| Age | Commit message (Collapse) | Author |
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull non-MM updates from Andrew Morton:
- "panic: sys_info: Refactor and fix a potential issue" (Andy Shevchenko)
fixes a build issue and does some cleanup in ib/sys_info.c
- "Implement mul_u64_u64_div_u64_roundup()" (David Laight)
enhances the 64-bit math code on behalf of a PWM driver and beefs up
the test module for these library functions
- "scripts/gdb/symbols: make BPF debug info available to GDB" (Ilya Leoshkevich)
makes BPF symbol names, sizes, and line numbers available to the GDB
debugger
- "Enable hung_task and lockup cases to dump system info on demand" (Feng Tang)
adds a sysctl which can be used to cause additional info dumping when
the hung-task and lockup detectors fire
- "lib/base64: add generic encoder/decoder, migrate users" (Kuan-Wei Chiu)
adds a general base64 encoder/decoder to lib/ and migrates several
users away from their private implementations
- "rbree: inline rb_first() and rb_last()" (Eric Dumazet)
makes TCP a little faster
- "liveupdate: Rework KHO for in-kernel users" (Pasha Tatashin)
reworks the KEXEC Handover interfaces in preparation for Live Update
Orchestrator (LUO), and possibly for other future clients
- "kho: simplify state machine and enable dynamic updates" (Pasha Tatashin)
increases the flexibility of KEXEC Handover. Also preparation for LUO
- "Live Update Orchestrator" (Pasha Tatashin)
is a major new feature targeted at cloud environments. Quoting the
cover letter:
This series introduces the Live Update Orchestrator, a kernel
subsystem designed to facilitate live kernel updates using a
kexec-based reboot. This capability is critical for cloud
environments, allowing hypervisors to be updated with minimal
downtime for running virtual machines. LUO achieves this by
preserving the state of selected resources, such as memory,
devices and their dependencies, across the kernel transition.
As a key feature, this series includes support for preserving
memfd file descriptors, which allows critical in-memory data, such
as guest RAM or any other large memory region, to be maintained in
RAM across the kexec reboot.
Mike Rappaport merits a mention here, for his extensive review and
testing work.
- "kexec: reorganize kexec and kdump sysfs" (Sourabh Jain)
moves the kexec and kdump sysfs entries from /sys/kernel/ to
/sys/kernel/kexec/ and adds back-compatibility symlinks which can
hopefully be removed one day
- "kho: fixes for vmalloc restoration" (Mike Rapoport)
fixes a BUG which was being hit during KHO restoration of vmalloc()
regions
* tag 'mm-nonmm-stable-2025-12-06-11-14' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (139 commits)
calibrate: update header inclusion
Reinstate "resource: avoid unnecessary lookups in find_next_iomem_res()"
vmcoreinfo: track and log recoverable hardware errors
kho: fix restoring of contiguous ranges of order-0 pages
kho: kho_restore_vmalloc: fix initialization of pages array
MAINTAINERS: TPM DEVICE DRIVER: update the W-tag
init: replace simple_strtoul with kstrtoul to improve lpj_setup
KHO: fix boot failure due to kmemleak access to non-PRESENT pages
Documentation/ABI: new kexec and kdump sysfs interface
Documentation/ABI: mark old kexec sysfs deprecated
kexec: move sysfs entries to /sys/kernel/kexec
test_kho: always print restore status
kho: free chunks using free_page() instead of kfree()
selftests/liveupdate: add kexec test for multiple and empty sessions
selftests/liveupdate: add simple kexec-based selftest for LUO
selftests/liveupdate: add userspace API selftests
docs: add documentation for memfd preservation via LUO
mm: memfd_luo: allow preserving memfd
liveupdate: luo_file: add private argument to store runtime state
mm: shmem: export some functions to internal.h
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
Pull SoC driver updates from Arnd Bergmann:
"This is the first half of the driver changes:
- A treewide interface change to the "syscore" operations for power
management, as a preparation for future Tegra specific changes
- Reset controller updates with added drivers for LAN969x, eic770 and
RZ/G3S SoCs
- Protection of system controller registers on Renesas and Google
SoCs, to prevent trivially triggering a system crash from e.g.
debugfs access
- soc_device identification updates on Nvidia, Exynos and Mediatek
- debugfs support in the ST STM32 firewall driver
- Minor updates for SoC drivers on AMD/Xilinx, Renesas, Allwinner, TI
- Cleanups for memory controller support on Nvidia and Renesas"
* tag 'soc-drivers-6.19' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc: (114 commits)
memory: tegra186-emc: Fix missing put_bpmp
Documentation: reset: Remove reset_controller_add_lookup()
reset: fix BIT macro reference
reset: rzg2l-usbphy-ctrl: Fix a NULL vs IS_ERR() bug in probe
reset: th1520: Support reset controllers in more subsystems
reset: th1520: Prepare for supporting multiple controllers
dt-bindings: reset: thead,th1520-reset: Add controllers for more subsys
dt-bindings: reset: thead,th1520-reset: Remove non-VO-subsystem resets
reset: remove legacy reset lookup code
clk: davinci: psc: drop unused reset lookup
reset: rzg2l-usbphy-ctrl: Add support for RZ/G3S SoC
reset: rzg2l-usbphy-ctrl: Add support for USB PWRRDY
dt-bindings: reset: renesas,rzg2l-usbphy-ctrl: Document RZ/G3S support
reset: eswin: Add eic7700 reset driver
dt-bindings: reset: eswin: Documentation for eic7700 SoC
reset: sparx5: add LAN969x support
dt-bindings: reset: microchip: Add LAN969x support
soc: rockchip: grf: Add select correct PWM implementation on RK3368
soc/tegra: pmc: Add USB wake events for Tegra234
amba: tegra-ahb: Fix device leak on SMMU enable
...
|
|
Introduce a generic infrastructure for tracking recoverable hardware
errors (HW errors that are visible to the OS but does not cause a panic)
and record them for vmcore consumption. This aids post-mortem crash
analysis tools by preserving a count and timestamp for the last occurrence
of such errors. On the other side, correctable errors, which the OS
typically remains unaware of because the underlying hardware handles them
transparently, are less relevant for crash dump and therefore are NOT
tracked in this infrastructure.
