
meeting the functional requirements for TDX.
Previous attempts to select "zap-slot-leafs-only" include a per-VM
capability approach [3] (which was not preferred because the root cause of
the bug remained unidentified) and a per-memslot flag approach [4]. Sean
and Paolo finally recommended the implementation of this quirk and
explained that it's the least bad option [5].
By default, the quirk is enabled on KVM_X86_DEFAULT_VM VMs to use
"zap-all". Users have the option to disable the quirk to select
"zap-slot-leafs-only" for specific KVM_X86_DEFAULT_VM VMs that are
unaffected by this bug.
For non-KVM_X86_DEFAULT_VM VMs, the "zap-slot-leafs-only" behavior is
always selected without user's opt-in, regardless of if the user opts for
"zap-all".
This is because it is assumed until proven otherwise that non-
KVM_X86_DEFAULT_VM VMs will not be exposed to the bug [1], and most
importantly, it's because TDX must have "zap-slot-leafs-only" always
selected. In TDX's case a memslot's GPA range can be a mixture of "private"
or "shared" memory. Shared is roughly analogous to how EPT is handled for
normal VMs, but private GPAs need lots of special treatment:
1) "zap-all" would require to zap private root page or non-leaf entries or
at least leaf-entries beyond the deleting memslot scope. However, TDX
demands that the root page of the private page table remains unchanged,
with leaf entries being zapped before non-leaf entries, and any dropped
private guest pages must be re-accepted by the guest.
2) if "zap-all" zaps only shared page tables, it would result in private
pages still being mapped when the memslot is gone. This may affect even
other processes if later the gmem fd was whole punched, causing the
pages being freed on the host while still mapped in the TD, because
there's no pgoff to the gfn information to zap the private page table
after memslot is gone.
So, simply go "zap-slot-leafs-only" as if the quirk is always disabled for
non-KVM_X86_DEFAULT_VM VMs to avoid manual opt-in for every VM type [6] or
complicating quirk disabling interface (current quirk disabling interface
is limited, no way to query quirks, or force them to be disabled).
Add a new function kvm_mmu_zap_memslot_leafs() to implement
"zap-slot-leafs-only". This function does not call kvm_unmap_gfn_range(),
bypassing special handling to APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, as
1) The APIC_ACCESS_PAGE_PRIVATE_MEMSLOT cannot be created by users, nor can
it be moved. It is only deleted by KVM when APICv is permanently
inhibited.
2) kvm_vcpu_reload_apic_access_page() effectively does nothing when
APIC_ACCESS_PAGE_PRIVATE_MEMSLOT is deleted.
3) Avoid making all cpus request of KVM_REQ_APIC_PAGE_RELOAD can save on
costly IPIs.
Suggested-by: Kai Huang <kai.huang@intel.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://patchwork.kernel.org/project/kvm/patch/20190205210137.1377-11-sean.j.christopherson@intel.com [1]
Link: https://patchwork.kernel.org/project/kvm/patch/20190205210137.1377-11-sean.j.christopherson@intel.com/#25054908 [2]
Link: https://lore.kernel.org/kvm/20200713190649.GE29725@linux.intel.com/T/#mabc0119583dacf621025e9d873c85f4fbaa66d5c [3]
Link: https://lore.kernel.org/all/20240515005952.3410568-3-rick.p.edgecombe@intel.com [4]
Link: https://lore.kernel.org/all/7df9032d-83e4-46a1-ab29-6c7973a2ab0b@redhat.com [5]
Link: https://lore.kernel.org/all/ZnGa550k46ow2N3L@google.com [6]
Co-developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Yan Zhao <yan.y.zhao@intel.com>
Message-ID: <20240703021043.13881-1-yan.y.zhao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Add a new .note section containing type, size, offset and flags of every
xfeature that is present.
This information will be used by debuggers to understand the XSAVE layout of
the machine where the core file has been dumped, and to read XSAVE registers,
especially during cross-platform debugging.
The XSAVE layouts of modern AMD and Intel CPUs differ, especially since
Memory Protection Keys and the AVX-512 features have been inculcated into
the AMD CPUs.
