Age | Commit message (Collapse) | Author |
|
All other users of the bg_list list_head increment the refcount when
adding to a list and decrement it when deleting from the list. Just for
the sake of uniformity and to try to avoid refcounting bugs, do it for
this list as well.
This does not fix any known ref-counting bug, as the reference belongs
to a single task (trans_handle is not shared and this represents
trans_handle->new_bgs linkage) and will not lose its original refcount
while that thread is running. And BLOCK_GROUP_FLAG_NEW protects against
ref-counting errors "moving" the block group to the unused list without
taking a ref.
With that said, I still believe it is simpler to just hold the extra ref
count for this list user as well.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Currently, the async discard machinery owns a ref to the block_group
when the block_group is queued on a discard list. However, to handle
races with discard cancellation and the discard workfn, we have a
specific logic to detect that the block_group is *currently* running in
the workfn, to protect the workfn's usage amidst cancellation.
As far as I can tell, this doesn't have any overt bugs (though
finish_discard_pass() and remove_from_discard_list() racing can have a
surprising outcome for the caller of remove_from_discard_list() in that
it is again added at the end).
But it is needlessly complicated to rely on locking and the nullity of
discard_ctl->block_group. Simplify this significantly by just taking a
refcount while we are in the workfn and unconditionally drop it in both
the remove and workfn paths, regardless of if they race.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
As far as I can tell, these calls of list_del_init() on bg_list cannot
run concurrently with btrfs_mark_bg_unused() or btrfs_mark_bg_to_reclaim(),
as they are in transaction error paths and situations where the block
group is readonly.
However, if there is any chance at all of racing with mark_bg_unused(),
or a different future user of bg_list, better to be safe than sorry.
Otherwise we risk the following interleaving (bg_list refcount in parens)
T1 (some random op) T2 (btrfs_mark_bg_unused)
!list_empty(&bg->bg_list); (1)
list_del_init(&bg->bg_list); (1)
list_move_tail (1)
btrfs_put_block_group (0)
btrfs_delete_unused_bgs
bg = list_first_entry
list_del_init(&bg->bg_list);
btrfs_put_block_group(bg); (-1)
Ultimately, this results in a broken ref count that hits zero one deref
early and the real final deref underflows the refcount, resulting in a WARNING.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Block group creation is done in two phases, which results in a slightly
unintuitive property: a block group can be allocated/deallocated from
after btrfs_make_block_group() adds it to the space_info with
btrfs_add_bg_to_space_info(), but before creation is completely completed
in btrfs_create_pending_block_groups(). As a result, it is possible for a
block group to go unused and have 'btrfs_mark_bg_unused' called on it
concurrently with 'btrfs_create_pending_block_groups'. This causes a
number of issues, which were fixed with the block group flag
'BLOCK_GROUP_FLAG_NEW'.
However, this fix is not quite complete. Since it does not use the
unused_bg_lock, it is possible for the following race to occur:
btrfs_create_pending_block_groups btrfs_mark_bg_unused
if list_empty // false
list_del_init
clear_bit
else if (test_bit) // true
list_move_tail
And we get into the exact same broken ref count and invalid new_bgs
state for transaction cleanup that BLOCK_GROUP_FLAG_NEW was designed to
prevent.
The broken refcount aspect will result in a warning like:
[1272.943527] refcount_t: underflow; use-after-free.