Add centralized logging for sources of recoverable hardware errors based
on the subsystem it has been notified.
hwerror_data is write-only at kernel runtime, and it is meant to be read
from vmcore using tools like crash/drgn. For example, this is how it
looks like when opening the crashdump from drgn.
>>> prog['hwerror_data']
(struct hwerror_info[1]){
{
.count = (int)844,
.timestamp = (time64_t)1752852018,
},
...
This helps fleet operators quickly triage whether a crash may be
influenced by hardware recoverable errors (which executes a uncommon code
path in the kernel), especially when recoverable errors occurred shortly
before a panic, such as the bug fixed by commit ee62ce7a1d90 ("page_pool:
Track DMA-mapped pages and unmap them when destroying the pool")
This is not intended to replace full hardware diagnostics but provides a
fast way to correlate hardware events with kernel panics quickly.
Rare machine check exceptions—like those indicated by mce_flags.p5 or
mce_flags.winchip—are not accounted for in this method, as they fall
outside the intended usage scope for this feature's user base.
[leitao@debian.org: add hw-recoverable-errors to toctree]
Link: https://lkml.kernel.org/r/20251127-vmcoreinfo_fix-v1-1-26f5b1c43da9@debian.org
Link: https://lkml.kernel.org/r/20251010-vmcore_hw_error-v5-1-636ede3efe44@debian.org
Signed-off-by: Breno Leitao <leitao@debian.org>
Suggested-by: Tony Luck <tony.luck@intel.com>
Suggested-by: Shuai Xue <xueshuai@linux.alibaba.com>
Reviewed-by: Shuai Xue <xueshuai@linux.alibaba.com>
Reviewed-by: Hanjun Guo <guohanjun@huawei.com> [APEI]
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Bob Moore <robert.moore@intel.com>
Cc: Borislav Betkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: James Morse <james.morse@arm.com>
Cc: Konrad Rzessutek Wilk <konrad.wilk@oracle.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Mahesh Salgaonkar <mahesh@linux.ibm.com>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: "Oliver O'Halloran" <oohall@gmail.com>
Cc: Omar Sandoval <osandov@osandov.com>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Extend the logic of handling CMCI storms to AMD threshold interrupts.
Rely on the similar approach as of Intel's CMCI to mitigate storms per CPU and
per bank. But, unlike CMCI, do not set thresholds and reduce interrupt rate on
a storm. Rather, disable the interrupt on the corresponding CPU and bank.
Re-enable back the interrupts if enough consecutive polls of the bank show no
corrected errors (30, as programmed by Intel).
Turning off the threshold interrupts would be a better solution on AMD systems
as other error severities will still be handled even if the threshold
interrupts are disabled.
[ Tony: Small tweak because mce_handle_storm() isn't a pointer now ]
[ Yazen: Rebase and simplify ]
[ Avadhut: Remove check to not clear bank's bit in mce_poll_banks and fix
checkpatch warnings. ]
Signed-off-by: Smita Koralahalli <Smita.KoralahalliChannabasappa@amd.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Avadhut Naik <avadhut.naik@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://patch.msgid.link/20251121190542.2447913-3-avadhut.naik@amd.com
|
|
Currently, when a CMCI storm detected on a Machine Check bank, subsides, the
bank's corresponding bit in the mce_poll_banks per-CPU variable is cleared
unconditionally by cmci_storm_end().
On AMD SMCA systems, this essentially disables polling on that particular bank
on that CPU. Consequently, any subsequent correctable errors or storms will not
be logged.
Since AMD SMCA systems allow banks to be managed by both polling and
interrupts, the polling banks bitmap for a CPU, i.e., mce_poll_banks, should
not be modified when a storm subsides.
Fixes: 7eae17c4add5 ("x86/mce: Add per-bank CMCI storm mitigation")
Signed-off-by: Avadhut Naik <avadhut.naik@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://patch.msgid.link/20251121190542.2447913-2-avadhut.naik@amd.com
|
|
Starting with Zen6, AMD's Scalable MCA systems will incorporate two new bits in
MCA_STATUS and MCA_CONFIG MSRs. These bits will indicate if a valid System
Physical Address (SPA) is present in MCA_ADDR.
PhysAddrValidSupported bit (MCA_CONFIG[11]) serves as the architectural
indicator and states if PhysAddrV bit (MCA_STATUS[54]) is Reserved or if it
indicates validity of SPA in MCA_ADDR.
PhysAddrV bit (MCA_STATUS[54]) advertises if MCA_ADDR contains valid SPA or if
it is implementation specific.
Use and prefer MCA_STATUS[PhysAddrV] when checking for a usable address.
Signed-off-by: Avadhut Naik <avadhut.naik@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://patch.msgid.link/20251118191731.181269-1-avadhut.naik@amd.com
|
|
The MCA threshold limit generally is not something that needs to change during
runtime. It is common for a system administrator to decide on a policy for
their managed systems.
If MCA thresholding is OS-managed, then the threshold limit must be set at
every boot. However, many systems allow the user to set a value in their BIOS.
And this is reported through an APEI HEST entry even if thresholding is not in
FW-First mode.
Use this value, if available, to set the OS-managed threshold limit. Users
can still override it through sysfs if desired for testing or debug.
APEI is parsed after MCE is initialized. So reset the thresholding blocks
later to pick up the threshold limit.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/20251104-wip-mca-updates-v8-0-66c8eacf67b9@amd.com
|
|
Several drivers can benefit from registering per-instance data along
with the syscore operations. To achieve this, move the modifiable fields
out of the syscore_ops structure and into a separate struct syscore that
can be registered with the framework. Add a void * driver data field for
drivers to store contextual data that will be passed to the syscore ops.
Acked-by: Rafael J. Wysocki (Intel) <rafael@kernel.org>
Signed-off-by: Thierry Reding <treding@nvidia.com>
|
|
Prepare for CMCI storm support by moving the common bank/block iterator code
to a helper function.