Since AMD never adopted (and hence never left room in the XSAVE layout for)
the Intel MPX feature, tools like GDB had assumed a fixed XSAVE layout
matching that of Intel (based on the XCR0 mask).
Hence, core dumps from AMD CPUs didn't match the known size for the XCR0 mask.
This resulted in GDB and other tools not being able to access the values of
the AVX-512 and PKRU registers on AMD CPUs.
To solve this, an interim solution has been accepted into GDB, and is already
a part of GDB 14, see
https://sourceware.org/pipermail/gdb-patches/2023-March/198081.html.
But it depends on heuristics based on the total XSAVE register set size
and the XCR0 mask to infer the layouts of the various register blocks
for core dumps, and hence, is not a foolproof mechanism to determine the
layout of the XSAVE area.
Therefore, add a new core dump note in order to allow GDB/LLDB and other
relevant tools to determine the layout of the XSAVE area of the machine where
the corefile was dumped.
The new core dump note (which is being proposed as a per-process .note
section), NT_X86_XSAVE_LAYOUT (0x205) contains an array of structures.
Each structure describes an individual extended feature containing
offset, size and flags in this format:
struct x86_xfeat_component {
u32 type;
u32 size;
u32 offset;
u32 flags;
};
and in an independent manner, allowing for future extensions without depending
on hw arch specifics like CPUID etc.
[ bp: Massage commit message, zap trailing whitespace. ]
Co-developed-by: Jini Susan George <jinisusan.george@amd.com>
Signed-off-by: Jini Susan George <jinisusan.george@amd.com>
Co-developed-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Vignesh Balasubramanian <vigbalas@amd.com>
Link: https://lore.kernel.org/r/20240725161017.112111-2-vigbalas@amd.com
|
|
Pull kvm updates from Paolo Bonzini:
"ARM:
- Initial infrastructure for shadow stage-2 MMUs, as part of nested
virtualization enablement
- Support for userspace changes to the guest CTR_EL0 value, enabling
(in part) migration of VMs between heterogenous hardware
- Fixes + improvements to pKVM's FF-A proxy, adding support for v1.1
of the protocol
- FPSIMD/SVE support for nested, including merged trap configuration
and exception routing
- New command-line parameter to control the WFx trap behavior under
KVM
- Introduce kCFI hardening in the EL2 hypervisor
- Fixes + cleanups for handling presence/absence of FEAT_TCRX
- Miscellaneous fixes + documentation updates
LoongArch:
- Add paravirt steal time support
- Add support for KVM_DIRTY_LOG_INITIALLY_SET
- Add perf kvm-stat support for loongarch
RISC-V:
- Redirect AMO load/store access fault traps to guest
- perf kvm stat support
- Use guest files for IMSIC virtualization, when available
s390:
- Assortment of tiny fixes which are not time critical
x86:
- Fixes for Xen emulation
- Add a global struct to consolidate tracking of host values, e.g.
EFER
- Add KVM_CAP_X86_APIC_BUS_CYCLES_NS to allow configuring the
effective APIC bus frequency, because TDX
- Print the name of the APICv/AVIC inhibits in the relevant
tracepoint
- Clean up KVM's handling of vendor specific emulation to
consistently act on "compatible with Intel/AMD", versus checking
for a specific vendor
- Drop MTRR virtualization, and instead always honor guest PAT on
CPUs that support self-snoop
- Update to the newfangled Intel CPU FMS infrastructure
- Don't advertise IA32_PERF_GLOBAL_OVF_CTRL as an MSR-to-be-saved, as
it reads '0' and writes from userspace are ignored
- Misc cleanups
x86 - MMU:
- Small cleanups, renames and refactoring extracted from the upcoming
Intel TDX support
- Don't allocate kvm_mmu_page.shadowed_translation for shadow pages
that can't hold leafs SPTEs
- Unconditionally drop mmu_lock when allocating TDP MMU page tables
for eager page splitting, to avoid stalling vCPUs when splitting
huge pages
- Bug the VM instead of simply warning if KVM tries to split a SPTE
that is non-present or not-huge. KVM is guaranteed to end up in a
broken state because the callers fully expect a valid SPTE, it's
all but dangerous to let more MMU changes happen afterwards
x86 - AMD:
- Make per-CPU save_area allocations NUMA-aware
- Force sev_es_host_save_area() to be inlined to avoid calling into
an instrumentable function from noinstr code
- Base support for running SEV-SNP guests. API-wise, this includes a
new KVM_X86_SNP_VM type, encrypting/measure the initial image into
guest memory, and finalizing it before launching it. Internally,
there are some gmem/mmu hooks needed to prepare gmem-allocated
pages before mapping them into guest private memory ranges
This includes basic support for attestation guest requests, enough
to say that KVM supports the GHCB 2.0 specification
There is no support yet for loading into the firmware those signing
keys to be used for attestation requests, and therefore no need yet
for the host to provide certificate data for those keys.