[1272.943967] WARNING: CPU: 1 PID: 61 at lib/refcount.c:28 refcount_warn_saturate+0xba/0x110
[1272.944731] Modules linked in: btrfs virtio_net xor zstd_compress raid6_pq null_blk [last unloaded: btrfs]
[1272.945550] CPU: 1 UID: 0 PID: 61 Comm: kworker/u32:1 Kdump: loaded Tainted: G W 6.14.0-rc5+ #108
[1272.946368] Tainted: [W]=WARN
[1272.946585] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014
[1272.947273] Workqueue: btrfs_discard btrfs_discard_workfn [btrfs]
[1272.947788] RIP: 0010:refcount_warn_saturate+0xba/0x110
[1272.949532] RSP: 0018:ffffbf1200247df0 EFLAGS: 00010282
[1272.949901] RAX: 0000000000000000 RBX: ffffa14b00e3f800 RCX: 0000000000000000
[1272.950437] RDX: 0000000000000000 RSI: ffffbf1200247c78 RDI: 00000000ffffdfff
[1272.950986] RBP: ffffa14b00dc2860 R08: 00000000ffffdfff R09: ffffffff90526268
[1272.951512] R10: ffffffff904762c0 R11: 0000000063666572 R12: ffffa14b00dc28c0
[1272.952024] R13: 0000000000000000 R14: ffffa14b00dc2868 R15: 000001285dcd12c0
[1272.952850] FS: 0000000000000000(0000) GS:ffffa14d33c40000(0000) knlGS:0000000000000000
[1272.953458] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[1272.953931] CR2: 00007f838cbda000 CR3: 000000010104e000 CR4: 00000000000006f0
[1272.954474] Call Trace:
[1272.954655] <TASK>
[1272.954812] ? refcount_warn_saturate+0xba/0x110
[1272.955173] ? __warn.cold+0x93/0xd7
[1272.955487] ? refcount_warn_saturate+0xba/0x110
[1272.955816] ? report_bug+0xe7/0x120
[1272.956103] ? handle_bug+0x53/0x90
[1272.956424] ? exc_invalid_op+0x13/0x60
[1272.956700] ? asm_exc_invalid_op+0x16/0x20
[1272.957011] ? refcount_warn_saturate+0xba/0x110
[1272.957399] btrfs_discard_cancel_work.cold+0x26/0x2b [btrfs]
[1272.957853] btrfs_put_block_group.cold+0x5d/0x8e [btrfs]
[1272.958289] btrfs_discard_workfn+0x194/0x380 [btrfs]
[1272.958729] process_one_work+0x130/0x290
[1272.959026] worker_thread+0x2ea/0x420
[1272.959335] ? __pfx_worker_thread+0x10/0x10
[1272.959644] kthread+0xd7/0x1c0
[1272.959872] ? __pfx_kthread+0x10/0x10
[1272.960172] ret_from_fork+0x30/0x50
[1272.960474] ? __pfx_kthread+0x10/0x10
[1272.960745] ret_from_fork_asm+0x1a/0x30
[1272.961035] </TASK>
[1272.961238] ---[ end trace 0000000000000000 ]---
Though we have seen them in the async discard workfn as well. It is
most likely to happen after a relocation finishes which cancels discard,
tears down the block group, etc.
Fix this fully by taking the lock around the list_del_init + clear_bit
so that the two are done atomically.
Fixes: 0657b20c5a76 ("btrfs: fix use-after-free of new block group that became unused")
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The fs_info can be taken from the given block group, so there is no need
to pass it as an argument. Also rename the local variable from 'info' to
'fs_info' which is more widely used, more clear and to be more consistent.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The fs_info can be taken from the given block group, so there is no need
to pass it as an argument.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The fs_info can be taken from the given block group, so there is no need
to pass it as an argument.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
It's an internal function and btrfs_iget() is now returning a btrfs inode,
so change btrfs_iget_path() to also return a btrfs inode instead of a VFS
inode.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
It's an internal function and most of the time the callers are doing a lot
of BTRFS_I() calls on the returned VFS inode to get the btrfs inode, so
change the return type to struct btrfs_inode instead.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
fixup_inode_link_count() mostly wants to use a btrfs_inode, plus it's an
internal function so it should take btrfs_inode instead of a VFS inode.
Change the argument type to btrfs_inode, avoiding several BTRFS_I() calls
too.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
All callers of read_one_inode() are mostly interested in the btrfs_inode
structure rather than the VFS inode, so make read_one_inode() return
the btrfs_inode instead, avoiding lots of BTRFS_I() calls.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
All callers of btrfs_iget_logging() are interested in the btrfs_inode
structure rather than the VFS inode, so make btrfs_iget_logging() return
the btrfs_inode instead, avoiding lots of BTRFS_I() calls.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The inline function btrfs_is_testing() is hardcoded to return 0 if
CONFIG_BTRFS_FS_RUN_SANITY_TESTS is not set. Currently we're relying on
the compiler optimizing out the call to alloc_test_extent_buffer() in
btrfs_find_create_tree_block(), as it's not been defined (it's behind an
#ifdef).
Add a stub version of alloc_test_extent_buffer() to avoid linker errors
on non-standard optimization levels. This problem was seen on GCC 14
with -O0 and is helps to see symbols that would be otherwise optimized
out.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Mark Harmstone <maharmstone@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
[BUG]
Even after all the error fixes related the
"ASSERT(list_empty(&fs_info->delayed_iputs));" in close_ctree(), I can
still hit it reliably with my experimental 2K block size.