Include a parameter to switch the interrupt enable. This will be used by the
CMCI storm handling function.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Link: https://lore.kernel.org/20251104-wip-mca-updates-v8-0-66c8eacf67b9@amd.com
|
|
Many of the checks in reset_block() are done again in the block reset
function. So drop the redundant checks.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/20251104-wip-mca-updates-v8-0-66c8eacf67b9@amd.com
|
|
AMD systems optionally support MCA thresholding which provides the ability for
hardware to send an interrupt when a set error threshold is reached. This
feature counts errors of all severities, but it is commonly used to report
correctable errors with an interrupt rather than polling.
Scalable MCA systems allow the platform to take control of this feature. In
this case, the OS will not see the feature configuration and control bits in
the MCA_MISC* registers. The OS will not receive the MCA thresholding
interrupt, and it will need to poll for correctable errors.
A "corrected error interrupt" will be available on Scalable MCA systems. This
will be used in the same configuration where the platform controls MCA
thresholding. However, the platform will now be able to send the MCA
thresholding interrupt to the OS.
Check for, and enable, this feature during per-CPU SMCA init.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/20251104-wip-mca-updates-v8-0-66c8eacf67b9@amd.com
|
|
Scalable MCA systems have a per-CPU register that gives the APIC LVT offset
for the thresholding and deferred error interrupts.
Currently, this register is read once to set up the deferred error interrupt
and then read again for each thresholding block. Furthermore, the APIC LVT
registers are configured each time, but they only need to be configured once
per-CPU.
Move the APIC LVT setup to the early part of CPU init, so that the registers
are set up once. Also, this ensures that the kernel is ready to service the
interrupts before the individual error sources (each MCA bank) are enabled.
Apply this change only to SMCA systems to avoid breaking any legacy behavior.
The deferred error interrupt is technically advertised by the SUCCOR feature.
However, this was first made available on SMCA systems. Therefore, only set
up the deferred error interrupt on SMCA systems and simplify the code.
Guidance from hardware designers is that the LVT offsets provided from the
platform should be used. The kernel should not try to enforce specific values.
However, the kernel should check that an LVT offset is not reused for multiple
sources.
Therefore, remove the extra checking and value enforcement from the MCE code.
The "reuse/conflict" case is already handled in setup_APIC_eilvt().
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/20251104-wip-mca-updates-v8-0-66c8eacf67b9@amd.com
|
|
AMD systems optionally support a deferred error interrupt. The interrupt
should be used as another signal to trigger MCA polling. This is similar to
how other MCA interrupts are handled.
Deferred errors do not require any special handling related to the interrupt,
e.g. resetting or rearming the interrupt, etc.
However, Scalable MCA systems include a pair of registers, MCA_DESTAT and
MCA_DEADDR, that should be checked for valid errors. This check should be done
whenever MCA registers are polled. Currently, the deferred error interrupt
does this check, but the MCA polling function does not.
Call the MCA polling function when handling the deferred error interrupt. This
keeps all "polling" cases in a common function.
Add an SMCA status check helper. This will do the same status check and
register clearing that the interrupt handler has done. And it extends the
common polling flow to find AMD deferred errors.
Clear the MCA_DESTAT register at the end of the handler rather than the
beginning. This maintains the procedure that the 'status' register must be
cleared as the final step.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/20251104-wip-mca-updates-v8-0-66c8eacf67b9@amd.com
|
|
AMD systems optionally support an MCA thresholding interrupt. The interrupt
should be used as another signal to trigger MCA polling. This is similar to
how the Intel Corrected Machine Check interrupt (CMCI) is handled.
AMD MCA thresholding is managed using the MCA_MISC registers within an MCA
bank. The OS will need to modify the hardware error count field in order to
reset the threshold limit and rearm the interrupt. Management of the MCA_MISC
register should be done as a follow up to the basic MCA polling flow. It
should not be the main focus of the interrupt handler.
Furthermore, future systems will have the ability to send an MCA thresholding
interrupt to the OS even when the OS does not manage the feature, i.e.
MCA_MISC registers are Read-as-Zero/Locked.
Call the common MCA polling function when handling the MCA thresholding
interrupt. This will allow the OS to find any valid errors whether or not the
MCA thresholding feature is OS-managed. Also, this allows the common MCA
polling options and kernel parameters to apply to AMD systems.
Add a callback to the MCA polling function to check and reset any threshold
blocks that have reached their threshold limit.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/20251104-wip-mca-updates-v8-0-66c8eacf67b9@amd.com
|
|
Add a helper at the end of the MCA polling function to collect vendor and/or
feature actions.
Start with a basic skeleton for now. Actions for AMD thresholding and deferred
errors will be added later.
[ bp: Drop the obvious comment too. ]
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Link: https://lore.kernel.org/20250908-wip-mca-updates-v6-0-eef5d6c74b9c@amd.com
|
|
There are a number of generic and vendor-specific status checks in
machine_check_poll(). These are used to determine if an error should be
skipped.
Move these into helper functions. Future vendor-specific checks will be
added to the helpers.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/20250908-wip-mca-updates-v6-0-eef5d6c74b9c@amd.com
|
|
Many quirks are global configuration settings and a handful apply to
each CPU.
Move the per-CPU quirks to vendor init to execute them on each online
CPU. Set the global quirks during BSP-only init so they're only executed
once and early.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/20250908-wip-mca-updates-v6-0-eef5d6c74b9c@amd.com
|
|
The 'UNKNOWN' vendor check is handled as a quirk that is run on each
online CPU. However, all CPUs are expected to have the same vendor.
Move the 'UNKNOWN' vendor check to the BSP-only init so it is done early
and once. Remove the unnecessary return value from the quirks check.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/20250908-wip-mca-updates-v6-0-eef5d6c74b9c@amd.com
|
|
Currently, on AMD systems, MCA interrupt handler functions are set during CPU
init. However, the functions only need to be set once for the whole system.
