| Age | Commit message (Collapse) | Author |
|
When features are mismatched between MSC the way features are combined
to the class determines whether resctrl can support this SoC.
Add some tests to illustrate the sort of thing that is expected to
work, and those that must be removed.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Ben Horgan <ben.horgan@arm.com>
Reviewed-by: Fenghua Yu <fenghuay@nvidia.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com>
Tested-by: Gavin Shan <gshan@redhat.com>
Tested-by: Zeng Heng <zengheng4@huawei.com>
Tested-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Ben Horgan <ben.horgan@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
resctrl expects to reset the bandwidth counters when the filesystem
is mounted.
To allow this, add a helper that clears the saved mbwu state. Instead
of cross calling to each CPU that can access the component MSC to
write to the counter, set a flag that causes it to be zero'd on the
the next read. This is easily done by forcing a configuration update.
Signed-off-by: James Morse <james.morse@arm.com>
Cc: Peter Newman <peternewman@google.com>
Reviewed-by: Fenghua Yu <fenghuay@nvdia.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com>
Tested-by: Gavin Shan <gshan@redhat.com>
Tested-by: Zeng Heng <zengheng4@huawei.com>
Tested-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Ben Horgan <ben.horgan@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
mpam v0.1 and versions above v1.0 support optional long counter for
memory bandwidth monitoring. The MPAMF_MBWUMON_IDR register has fields
indicating support for long counters.
Probe these feature bits.
The mpam_feat_msmon_mbwu feature is used to indicate that bandwidth
monitors are supported, instead of muddling this with which size of
bandwidth monitors, add an explicit 31 bit counter feature.
Signed-off-by: Rohit Mathew <rohit.mathew@arm.com>
[ morse: Added 31bit counter feature to simplify later logic ]
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Ben Horgan <ben.horgan@arm.com>
Reviewed-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com>
Tested-by: Gavin Shan <gshan@redhat.com>
Tested-by: Zeng Heng <zengheng4@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Ben Horgan <ben.horgan@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Use the overflow status bit to track overflow on each bandwidth counter
read and add the counter size to the correction when overflow is detected.
This assumes that only a single overflow has occurred since the last read
of the counter. Overflow interrupts, on hardware that supports them could
be used to remove this limitation.
Cc: Zeng Heng <zengheng4@huawei.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Zeng Heng <zengheng4@huawei.com>
Reviewed-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com>
Tested-by: Gavin Shan <gshan@redhat.com>
Tested-by: Zeng Heng <zengheng4@huawei.com>
Tested-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Ben Horgan <ben.horgan@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Bandwidth counters need to run continuously to correctly reflect the
bandwidth.
Save the counter state when the hardware is reset due to CPU hotplug.
Add struct mbwu_state to track the bandwidth counter. Support for
tracking overflow with the same structure will be added in a
subsequent commit.
Cc: Zeng Heng <zengheng4@huawei.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Zeng Heng <zengheng4@huawei.com>
Reviewed-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com>
Tested-by: Gavin Shan <gshan@redhat.com>
Tested-by: Zeng Heng <zengheng4@huawei.com>
Tested-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Ben Horgan <ben.horgan@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Reading a monitor involves configuring what you want to monitor, and
reading the value. Components made up of multiple MSC may need values
from each MSC. MSCs may take time to configure, returning 'not ready'.
The maximum 'not ready' time should have been provided by firmware.
Add mpam_msmon_read() to hide all this. If (one of) the MSC returns
not ready, then wait the full timeout value before trying again.
CC: Shanker Donthineni <sdonthineni@nvidia.com>
Cc: Shaopeng Tan (Fujitsu) <tan.shaopeng@fujitsu.com>
Reviewed-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com>
Tested-by: Gavin Shan <gshan@redhat.com>
Tested-by: Zeng Heng <zengheng4@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Ben Horgan <ben.horgan@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
MPAM's MSC support a number of monitors, each of which supports
bandwidth counters, or cache-storage-utilisation counters. To use
a counter, a monitor needs to be configured. Add helpers to allocate
and free CSU or MBWU monitors.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Ben Horgan <ben.horgan@arm.com>
Reviewed-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com>
Tested-by: Gavin Shan <gshan@redhat.com>
Tested-by: Zeng Heng <zengheng4@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Ben Horgan <ben.horgan@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
MPAM supports more features than are going to be exposed to resctrl.
For partid other than 0, the reset values of these controls isn't
known.
Discover the rest of the features so they can be reset to avoid any
side effects when resctrl is in use.
PARTID narrowing allows MSC/RIS to support less configuration space than
is usable. If this feature is found on a class of device we are likely
to use, then reduce the partid_max to make it usable. This allows us
to map a PARTID to itself.
CC: Rohit Mathew <Rohit.Mathew@arm.com>
CC: Zeng Heng <zengheng4@huawei.com>
CC: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com>
Tested-by: Gavin Shan <gshan@redhat.com>
Tested-by: Zeng Heng <zengheng4@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Ben Horgan <ben.horgan@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
When CPUs come online the MSC's original configuration should be restored.