[CAUSE]
In my case, all the error is triggered after the fs is already in error
status.
I find the following call trace to be the cause of race:
Main thread | endio_write_workers
---------------------------------------------+---------------------------
close_ctree() |
|- btrfs_error_commit_super() |
| |- btrfs_cleanup_transaction() |
| | |- btrfs_destroy_all_ordered_extents() |
| | |- btrfs_wait_ordered_roots() |
| |- btrfs_run_delayed_iputs() |
| | btrfs_finish_ordered_io()
| | |- btrfs_put_ordered_extent()
| | |- btrfs_add_delayed_iput()
|- ASSERT(list_empty(delayed_iputs)) |
!!! Triggered !!!
The root cause is that, btrfs_wait_ordered_roots() only wait for
ordered extents to finish their IOs, not to wait for them to finish and
removed.
[FIX]
Since btrfs_error_commit_super() will flush and wait for all ordered
extents, it should be executed early, before we start flushing the
workqueues.
And since btrfs_error_commit_super() now runs early, there is no need to
run btrfs_run_delayed_iputs() inside it, so just remove the
btrfs_run_delayed_iputs() call from btrfs_error_commit_super().
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The zstd and zlib compression types support setting compression levels.
Enhance the defrag interface to specify the levels as well. For zstd the
negative (realtime) levels are also accepted.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Daniel Vacek <neelx@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The 'out' label is pointless as we don't have anything to cleanup anymore
(we used to have an inode to iput), so remove it and make error paths
directly return an error.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
We are doing a lookup of the inode but we don't use it at all. So just
remove this pointless lookup.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
We have dereferenced the async_submit_bio structure and extracted the bio
pointer into a local variable, so there's no need to dereference it again
when calling btrfs_bio_end_io(). Just use "bio->bi_status" instead of the
longer expression "async->bbio->bio.bi_status".
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
At close_ctree() after we have ran delayed iputs either explicitly through
calling btrfs_run_delayed_iputs() or later during the call to
btrfs_commit_super() or btrfs_error_commit_super(), we assert that the
delayed iputs list is empty.
We have (another) race where this assertion might fail because we have
queued an async write into the fs_info->workers workqueue. Here's how it
happens:
1) We are submitting a data bio for an inode that is not the data
relocation inode, so we call btrfs_wq_submit_bio();
2) btrfs_wq_submit_bio() submits a work for the fs_info->workers queue
that will run run_one_async_done();
3) We enter close_ctree(), flush several work queues except
fs_info->workers, explicitly run delayed iputs with a call to
btrfs_run_delayed_iputs() and then again shortly after by calling
btrfs_commit_super() or btrfs_error_commit_super(), which also run
delayed iputs;
4) run_one_async_done() is executed in the work queue, and because there
was an IO error (bio->bi_status is not 0) it calls btrfs_bio_end_io(),
which drops the final reference on the associated ordered extent by
calling btrfs_put_ordered_extent() - and that adds a delayed iput for
the inode;
5) At close_ctree() we find that after stopping the cleaner and
transaction kthreads the delayed iputs list is not empty, failing the
following assertion:
ASSERT(list_empty(&fs_info->delayed_iputs));
Fix this by flushing the fs_info->workers workqueue before running delayed
iputs at close_ctree().
David reported this when running generic/648, which exercises IO error
paths by using the DM error table.
Reported-by: David Sterba <dsterba@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
[OUT-OF-BAND DIRTY FOLIOS]
An out-of-band folio means the folio is marked dirty but without
notifying the filesystem.
This can lead to various problems, not limited to:
- No folio::private to track per block status
- No proper space reserved for such a dirty folio
[HISTORY IN BTRFS]
This used to be a problem related to get_user_page(), but with the
introduction of pin_user_pages*(), we should no longer hit such
case anymore.
In btrfs, we have a long history of catching such out-of-band dirty
folios by:
- Mark the folio ordered during delayed allocation
- Check the folio ordered flag during writeback
If the folio has no ordered flag, it means it doesn't go through
delayed allocation, thus it's definitely an out-of-band
one.
If we got one, we go through COW fixup, which will re-dirty the folio
with proper handling in another workqueue.
[PROBLEMS OF COW-FIXUP]
Such workaround is a blockage for us to migrate to iomap (it requires
extra flags to trace if a folio is dirtied by the fs or not) and I'd
argue it's not data checksum safe, since if a folio can be marked dirty
without informing the fs, the content can also change at any time.