Assign the handlers only during BSP init. Do so only for SMCA systems to
maintain the old behavior for legacy systems.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Link: https://lore.kernel.org/20250908-wip-mca-updates-v6-0-eef5d6c74b9c@amd.com
|
|
Currently, MCA initialization is executed identically on each CPU as
they are brought online. However, a number of MCA initialization tasks
only need to be done once.
Define a function to collect all 'global' init tasks and call this from
the BSP only. Start with CPU features.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/20250908-wip-mca-updates-v6-0-eef5d6c74b9c@amd.com
|
|
Set the CR4.MCE bit as the last step during init. This brings the MCA
init order closer to what is described in the x86 docs.
x86 docs:
AMD Intel
MCG_CTL
MCA_CONFIG MCG_EXT_CTL
MCi_CTL MCi_CTL
MCG_CTL
CR4.MCE CR4.MCE
Current Linux:
AMD Intel
CR4.MCE CR4.MCE
MCG_CTL MCG_CTL
MCA_CONFIG MCG_EXT_CTL
MCi_CTL MCi_CTL
Updated Linux:
AMD Intel
MCG_CTL MCG_CTL
MCA_CONFIG MCG_EXT_CTL
MCi_CTL MCi_CTL
CR4.MCE CR4.MCE
The new init flow will match Intel's docs, but there will still be a
mismatch for AMD regarding MCG_CTL. However, there is no known issue with this
ordering, so leave it for now.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Link: https://lore.kernel.org/20250908-wip-mca-updates-v6-0-eef5d6c74b9c@amd.com
|
|
The __mcheck_cpu_init_early() function was introduced so that some
vendor-specific features are detected before the first MCA polling event done
in __mcheck_cpu_init_generic().
Currently, __mcheck_cpu_init_early() is only used on AMD-based systems and
additional code will be needed to support various system configurations.
However, the current and future vendor-specific code should be done during
vendor init. This keeps all the vendor code in a common location and
simplifies the generic init flow.
Move all the __mcheck_cpu_init_early() code into mce_amd_feature_init().
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/20250825-wip-mca-updates-v5-6-865768a2eef8@amd.com
|
|
Unify the bank preparation into __mcheck_cpu_init_clear_banks(), rename that
function to what it does now - prepares banks. Do this so that generic and
vendor banks init goes first so that settings done during that init can take
effect before the first bank polling takes place.
Move __mcheck_cpu_check_banks() into __mcheck_cpu_init_prepare_banks() as it
already loops over the banks.
The MCP_DONTLOG flag is no longer needed, since the MCA polling function is
now called only if boot-time logging should be done.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Yazen Ghannam <yazen.ghannam@amd.com>
Reviewed-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/20250825-wip-mca-updates-v5-5-865768a2eef8@amd.com
|
|
The threshold_bank structure is a container for one or more threshold_block
structures. Currently, the container has a single pointer to the 'first'
threshold_block structure which then has a linked list of the remaining
threshold_block structures.
This results in an extra level of indirection where the 'first' block is
checked before iterating over the remaining blocks.
Remove the indirection by including the head of the block list in the
threshold_bank structure which already acts as a container for all the bank's
thresholding blocks.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/20250624-wip-mca-updates-v4-8-236dd74f645f@amd.com
|
|
The MCx_MISC0[BlkPtr] field was used on legacy systems to hold a register
offset for the next MCx_MISC* register. In this way, an implementation-specific
number of registers can be discovered at runtime.
The MCAX/SMCA register space simplifies this by always including the
MCx_MISC[1-4] registers. The MCx_MISC0[BlkPtr] field is used to indicate
(true/false) whether any MCx_MISC[1-4] registers are present.
Currently, MCx_MISC0[BlkPtr] is checked early and cached to be used during
sysfs init later. This is unnecessary as the MCx_MISC0 register is read again
later anyway.
Remove the smca_banks_map variable as it is effectively redundant, and use
a direct register/bit check instead.
[ bp: Zap smca_get_block_address() too. ]
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/20250825-wip-mca-updates-v5-3-865768a2eef8@amd.com
|
|
The return values are not checked, so set return type to 'void'.
Also, move function declarations to internal.h, since these functions are
only used within the MCE subsystem.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Link: https://lore.kernel.org/20250624-wip-mca-updates-v4-6-236dd74f645f@amd.com
|
|
It operates per block rather than per bank. So rename it for clarity.
No functional changes.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/20250624-wip-mca-updates-v4-5-236dd74f645f@amd.com
|
|
CMCI banks are not cleared during shutdown on Intel CPUs. As a side effect,
when a kexec is performed, CPUs coming back online are unable to
rediscover/claim these occupied banks which breaks MCE reporting.
Clear the CPU ownership during shutdown via cmci_clear() so the banks can
be reclaimed and MCE reporting will become functional once more.
[ bp: Massage commit message. ]
Reported-by: Aijay Adams <aijay@meta.com>
Signed-off-by: JP Kobryn <inwardvessel@gmail.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/20250627174935.95194-1-inwardvessel@gmail.com
|
|
The MCA threshold limit must be reset after servicing the interrupt.
Currently, the restart function doesn't have an explicit check for this. It
makes some assumptions based on the current limit and what's in the registers.
These assumptions don't always hold, so the limit won't be reset in some
cases.
Make the reset condition explicit. Either an interrupt/overflow has occurred
or the bank is being initialized.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/20250624-wip-mca-updates-v4-4-236dd74f645f@amd.com
|
|
Ensure that sysfs init doesn't fail for new/unrecognized bank types or if
a bank has additional blocks available.
Most MCA banks have a single thresholding block, so the block takes the same
name as the bank.
Unified Memory Controllers (UMCs) are a special case where there are two
blocks and each has a unique name.
However, the microarchitecture allows for five blocks. Any new MCA bank types
with more than one block will be missing names for the extra blocks. The MCE
sysfs will fail to initialize in this case.
Fixes: 87a6d4091bd7 ("x86/mce/AMD: Update sysfs bank names for SMCA systems")
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/20250624-wip-mca-updates-v4-3-236dd74f645f@amd.com
|
|
Users can disable MCA polling by setting the "ignore_ce" parameter or by
setting "check_interval=0". This tells the kernel to *not* start the MCE
timer on a CPU.