Add struct mpam_config to hold the configuration. For each component, this
has a bitmap of features that have been changed from the reset values. The
mpam_config is also used on RIS reset where all bits are set to ensure all
features are reset.
Once the maximum partid is known, allocate a configuration array for each
component, and reprogram each RIS configuration from this.
CC: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Cc: Fujitsu Fujitsu <Shaopeng Tan tan.shaopeng@fujitsu.com>
Cc: Peter Newman peternewman@google.com
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com>
Tested-by: Gavin Shan <gshan@redhat.com>
Tested-by: Zeng Heng <zengheng4@huawei.com>
Tested-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Ben Horgan <ben.horgan@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Once all the MSC have been probed, the system wide usable number of
PARTID is known and the configuration arrays can be allocated.
After this point, checking all the MSC have been probed is pointless,
and the cpuhp callbacks should restore the configuration, instead of
just resetting the MSC.
Add a static key to enable this behaviour. This will also allow MPAM
to be disabled in response to an error, and the architecture code to
enable/disable the context switch of the MPAM system registers.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Ben Horgan <ben.horgan@arm.com>
Reviewed-by: Fenghua Yu <fenghuay@nvidia.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com>
Tested-by: Gavin Shan <gshan@redhat.com>
Tested-by: Zeng Heng <zengheng4@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Ben Horgan <ben.horgan@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Register and enable error IRQs. All the MPAM error interrupts indicate a
software bug, e.g. out of range partid. If the error interrupt is ever
signalled, attempt to disable MPAM.
Only the irq handler accesses the MPAMF_ESR register, so no locking is
needed. The work to disable MPAM after an error needs to happen at process
context as it takes mutex. It also unregisters the interrupts, meaning
it can't be done from the threaded part of a threaded interrupt.
Instead, mpam_disable() gets scheduled.
Enabling the IRQs in the MSC may involve cross calling to a CPU that
can access the MSC.
Once the IRQ is requested, the mpam_disable() path can be called
asynchronously, which will walk structures sized by max_partid. Ensure
this size is fixed before the interrupt is requested.
CC: Rohit Mathew <rohit.mathew@arm.com>
Reviewed-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Rohit Mathew <rohit.mathew@arm.com>
Tested-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com>
Tested-by: Gavin Shan <gshan@redhat.com>
Tested-by: Zeng Heng <zengheng4@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Ben Horgan <ben.horgan@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
When a CPU comes online, it may bring a newly accessible MSC with
it. Only the default partid has its value reset by hardware, and
even then the MSC might not have been reset since its config was
previously dirtied. e.g. Kexec.
Any in-use partid must have its configuration restored, or reset.
In-use partids may be held in caches and evicted later.
MSC are also reset when CPUs are taken offline to cover cases where
firmware doesn't reset the MSC over reboot using UEFI, or kexec
where there is no firmware involvement.
If the configuration for a RIS has not been touched since it was
brought online, it does not need resetting again.
To reset, write the maximum values for all discovered controls.
CC: Rohit Mathew <Rohit.Mathew@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Fenghua Yu <fenghuay@nvidia.com>
Reviewed-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Tested-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com>
Tested-by: Gavin Shan <gshan@redhat.com>
Tested-by: Zeng Heng <zengheng4@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Ben Horgan <ben.horgan@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
To make a decision about whether to expose an mpam class as
a resctrl resource we need to know its overall supported
features and properties.
Once we've probed all the resources, we can walk the tree
and produce overall values by merging the bitmaps. This
eliminates features that are only supported by some MSC
that make up a component or class.
If bitmap properties are mismatched within a component we
cannot support the mismatched feature.
Care has to be taken as vMSC may hold mismatched RIS.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Ben Horgan <ben.horgan@arm.com>
Reviewed-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Fenghua Yu <fenghuay@nvidia.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com>
Tested-by: Gavin Shan <gshan@redhat.com>
Tested-by: Zeng Heng <zengheng4@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Ben Horgan <ben.horgan@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Expand the probing support with the control and monitor types
we can use with resctrl.
CC: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Fenghua Yu <fenghuay@nvidia.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com>
Tested-by: Gavin Shan <gshan@redhat.com>
Tested-by: Zeng Heng <zengheng4@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Ben Horgan <ben.horgan@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The MSC MON_SEL register needs to be accessed from hardirq for the overflow
interrupt, and when taking an IPI to access these registers on platforms
where MSC are not accessible from every CPU. This makes an irqsave
spinlock the obvious lock to protect these registers. On systems with SCMI
or PCC mailboxes it must be able to sleep, meaning a mutex must be used.
The SCMI or PCC platforms can't support an overflow interrupt, and
can't access the registers from hardirq context.
Clearly these two can't exist for one MSC at the same time.
Add helpers for the MON_SEL locking. For now, use a irqsave spinlock and
only support 'real' MMIO platforms.