But with the introduction of pin_user_pages*() during v5.8 merge
window, such out-of-band dirty folio such be treated as a bug.
Ext4 has treated such case by warning and erroring out even before
pin_user_pages*().
Furthermore, there are already proofs that such folio ordered flag
tracking can be screwed up by incorrect error handling, check the commit
messages of the following commits:
06f364284794 ("btrfs: do proper folio cleanup when cow_file_range() failed")
c2b47df81c8e ("btrfs: do proper folio cleanup when run_delalloc_nocow() failed")
[FIXES]
Unlike btrfs, ext4 and xfs (iomap) never bother handling such
out-of-band dirty folios.
- Ext4 just warns and errors out
- Iomap always follows the folio/block dirty flags
And there is nothing really COW specific, xfs also supports COW too.
Here we take one step towards ext4 by doing warning and erroring out.
But since the cow fixup thing is introduced from the beginning, we keep
the old behavior for non-experimental builds, and only do the new warning
for experimental builds before we're 100% sure and remove cow fixup.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
This is just a small clean up, it doesn't change how the code works.
Originally this code had a goto so we needed to set "ret = 0;" but now
it returns directly and so we can simplify it a bit by doing a
"return 0;" and removing the assignment.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The btrfs_cleanup_bio() helper is trivial and has a single caller, there's
no point in having a dedicated helper function. So get rid of it and move
its code into the caller (btrfs_bio_end_io()).
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The __btrfs_bio_end_io() helper is trivial and has a single caller, so
there's no point in having a dedicated helper function. Further the double
underscore prefix in the name is discouraged. So get rid of it and move
its code into the caller (btrfs_bio_end_io()).
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
workers
At close_ctree() after we have ran delayed iputs either through explicitly
calling btrfs_run_delayed_iputs() or later during the call to
btrfs_commit_super() or btrfs_error_commit_super(), we assert that the
delayed iputs list is empty.
When we have compressed writes this assertion may fail because delayed
iputs may have been added to the list after we last ran delayed iputs.
This happens like this:
1) We have a compressed write bio executing;
2) We enter close_ctree() and flush the fs_info->endio_write_workers
queue which is the queue used for running ordered extent completion;
3) The compressed write bio finishes and enters
btrfs_finish_compressed_write_work(), where it calls
btrfs_finish_ordered_extent() which in turn calls
btrfs_queue_ordered_fn(), which queues a work item in the
fs_info->endio_write_workers queue that we have flushed before;
4) At close_ctree() we proceed, run all existing delayed iputs and
call btrfs_commit_super() (which also runs delayed iputs), but before
we run the following assertion below:
ASSERT(list_empty(&fs_info->delayed_iputs))
A delayed iput is added by the step below...
5) The ordered extent completion job queued in step 3 runs and results in
creating a delayed iput when dropping the last reference of the ordered
extent (a call to btrfs_put_ordered_extent() made from
btrfs_finish_one_ordered());
6) At this point the delayed iputs list is not empty, so the assertion at
close_ctree() fails.
Fix this by flushing the fs_info->compressed_write_workers queue at
close_ctree() before flushing the fs_info->endio_write_workers queue,
respecting the queue dependency as the later is responsible for the
execution of ordered extent completion.
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Rename binode to inode in local variables or parameters so it's more
unified with the rest of the code.
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Pass a struct btrfs_inode to btrfs_ioctl_subvol_getflags() as it's an
internal interface, allowing to remove some use of BTRFS_I.
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Remove some redundant variables and assignments, move variable
declarations to their closest scope.
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Pass a struct btrfs_inode to btrfs_sync_inode_flags_to_i_flags() as it's
an internal interface.
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The search tree ioctl use btrfs_root so change that from btrfs_inode
pointers so we don't have to do the conversion.
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The ioctl switch btrfs_ioctl() provides several parameter types for
convenience so we don't have to do the conversion in the callbacks.
Pass root pointers to the send related functions.
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Add const to function parameters that are not changed.
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Currently we only support two block sizes, 4K and PAGE_SIZE.
This means on the most common architecture x86_64, we have no way to
test subpage block size. And that's exactly I have an aarch64 machine
dedicated for subpage tests.
But this is still a hurdle for a lot of btrfs developers, and to improve
the test coverage mostly on x86_64, here we enable debug builds to
accept 2K block size.