If the user did not disable CMCI, then storms can occur. When these
happen, the MCE timer will be started with a fixed interval. After the
storm subsides, the timer's next interval is set to check_interval.
This disregards the user's input through "ignore_ce" and
"check_interval". Furthermore, if "check_interval=0", then the new timer
will run faster than expected.
Create a new helper to check these conditions and use it when a CMCI
storm ends.
[ bp: Massage. ]
Fixes: 7eae17c4add5 ("x86/mce: Add per-bank CMCI storm mitigation")
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/20250624-wip-mca-updates-v4-2-236dd74f645f@amd.com
|
|
Currently, the MCE subsystem sysfs interface will be removed if the
thresholding sysfs interface fails to be created. A common failure is due to
new MCA bank types that are not recognized and don't have a short name set.
The MCA thresholding feature is optional and should not break the common MCE
sysfs interface. Also, new MCA bank types are occasionally introduced, and
updates will be needed to recognize them. But likewise, this should not break
the common sysfs interface.
Keep the MCE sysfs interface regardless of the status of the thresholding
sysfs interface.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/20250624-wip-mca-updates-v4-1-236dd74f645f@amd.com
|
|
Conflicts:
arch/x86/boot/startup/sme.c
arch/x86/coco/sev/core.c
arch/x86/kernel/fpu/core.c
arch/x86/kernel/fpu/xstate.c
Semantic conflict:
arch/x86/include/asm/sev-internal.h
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
__rdmsr() is the lowest level MSR write API, with native_rdmsr()
and native_rdmsrq() serving as higher-level wrappers around it.
#define native_rdmsr(msr, val1, val2) \
do { \
u64 __val = __rdmsr((msr)); \
(void)((val1) = (u32)__val); \
(void)((val2) = (u32)(__val >> 32)); \
} while (0)
static __always_inline u64 native_rdmsrq(u32 msr)
{
return __rdmsr(msr);
}
However, __rdmsr() continues to be utilized in various locations.
MSR APIs are designed for different scenarios, such as native or
pvops, with or without trace, and safe or non-safe. Unfortunately,
the current MSR API names do not adequately reflect these factors,
making it challenging to select the most appropriate API for
various situations.
To pave the way for improving MSR API names, convert __rdmsr()
uses to native_rdmsrq() to ensure consistent usage. Later, these
APIs can be renamed to better reflect their implications, such as
native or pvops, with or without trace, and safe or non-safe.
No functional change intended.
Signed-off-by: Xin Li (Intel) <xin@zytor.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Uros Bizjak <ubizjak@gmail.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20250427092027.1598740-10-xin@zytor.com
|
|
__wrmsr() is the lowest level MSR write API, with native_wrmsr()
and native_wrmsrq() serving as higher-level wrappers around it:
#define native_wrmsr(msr, low, high) \
__wrmsr(msr, low, high)
#define native_wrmsrl(msr, val) \
__wrmsr((msr), (u32)((u64)(val)), \
(u32)((u64)(val) >> 32))
However, __wrmsr() continues to be utilized in various locations.
MSR APIs are designed for different scenarios, such as native or
pvops, with or without trace, and safe or non-safe. Unfortunately,
the current MSR API names do not adequately reflect these factors,
making it challenging to select the most appropriate API for
various situations.
To pave the way for improving MSR API names, convert __wrmsr()
uses to native_wrmsr{,q}() to ensure consistent usage. Later,
these APIs can be renamed to better reflect their implications,
such as native or pvops, with or without trace, and safe or
non-safe.
No functional change intended.
Signed-off-by: Xin Li (Intel) <xin@zytor.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Uros Bizjak <ubizjak@gmail.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20250427092027.1598740-8-xin@zytor.com
|
|
For historic reasons there are some TSC-related functions in the
<asm/msr.h> header, even though there's an <asm/tsc.h> header.
To facilitate the relocation of rdtsc{,_ordered}() from <asm/msr.h>
to <asm/tsc.h> and to eventually eliminate the inclusion of
<asm/msr.h> in <asm/tsc.h>, add an explicit <asm/msr.h> dependency
to the source files that reference definitions from <asm/msr.h>.
[ mingo: Clarified the changelog. ]
Signed-off-by: Xin Li (Intel) <xin@zytor.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Uros Bizjak <ubizjak@gmail.com>
Link: https://lore.kernel.org/r/20250501054241.1245648-1-xin@zytor.com
|
|
DECLARE_ARGS() is way too generic of a name that says very little about
why these args are declared in that fashion - use the EAX_EDX_ prefix
to create a common prefix between the three helper methods:
EAX_EDX_DECLARE_ARGS()
EAX_EDX_VAL()
EAX_EDX_RET()
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Uros Bizjak <ubizjak@gmail.com>
Cc: linux-kernel@vger.kernel.org
|
|
Collect AMD specific platform header files in <asm/amd/*.h>.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mario Limonciello <superm1@kernel.org>
Link: https://lore.kernel.org/r/20250413084144.3746608-4-mingo@kernel.org
|
|
Suggested-by: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juergen Gross <jgross@suse.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Xin Li <xin@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Suggested-by: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juergen Gross <jgross@suse.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Xin Li <xin@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Suggested-by: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juergen Gross <jgross@suse.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Xin Li <xin@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Suggested-by: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juergen Gross <jgross@suse.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Xin Li <xin@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Suggested-by: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juergen Gross <jgross@suse.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Xin Li <xin@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Suggested-by: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juergen Gross <jgross@suse.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Xin Li <xin@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Suggested-by: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Juergen Gross <jgross@suse.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Xin Li <xin@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
|
|
timer_delete[_sync]() replaces del_timer[_sync](). Convert the whole tree
over and remove the historical wrapper inlines.
Conversion was done with coccinelle plus manual fixups where necessary.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- The series "Enable strict percpu address space checks" from Uros
Bizjak uses x86 named address space qualifiers to provide
compile-time checking of percpu area accesses.