To support fetching certificate data from userspace, a new KVM exit
type will be needed to handle fetching the certificate from
userspace.
An attempt to define a new KVM_EXIT_COCO / KVM_EXIT_COCO_REQ_CERTS
exit type to handle this was introduced in v1 of this patchset, but
is still being discussed by community, so for now this patchset
only implements a stub version of SNP Extended Guest Requests that
does not provide certificate data
x86 - Intel:
- Remove an unnecessary EPT TLB flush when enabling hardware
- Fix a series of bugs that cause KVM to fail to detect nested
pending posted interrupts as valid wake eents for a vCPU executing
HLT in L2 (with HLT-exiting disable by L1)
- KVM: x86: Suppress MMIO that is triggered during task switch
emulation
Explicitly suppress userspace emulated MMIO exits that are
triggered when emulating a task switch as KVM doesn't support
userspace MMIO during complex (multi-step) emulation
Silently ignoring the exit request can result in the
WARN_ON_ONCE(vcpu->mmio_needed) firing if KVM exits to userspace
for some other reason prior to purging mmio_needed
See commit 0dc902267cb3 ("KVM: x86: Suppress pending MMIO write
exits if emulator detects exception") for more details on KVM's
limitations with respect to emulated MMIO during complex emulator
flows
Generic:
- Rename the AS_UNMOVABLE flag that was introduced for KVM to
AS_INACCESSIBLE, because the special casing needed by these pages
is not due to just unmovability (and in fact they are only
unmovable because the CPU cannot access them)
- New ioctl to populate the KVM page tables in advance, which is
useful to mitigate KVM page faults during guest boot or after live
migration. The code will also be used by TDX, but (probably) not
through the ioctl
- Enable halt poll shrinking by default, as Intel found it to be a
clear win
- Setup empty IRQ routing when creating a VM to avoid having to
synchronize SRCU when creating a split IRQCHIP on x86
- Rework the sched_in/out() paths to replace kvm_arch_sched_in() with
a flag that arch code can use for hooking both sched_in() and
sched_out()
- Take the vCPU @id as an "unsigned long" instead of "u32" to avoid
truncating a bogus value from userspace, e.g. to help userspace
detect bugs
- Mark a vCPU as preempted if and only if it's scheduled out while in
the KVM_RUN loop, e.g. to avoid marking it preempted and thus
writing guest memory when retrieving guest state during live
migration blackout
Selftests:
- Remove dead code in the memslot modification stress test
- Treat "branch instructions retired" as supported on all AMD Family
17h+ CPUs
- Print the guest pseudo-RNG seed only when it changes, to avoid
spamming the log for tests that create lots of VMs
- Make the PMU counters test less flaky when counting LLC cache
misses by doing CLFLUSH{OPT} in every loop iteration"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits)
crypto: ccp: Add the SNP_VLEK_LOAD command
KVM: x86/pmu: Add kvm_pmu_call() to simplify static calls of kvm_pmu_ops
KVM: x86: Introduce kvm_x86_call() to simplify static calls of kvm_x86_ops
KVM: x86: Replace static_call_cond() with static_call()
KVM: SEV: Provide support for SNP_EXTENDED_GUEST_REQUEST NAE event
x86/sev: Move sev_guest.h into common SEV header
KVM: SEV: Provide support for SNP_GUEST_REQUEST NAE event
KVM: x86: Suppress MMIO that is triggered during task switch emulation
KVM: x86/mmu: Clean up make_huge_page_split_spte() definition and intro
KVM: x86/mmu: Bug the VM if KVM tries to split a !hugepage SPTE
KVM: selftests: x86: Add test for KVM_PRE_FAULT_MEMORY
KVM: x86: Implement kvm_arch_vcpu_pre_fault_memory()
KVM: x86/mmu: Make kvm_mmu_do_page_fault() return mapped level
KVM: x86/mmu: Account pf_{fixed,emulate,spurious} in callers of "do page fault"
KVM: x86/mmu: Bump pf_taken stat only in the "real" page fault handler
KVM: Add KVM_PRE_FAULT_MEMORY vcpu ioctl to pre-populate guest memory
KVM: Document KVM_PRE_FAULT_MEMORY ioctl
mm, virt: merge AS_UNMOVABLE and AS_INACCESSIBLE
perf kvm: Add kvm-stat for loongarch64
LoongArch: KVM: Add PV steal time support in guest side
...