This involves:
- Introduce a dedicated minimal block size macro
BTRFS_MIN_BLOCKSIZE, which depends on if CONFIG_BTRFS_DEBUG is set.
If so it's 2K, otherwise it's 4K as usual.
- Allow 4K, PAGE_SIZE and BTRFS_MIN_BLOCKSIZE as block size
- Update subpage block size checks to be based on BTRFS_MIN_BLOCKSIZE
- Export the new supported blocksize through sysfs interfaces
As most of the subpage support is already pretty mature, there is no
extra work needed to support the extra 2K block size.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Btrfs utilizes inline data extent for the following cases:
- Regular small files
- Symlinks
And "btrfs check" detects any file extents that are too large as an
error.
It's not a problem for 4K block size, but for the incoming smaller
block sizes (2K), it can cause problems due to bad limits:
- Non-compressed inline data extents
We do not allow a non-compressed inline data extent to be as large as
block size.
- Symlinks
Currently the only real limit on symlinks are 4K, which can be larger
than 2K block size.
These will result btrfs-check to report too large file extents.
Fix it by adding proper size checks for the above cases.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Since the initial enablement of block size < page size support for
btrfs in v5.15, we have hit several milestones for block size < page
size (subpage) support:
- RAID56 subpage support
In v5.19
- Refactored scrub support to support subpage better
In v6.4
- Block perfect (previously requires page aligned ranges) compressed write
In v6.13
- Various error handling fixes involving subpage
In v6.14
Finally the only missing feature is the pretty simple and harmless
inlined data extent creation, just added in previous patches.
Now btrfs has all of its features ready for both regular and subpage
cases, there is no reason to output a warning about the experimental
subpage support, and we can finally remove it now.
Acked-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Previously inline data extents creation was disabled if the block size
(previously called sector size) is smaller than the page size, for the
following reasons:
- Possible mixed inline and regular data extents
However this is also the same if the block size matches the page size,
thus we do not treat mixed inline and regular extents as an error.
And the chance to cause mixed inline and regular data extents are not
even increased, it has the same requirement (compressed inline data
extent covering the whole first block, followed by regular extents).
- Inability to handle async/inline delalloc range for block size < page
size cases
This is already fixed since commit 1d2fbb7f1f9e ("btrfs: allow
compression even if the range is not page aligned").
This was the major technical obstacle, but it's not anymore.
With that removed, we can enable inline data extents creation no matter
the block size nor the page size, allowing btrfs to have the same
capacity for all block sizes.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
[BUG]
Since the support of block size (sector size) < page size for btrfs,
test case generic/563 fails with 4K block size and 64K page size:
--- tests/generic/563.out 2024-04-25 18:13:45.178550333 +0930
+++ /home/adam/xfstests-dev/results//generic/563.out.bad 2024-09-30 09:09:16.155312379 +0930
@@ -3,7 +3,8 @@
read is in range
write is in range
write -> read/write
-read is in range
+read has value of 8388608
+read is NOT in range -33792 .. 33792
write is in range
...
[CAUSE]
The test case creates a 8MiB file, then does buffered write into the 8MiB
using 4K block size, to overwrite the whole file.
On 4K page sized systems, since the write range covers the full block and
page, btrfs will not bother reading the page, just like what XFS and EXT4
do.
But on 64K page sized systems, although the 4K sized write is still block
aligned, it's not page aligned anymore, thus btrfs will read the full
page, which will be accounted by cgroup and fail the test.
As the test case itself expects such 4K block aligned write should not
trigger any read.
Such expected behavior is an optimization to reduce folio reads when
possible, and unfortunately btrfs does not implement such optimization.
[FIX]
To skip the full page read, we need to do the following modification:
- Do not trigger full page read as long as the buffered write is block
aligned
This is pretty simple by modifying the check inside
prepare_uptodate_page().
- Skip already uptodate blocks during full page read
Or we can lead to the following data corruption:
0 32K 64K
|///////| |
Where the file range [0, 32K) is dirtied by buffered write, the
remaining range [32K, 64K) is not.
When reading the full page, since [0,32K) is only dirtied but not
written back, there is no data extent map for it, but a hole covering
[0, 64k).
If we continue reading the full page range [0, 64K), the dirtied range
will be filled with 0 (since there is only a hole covering the whole
range).
This causes the dirtied range to get lost.