This has caused a small amount of fallout - two or three issues were
reported. In all cases the calling code was found to be incorrect.
- The series "Some cleanup for memcg" from Chen Ridong implements some
relatively monir cleanups for the memcontrol code.
- The series "mm: fixes for device-exclusive entries (hmm)" from David
Hildenbrand fixes a boatload of issues which David found then using
device-exclusive PTE entries when THP is enabled. More work is
needed, but this makes thins better - our own HMM selftests now
succeed.
- The series "mm: zswap: remove z3fold and zbud" from Yosry Ahmed
remove the z3fold and zbud implementations. They have been deprecated
for half a year and nobody has complained.
- The series "mm: further simplify VMA merge operation" from Lorenzo
Stoakes implements numerous simplifications in this area. No runtime
effects are anticipated.
- The series "mm/madvise: remove redundant mmap_lock operations from
process_madvise()" from SeongJae Park rationalizes the locking in the
madvise() implementation. Performance gains of 20-25% were observed
in one MADV_DONTNEED microbenchmark.
- The series "Tiny cleanup and improvements about SWAP code" from
Baoquan He contains a number of touchups to issues which Baoquan
noticed when working on the swap code.
- The series "mm: kmemleak: Usability improvements" from Catalin
Marinas implements a couple of improvements to the kmemleak
user-visible output.
- The series "mm/damon/paddr: fix large folios access and schemes
handling" from Usama Arif provides a couple of fixes for DAMON's
handling of large folios.
- The series "mm/damon/core: fix wrong and/or useless damos_walk()
behaviors" from SeongJae Park fixes a few issues with the accuracy of
kdamond's walking of DAMON regions.
- The series "expose mapping wrprotect, fix fb_defio use" from Lorenzo
Stoakes changes the interaction between framebuffer deferred-io and
core MM. No functional changes are anticipated - this is preparatory
work for the future removal of page structure fields.
- The series "mm/damon: add support for hugepage_size DAMOS filter"
from Usama Arif adds a DAMOS filter which permits the filtering by
huge page sizes.
- The series "mm: permit guard regions for file-backed/shmem mappings"
from Lorenzo Stoakes extends the guard region feature from its
present "anon mappings only" state. The feature now covers shmem and
file-backed mappings.
- The series "mm: batched unmap lazyfree large folios during
reclamation" from Barry Song cleans up and speeds up the unmapping
for pte-mapped large folios.
- The series "reimplement per-vma lock as a refcount" from Suren
Baghdasaryan puts the vm_lock back into the vma. Our reasons for
pulling it out were largely bogus and that change made the code more
messy. This patchset provides small (0-10%) improvements on one
microbenchmark.
- The series "Docs/mm/damon: misc DAMOS filters documentation fixes and
improves" from SeongJae Park does some maintenance work on the DAMON
docs.
- The series "hugetlb/CMA improvements for large systems" from Frank
van der Linden addresses a pile of issues which have been observed
when using CMA on large machines.
- The series "mm/damon: introduce DAMOS filter type for unmapped pages"
from SeongJae Park enables users of DMAON/DAMOS to filter my the
page's mapped/unmapped status.
- The series "zsmalloc/zram: there be preemption" from Sergey
Senozhatsky teaches zram to run its compression and decompression
operations preemptibly.
- The series "selftests/mm: Some cleanups from trying to run them" from
Brendan Jackman fixes a pile of unrelated issues which Brendan
encountered while runnimg our selftests.
- The series "fs/proc/task_mmu: add guard region bit to pagemap" from
Lorenzo Stoakes permits userspace to use /proc/pid/pagemap to
determine whether a particular page is a guard page.
- The series "mm, swap: remove swap slot cache" from Kairui Song
removes the swap slot cache from the allocation path - it simply
wasn't being effective.
- The series "mm: cleanups for device-exclusive entries (hmm)" from
David Hildenbrand implements a number of unrelated cleanups in this
code.
- The series "mm: Rework generic PTDUMP configs" from Anshuman Khandual
implements a number of preparatoty cleanups to the GENERIC_PTDUMP
Kconfig logic.
- The series "mm/damon: auto-tune aggregation interval" from SeongJae
Park implements a feedback-driven automatic tuning feature for
DAMON's aggregation interval tuning.
- The series "Fix lazy mmu mode" from Ryan Roberts fixes some issues in
powerpc, sparc and x86 lazy MMU implementations. Ryan did this in
preparation for implementing lazy mmu mode for arm64 to optimize
vmalloc.
- The series "mm/page_alloc: Some clarifications for migratetype
fallback" from Brendan Jackman reworks some commentary to make the
code easier to follow.
- The series "page_counter cleanup and size reduction" from Shakeel
Butt cleans up the page_counter code and fixes a size increase which
we accidentally added late last year.
- The series "Add a command line option that enables control of how
many threads should be used to allocate huge pages" from Thomas
Prescher does that. It allows the careful operator to significantly
reduce boot time by tuning the parallalization of huge page
initialization.
- The series "Fix calculations in trace_balance_dirty_pages() for cgwb"
from Tang Yizhou fixes the tracing output from the dirty page
balancing code.
- The series "mm/damon: make allow filters after reject filters useful
and intuitive" from SeongJae Park improves the handling of allow and
reject filters. Behaviour is made more consistent and the documention
is updated accordingly.
- The series "Switch zswap to object read/write APIs" from Yosry Ahmed
updates zswap to the new object read/write APIs and thus permits the
removal of some legacy code from zpool and zsmalloc.
- The series "Some trivial cleanups for shmem" from Baolin Wang does as
it claims.
- The series "fs/dax: Fix ZONE_DEVICE page reference counts" from
Alistair Popple regularizes the weird ZONE_DEVICE page refcount
handling in DAX, permittig the removal of a number of special-case
checks.
- The series "refactor mremap and fix bug" from Lorenzo Stoakes is a
preparatoty refactoring and cleanup of the mremap() code.
- The series "mm: MM owner tracking for large folios (!hugetlb) +
CONFIG_NO_PAGE_MAPCOUNT" from David Hildenbrand reworks the manner in
which we determine whether a large folio is known to be mapped
exclusively into a single MM.