|
|
KVM x86 misc changes for 6.11
- Add a global struct to consolidate tracking of host values, e.g. EFER, and
move "shadow_phys_bits" into the structure as "maxphyaddr".
- Add KVM_CAP_X86_APIC_BUS_CYCLES_NS to allow configuring the effective APIC
bus frequency, because TDX.
- Print the name of the APICv/AVIC inhibits in the relevant tracepoint.
- Clean up KVM's handling of vendor specific emulation to consistently act on
"compatible with Intel/AMD", versus checking for a specific vendor.
- Misc cleanups
|
|
When a vCPU is interrupted by a signal while running a nested guest,
KVM will exit to userspace with L2 state. However, userspace has no
way to know whether it sees L1 or L2 state (besides calling
KVM_GET_STATS_FD, which does not have a stable ABI).
This causes multiple problems:
The simplest one is L2 state corruption when userspace marks the sregs
as dirty. See this mailing list thread [1] for a complete discussion.
Another problem is that if userspace decides to continue by emulating
instructions, it will unknowingly emulate with L2 state as if L1
doesn't exist, which can be considered a weird guest escape.
Introduce a new flag, KVM_RUN_X86_GUEST_MODE, in the kvm_run data
structure, which is set when the vCPU exited while running a nested
guest. Also introduce a new capability, KVM_CAP_X86_GUEST_MODE, to
advertise the functionality to userspace.
[1] https://lore.kernel.org/kvm/20240416123558.212040-1-julian.stecklina@cyberus-technology.de/T/#m280aadcb2e10ae02c191a7dc4ed4b711a74b1f55
Signed-off-by: Thomas Prescher <thomas.prescher@cyberus-technology.de>
Signed-off-by: Julian Stecklina <julian.stecklina@cyberus-technology.de>
Link: https://lore.kernel.org/r/20240508132502.184428-1-julian.stecklina@cyberus-technology.de
Signed-off-by: Sean Christopherson <seanjc@google.com>
|
|
The SVSM Calling Area (CA) is used to communicate between Linux and the
SVSM. Since the firmware supplied CA for the BSP is likely to be in
reserved memory, switch off that CA to a kernel provided CA so that access
and use of the CA is available during boot. The CA switch is done using
the SVSM core protocol SVSM_CORE_REMAP_CA call.
An SVSM call is executed by filling out the SVSM CA and setting the proper
register state as documented by the SVSM protocol. The SVSM is invoked by
by requesting the hypervisor to run VMPL0.
Once it is safe to allocate/reserve memory, allocate a CA for each CPU.
After allocating the new CAs, the BSP will switch from the boot CA to the
per-CPU CA. The CA for an AP is identified to the SVSM when creating the
VMSA in preparation for booting the AP.
[ bp: Heavily simplify svsm_issue_call() asm, other touchups. ]
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/fa8021130bcc3bcf14d722a25548cb0cdf325456.1717600736.git.thomas.lendacky@amd.com
|
|
Add a KVM_SEV_SNP_LAUNCH_FINISH command to finalize the cryptographic
launch digest which stores the measurement of the guest at launch time.