In the future this lock will be split in two allowing SCMI/PCC platforms
to take a mutex. Because there are contexts where the SCMI/PCC platforms
can't make an access, mpam_mon_sel_lock() needs to be able to fail. Do
this now, so that all the error handling on these paths is present. This
allows the relevant paths to fail if they are needed on a platform where
this isn't possible, instead of having to make explicit checks of the
interface type.
Reviewed-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com>
Tested-by: Gavin Shan <gshan@redhat.com>
Tested-by: Zeng Heng <zengheng4@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Ben Horgan <ben.horgan@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
CPUs can generate traffic with a range of PARTID and PMG values,
but each MSC may also have its own maximum size for these fields.
Before MPAM can be used, the driver needs to probe each RIS on
each MSC, to find the system-wide smallest value that can be used.
The limits from requestors (e.g. CPUs) also need taking into account.
While doing this, RIS entries that firmware didn't describe are created
under MPAM_CLASS_UNKNOWN.
This adds the low level MSC write accessors.
While we're here, implement the mpam_register_requestor() call
for the arch code to register the CPU limits. Future callers of this
will tell us about the SMMU and ITS.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Ben Horgan <ben.horgan@arm.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com>
Tested-by: Gavin Shan <gshan@redhat.com>
Tested-by: Zeng Heng <zengheng4@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Ben Horgan <ben.horgan@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Because an MSC can only by accessed from the CPUs in its cpu-affinity
set we need to be running on one of those CPUs to probe the MSC
hardware.
Do this work in the cpuhp callback. Probing the hardware will only
happen before MPAM is enabled, walk all the MSCs and probe those we can
reach that haven't already been probed as each CPU's online call is made.
This adds the low-level MSC register read accessors.
Once all MSCs reported by the firmware have been probed from a CPU in
their respective cpu-affinity set, the probe-time cpuhp callbacks are
replaced. The replacement callbacks will ultimately need to handle
save/restore of the runtime MSC state across power transitions, but for
now there is nothing to do in them: so do nothing.
The architecture's context switch code will be enabled by a static-key,
this can be set by mpam_enable(), but must be done from process context,
not a cpuhp callback because both take the cpuhp lock.
Whenever a new MSC has been probed, the mpam_enable() work is scheduled
to test if all the MSCs have been probed. If probing fails, mpam_disable()
is scheduled to unregister the cpuhp callbacks and free memory.
CC: Lecopzer Chen <lecopzerc@nvidia.com>
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Ben Horgan <ben.horgan@arm.com>
Reviewed-by: Fenghua Yu <fenghuay@nvidia.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com>
Tested-by: Gavin Shan <gshan@redhat.com>
Tested-by: Zeng Heng <zengheng4@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Ben Horgan <ben.horgan@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Memory Partitioning and Monitoring (MPAM) has memory mapped devices
(MSCs) with an identity/configuration page.
Add the definitions for these registers as offset within the page(s).
Link: https://developer.arm.com/documentation/ihi0099/aa/
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Ben Horgan <ben.horgan@arm.com>
Reviewed-by: Fenghua Yu <fenghuay@nvidia.com>
Reviewed-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Tested-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com>
Tested-by: Gavin Shan <gshan@redhat.com>
Tested-by: Zeng Heng <zengheng4@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Ben Horgan <ben.horgan@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
An MSC is a container of resources, each identified by their RIS index.
Some RIS are described by firmware to provide their position in the system.
Others are discovered when the driver probes the hardware.
To configure a resource it needs to be found by its class, e.g. 'L2'.
There are two kinds of grouping, a class is a set of components, which
are visible to user-space as there are likely to be multiple instances
of the L2 cache. (e.g. one per cluster or package)
Add support for creating and destroying structures to allow a hierarchy
of resources to be created.
Reviewed-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Reviewed-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com>
Tested-by: Gavin Shan <gshan@redhat.com>
Tested-by: Zeng Heng <zengheng4@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Ben Horgan <ben.horgan@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Probing MPAM is convoluted. MSCs that are integrated with a CPU may
only be accessible from those CPUs, and they may not be online.
Touching the hardware early is pointless as MPAM can't be used until
the system-wide common values for num_partid and num_pmg have been
discovered.
Start with driver probe/remove and mapping the MSC.
Cc: Carl Worth <carl@os.amperecomputing.com>
Reviewed-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Reviewed-by: Fenghua Yu <fenghuay@nvidia.com>
Reviewed-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Fenghua Yu <fenghuay@nvidia.com>
Tested-by: Shaopeng Tan <tan.shaopeng@jp.fujitsu.com>
Tested-by: Peter Newman <peternewman@google.com>
Tested-by: Carl Worth <carl@os.amperecomputing.com>
Tested-by: Gavin Shan <gshan@redhat.com>
Tested-by: Zeng Heng <zengheng4@huawei.com>
Tested-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Ben Horgan <ben.horgan@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|