- The series "mm/damon: add sysfs dirs for managing DAMOS filters based
on handling layers" from SeongJae Park adds a couple of new sysfs
directories to ease the management of DAMON/DAMOS filters.
- The series "arch, mm: reduce code duplication in mem_init()" from
Mike Rapoport consolidates many per-arch implementations of
mem_init() into code generic code, where that is practical.
- The series "mm/damon/sysfs: commit parameters online via
damon_call()" from SeongJae Park continues the cleaning up of sysfs
access to DAMON internal data.
- The series "mm: page_ext: Introduce new iteration API" from Luiz
Capitulino reworks the page_ext initialization to fix a boot-time
crash which was observed with an unusual combination of compile and
cmdline options.
- The series "Buddy allocator like (or non-uniform) folio split" from
Zi Yan reworks the code to split a folio into smaller folios. The
main benefit is lessened memory consumption: fewer post-split folios
are generated.
- The series "Minimize xa_node allocation during xarry split" from Zi
Yan reduces the number of xarray xa_nodes which are generated during
an xarray split.
- The series "drivers/base/memory: Two cleanups" from Gavin Shan
performs some maintenance work on the drivers/base/memory code.
- The series "Add tracepoints for lowmem reserves, watermarks and
totalreserve_pages" from Martin Liu adds some more tracepoints to the
page allocator code.
- The series "mm/madvise: cleanup requests validations and
classifications" from SeongJae Park cleans up some warts which
SeongJae observed during his earlier madvise work.
- The series "mm/hwpoison: Fix regressions in memory failure handling"
from Shuai Xue addresses two quite serious regressions which Shuai
has observed in the memory-failure implementation.
- The series "mm: reliable huge page allocator" from Johannes Weiner
makes huge page allocations cheaper and more reliable by reducing
fragmentation.
- The series "Minor memcg cleanups & prep for memdescs" from Matthew
Wilcox is preparatory work for the future implementation of memdescs.
- The series "track memory used by balloon drivers" from Nico Pache
introduces a way to track memory used by our various balloon drivers.
- The series "mm/damon: introduce DAMOS filter type for active pages"
from Nhat Pham permits users to filter for active/inactive pages,
separately for file and anon pages.
- The series "Adding Proactive Memory Reclaim Statistics" from Hao Jia
separates the proactive reclaim statistics from the direct reclaim
statistics.
- The series "mm/vmscan: don't try to reclaim hwpoison folio" from
Jinjiang Tu fixes our handling of hwpoisoned pages within the reclaim
code.
* tag 'mm-stable-2025-03-30-16-52' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (431 commits)
mm/page_alloc: remove unnecessary __maybe_unused in order_to_pindex()
x86/mm: restore early initialization of high_memory for 32-bits
mm/vmscan: don't try to reclaim hwpoison folio
mm/hwpoison: introduce folio_contain_hwpoisoned_page() helper
cgroup: docs: add pswpin and pswpout items in cgroup v2 doc
mm: vmscan: split proactive reclaim statistics from direct reclaim statistics
selftests/mm: speed up split_huge_page_test
selftests/mm: uffd-unit-tests support for hugepages > 2M
docs/mm/damon/design: document active DAMOS filter type
mm/damon: implement a new DAMOS filter type for active pages
fs/dax: don't disassociate zero page entries
MM documentation: add "Unaccepted" meminfo entry
selftests/mm: add commentary about 9pfs bugs
fork: use __vmalloc_node() for stack allocation
docs/mm: Physical Memory: Populate the "Zones" section
xen: balloon: update the NR_BALLOON_PAGES state
hv_balloon: update the NR_BALLOON_PAGES state
balloon_compaction: update the NR_BALLOON_PAGES state
meminfo: add a per node counter for balloon drivers
mm: remove references to folio in __memcg_kmem_uncharge_page()
...
|
|
Patch series "mm/hwpoison: Fix regressions in memory failure handling",
v4.
## 1. What am I trying to do:
This patchset resolves two critical regressions related to memory failure
handling that have appeared in the upstream kernel since version 5.17, as
compared to 5.10 LTS.
- copyin case: poison found in user page while kernel copying from user space
- instr case: poison found while instruction fetching in user space
## 2. What is the expected outcome and why
- For copyin case:
Kernel can recover from poison found where kernel is doing get_user() or
copy_from_user() if those places get an error return and the kernel return
-EFAULT to the process instead of crashing. More specifily, MCE handler
checks the fixup handler type to decide whether an in kernel #MC can be
recovered. When EX_TYPE_UACCESS is found, the PC jumps to recovery code
specified in _ASM_EXTABLE_FAULT() and return a -EFAULT to user space.
- For instr case:
If a poison found while instruction fetching in user space, full recovery
is possible. User process takes #PF, Linux allocates a new page and fills
by reading from storage.
## 3. What actually happens and why
- For copyin case: kernel panic since v5.17
Commit 4c132d1d844a ("x86/futex: Remove .fixup usage") introduced a new
extable fixup type, EX_TYPE_EFAULT_REG, and later patches updated the
extable fixup type for copy-from-user operations, changing it from
EX_TYPE_UACCESS to EX_TYPE_EFAULT_REG. It breaks previous EX_TYPE_UACCESS
handling when posion found in get_user() or copy_from_user().
- For instr case: user process is killed by a SIGBUS signal due to #CMCI
and #MCE race
When an uncorrected memory error is consumed there is a race between the
CMCI from the memory controller reporting an uncorrected error with a UCNA
signature, and the core reporting and SRAR signature machine check when
the data is about to be consumed.
### Background: why *UN*corrected errors tied to *C*MCI in Intel platform [1]
Prior to Icelake memory controllers reported patrol scrub events that
detected a previously unseen uncorrected error in memory by signaling a
broadcast machine check with an SRAO (Software Recoverable Action
Optional) signature in the machine check bank. This was overkill because
it's not an urgent problem that no core is on the verge of consuming that
bad data. It's also found that multi SRAO UCE may cause nested MCE
interrupts and finally become an IERR.