Also extend the existing SNP firmware data structures to support
disabling the use of Versioned Chip Endorsement Keys (VCEK) by guests as
part of this command.
While finalizing the launch flow, the code also issues the LAUNCH_UPDATE
SNP firmware commands to encrypt/measure the initial VMSA pages for each
configured vCPU, which requires setting the RMP entries for those pages
to private, so also add handling to clean up the RMP entries for these
pages whening freeing vCPUs during shutdown.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Co-developed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Harald Hoyer <harald@profian.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-ID: <20240501085210.2213060-8-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
A key aspect of a launching an SNP guest is initializing it with a
known/measured payload which is then encrypted into guest memory as
pre-validated private pages and then measured into the cryptographic
launch context created with KVM_SEV_SNP_LAUNCH_START so that the guest
can attest itself after booting.
Since all private pages are provided by guest_memfd, make use of the
kvm_gmem_populate() interface to handle this. The general flow is that
guest_memfd will handle allocating the pages associated with the GPA
ranges being initialized by each particular call of
KVM_SEV_SNP_LAUNCH_UPDATE, copying data from userspace into those pages,
and then the post_populate callback will do the work of setting the
RMP entries for these pages to private and issuing the SNP firmware
calls to encrypt/measure them.
For more information see the SEV-SNP specification.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Co-developed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-ID: <20240501085210.2213060-7-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
KVM_SEV_SNP_LAUNCH_START begins the launch process for an SEV-SNP guest.
The command initializes a cryptographic digest context used to construct
the measurement of the guest. Other commands can then at that point be
used to load/encrypt data into the guest's initial launch image.
For more information see the SEV-SNP specification.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Co-developed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-ID: <20240501085210.2213060-6-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
SEV-SNP builds upon existing SEV and SEV-ES functionality while adding
new hardware-based security protection. SEV-SNP adds strong memory
encryption and integrity protection to help prevent malicious
hypervisor-based attacks such as data replay, memory re-mapping, and
more, to create an isolated execution environment.
Define a new KVM_X86_SNP_VM type which makes use of these capabilities
and extend the KVM_SEV_INIT2 ioctl to support it. Also add a basic
helper to check whether SNP is enabled and set PFERR_PRIVATE_ACCESS for
private #NPFs so they are handled appropriately by KVM MMU.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Co-developed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20240501085210.2213060-5-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The GHCB protocol version may be different from one guest to the next.
Add a field to track it for each KVM instance and extend KVM_SEV_INIT2
to allow it to be configured by userspace.
Now that all SEV-ES support for GHCB protocol version 2 is in place, go
ahead and default to it when creating SEV-ES guests through the new
KVM_SEV_INIT2 interface. Keep the older KVM_SEV_ES_INIT interface
restricted to GHCB protocol version 1.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Message-ID: <20240501071048.2208265-5-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
The idea that no parameter would ever be necessary when enabling SEV or
SEV-ES for a VM was decidedly optimistic. In fact, in some sense it's
already a parameter whether SEV or SEV-ES is desired. Another possible
source of variability is the desired set of VMSA features, as that affects
the measurement of the VM's initial state and cannot be changed
arbitrarily by the hypervisor.
Create a new sub-operation for KVM_MEMORY_ENCRYPT_OP that can take a struct,
and put the new op to work by including the VMSA features as a field of the
struct. The existing KVM_SEV_INIT and KVM_SEV_ES_INIT use the full set of
supported VMSA features for backwards compatibility.
The struct also includes the usual bells and whistles for future
extensibility: a flags field that must be zero for now, and some padding
at the end.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20240404121327.3107131-13-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20240404121327.3107131-11-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Compute the set of features to be stored in the VMSA when KVM is
initialized; move it from there into kvm_sev_info when SEV is initialized,
and then into the initial VMSA.
The new variable can then be used to return the set of supported features
to userspace, via the KVM_GET_DEVICE_ATTR ioctl.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Message-ID: <20240404121327.3107131-6-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|