Hence, Intel downgrades the machine check bank signature of patrol scrub
from SRAO to UCNA (Uncorrected, No Action required), and signal changed to
#CMCI. Just to add to the confusion, Linux does take an action (in
uc_decode_notifier()) to try to offline the page despite the UC*NA*
signature name.
### Background: why #CMCI and #MCE race when poison is consuming in
Intel platform [1]
Having decided that CMCI/UCNA is the best action for patrol scrub errors,
the memory controller uses it for reads too. But the memory controller is
executing asynchronously from the core, and can't tell the difference
between a "real" read and a speculative read. So it will do CMCI/UCNA if
an error is found in any read.
Thus:
1) Core is clever and thinks address A is needed soon, issues a
speculative read.
2) Core finds it is going to use address A soon after sending the read
request
3) The CMCI from the memory controller is in a race with MCE from the
core that will soon try to retire the load from address A.
Quite often (because speculation has got better) the CMCI from the memory
controller is delivered before the core is committed to the instruction
reading address A, so the interrupt is taken, and Linux offlines the page
(marking it as poison).
## Why user process is killed for instr case
Commit 046545a661af ("mm/hwpoison: fix error page recovered but reported
"not recovered"") tries to fix noise message "Memory error not recovered"
and skips duplicate SIGBUSs due to the race. But it also introduced a bug
that kill_accessing_process() return -EHWPOISON for instr case, as result,
kill_me_maybe() send a SIGBUS to user process.
# 4. The fix, in my opinion, should be:
- For copyin case:
The key point is whether the error context is in a read from user memory.
We do not care about the ex-type if we know its a MOV reading from
userspace.
is_copy_from_user() return true when both of the following two checks are
true:
- the current instruction is copy
- source address is user memory
If copy_user is true, we set
m->kflags |= MCE_IN_KERNEL_COPYIN | MCE_IN_KERNEL_RECOV;
Then do_machine_check() will try fixup_exception() first.
- For instr case: let kill_accessing_process() return 0 to prevent a SIGBUS.
- For patch 3:
The return value of memory_failure() is quite important while discussed
instr case regression with Tony and Miaohe for patch 2, so add comment
about the return value.
This patch (of 3):
Commit 4c132d1d844a ("x86/futex: Remove .fixup usage") introduced a new
extable fixup type, EX_TYPE_EFAULT_REG, and commit 4c132d1d844a
("x86/futex: Remove .fixup usage") updated the extable fixup type for
copy-from-user operations, changing it from EX_TYPE_UACCESS to
EX_TYPE_EFAULT_REG. The error context for copy-from-user operations no
longer functions as an in-kernel recovery context. Consequently, the
error context for copy-from-user operations no longer functions as an
in-kernel recovery context, resulting in kernel panics with the message:
"Machine check: Data load in unrecoverable area of kernel."
To address this, it is crucial to identify if an error context involves a
read operation from user memory. The function is_copy_from_user() can be
utilized to determine:
- the current operation is copy
- when reading user memory
When these conditions are met, is_copy_from_user() will return true,
confirming that it is indeed a direct copy from user memory. This check
is essential for correctly handling the context of errors in these
operations without relying on the extable fixup types that previously
allowed for in-kernel recovery.
So, use is_copy_from_user() to determine if a context is copy user directly.
Link: https://lkml.kernel.org/r/20250312112852.82415-1-xueshuai@linux.alibaba.com
Link: https://lkml.kernel.org/r/20250312112852.82415-2-xueshuai@linux.alibaba.com
Fixes: 4c132d1d844a ("x86/futex: Remove .fixup usage")
Signed-off-by: Shuai Xue <xueshuai@linux.alibaba.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Tony Luck <tony.luck@intel.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Borislav Betkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@kernel.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Cc: Ruidong Tian <tianruidong@linux.alibaba.com>
Cc: Thomas Gleinxer <tglx@linutronix.de>
Cc: Yazen Ghannam <yazen.ghannam@amd.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Jarkko Sakkinen <jarkko@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The call to mce_notify_irq() has been there since the initial version of
the soft inject mce machinery, introduced in
ea149b36c7f5 ("x86, mce: add basic error injection infrastructure").
At that time it was functional since injecting an MCE resulted in the
following call chain:
raise_mce()
->machine_check_poll()
->mce_log() - sets notfiy_user_bit
->mce_notify_user() (current mce_notify_irq) consumed the bit and called the
usermode helper.
However, with the introduction of
011d82611172 ("RAS: Add a Corrected Errors Collector")
the code got moved around and the usermode helper began to be called via the
early notifier mce_first_notifier() rendering the call in raise_local()
defunct as the mce_need_notify bit (ex notify_user) is only being set from the
early notifier.
Remove the noop call and make mce_notify_irq() static.
No functional changes.
Signed-off-by: Nikolay Borisov <nik.borisov@suse.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20250225143348.268469-1-nik.borisov@suse.com
|
|
Legacy AMD systems include an integrated Northbridge that is represented
by MCA bank 4. This is the only non-core MCA bank in legacy systems. The
Northbridge is physically shared by all the CPUs within an AMD "Node".
However, in practice the "shared" MCA bank can only by managed by a
single CPU within that AMD Node. This is known as the "Node Base Core"
(NBC). For example, only the NBC will be able to read the MCA bank 4
registers; they will be Read-as-Zero for other CPUs. Also, the MCA
Thresholding interrupt will only signal the NBC; the other CPUs will not
receive it. This is enforced by hardware, and it should not be managed by
software.
The current AMD Thresholding code attempts to deal with the "shared" MCA
bank by micromanaging the bank's sysfs kobjects. However, this does not
follow the intended kobject use cases. It is also fragile, and it has
caused bugs in the past.
Modern AMD systems do not need this shared MCA bank support, and it
should not be needed on legacy systems either.
Remove the shared threshold bank code. Also, move the threshold struct
definitions to mce/amd.c, since they are no longer needed in amd_nb.c.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20241206161210.163701-2-yazen.ghannam@amd.com
|