With this optimization, btrfs can pass generic/563 even if the page size
is larger than fs block size.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Currently if btrfs has its block size (the older sector size) smaller
than the page size, btrfs_do_readpage() will handle the range extent by
extent, this is good for performance as it doesn't need to re-lookup the
same extent map again and again.
(Although get_extent_map() already does extra cached em check, thus
the optimization is not that obvious.)
This is totally fine and is a valid optimization, but it has an
assumption that there is no partial uptodate range in the page.
Meanwhile there is an incoming feature, requiring btrfs to skip the full
page read if a buffered write range covers a full block but not a full
page.
In that case, we can have a page that is partially uptodate, and the
current per-extent lookup cannot handle such case.
So here we change btrfs_do_readpage() to do block-by-block read, this
simplifies the following things:
- Remove the need for @iosize variable
Because we just use sectorsize as our increment.
- Remove @pg_offset, and calculate it inside the loop when needed
It's just offset_in_folio().
- Use a for() loop instead of a while() loop
This will slightly reduce the read performance for subpage cases, but for
the future where we need to skip already uptodate blocks, it should still
be worth.
For block size == page size, this brings no performance change.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Currently we're using btrfs_lock_and_flush_ordered_range() for both
btrfs_read_folio() and btrfs_readahead(), but it has one critical
problem for future subpage optimizations:
- It will call btrfs_start_ordered_extent() to writeback the involved
folios
But remember we're calling btrfs_lock_and_flush_ordered_range() at
read paths, meaning the folio is already locked by read path.
If we really trigger writeback for those already locked folios, this
will lead to a deadlock and writeback cannot get the folio lock.
Such dead lock is prevented by the fact that btrfs always keeps a
dirty folio also uptodate, by either dirtying all blocks of the folio,
or by reading the whole folio before dirtying.
To prepare for the incoming patch which allows btrfs to skip full folio
read if the buffered write is block aligned, we have to start by solving
the possible deadlock first.
Instead of blindly calling btrfs_start_ordered_extent(), introduce a
new helper, which is smarter in the following ways:
- Only wait and flush the ordered extent if
* The folio doesn't even have private bit set
* Part of the blocks of the ordered extent are not uptodate
This can happen by:
* The folio writeback finished, then got invalidated.
There are a lot of reasons that a folio can get invalidated,
from memory pressure to direct IO (which invalidates all folios
of the range).
But OE not yet finished.
We have to wait for the ordered extent, as the OE may contain
to-be-inserted data checksum.
Without waiting, our read can fail due to the missing checksum.
But either way, the OE should not need any extra flush inside the
locked folio range.
- Skip the ordered extent completely if
* All the blocks are dirty
This happens when OE creation is caused by a folio writeback whose
file offset is before our folio.
E.g. 16K page size and 4K block size
0 8K 16K 24K 32K
|//////////////||///////| |
The writeback of folio 0 created an OE for range [0, 24K), but since
folio 16K is not fully uptodate, a read is triggered for folio 16K.
The writeback will never happen (we're holding the folio lock for
read), nor will the OE finish.
Thus we must skip the range.
* All the blocks are uptodate
This happens when the writeback finished, but OE not yet finished.
Since the blocks are already uptodate, we can skip the OE range.
The new helper lock_extents_for_read() will do a loop for the target
range by:
1) Lock the full range
2) If there is no ordered extent in the remaining range, exit
3) If there is an ordered extent that we can skip
Skip to the end of the OE, and continue checking
We do not trigger writeback nor wait for the OE.
4) If there is an ordered extent that we cannot skip
Unlock the whole extent range and start the ordered extent.
And also update btrfs_start_ordered_extent() to add two more parameters:
@nowriteback_start and @nowriteback_len, to prevent triggering flush for
a certain range.
This will allow us to handle the following case properly in the future:
16K page size, 4K btrfs block size:
0 4K 8K 12K 16K 20K 24K 28K 32K
|/////////////////////////////||////////////////| | |
|<-------------------- OE 2 ------------------->| |< OE 1 >|
The folio has been written back before, thus we have an OE at
[28K, 32K).
Although the OE 1 finished its IO, the OE is not yet removed from IO
tree.
The folio got invalidated after writeback completed and before the
ordered extent finished.
And [16K, 24K) range is dirty and uptodate, caused by a block aligned
buffered write (and future enhancements allowing btrfs to skip full
folio read for such case).
But writeback for folio 0 has began, thus it generated OE 2, covering
range [0, 24K).
Since the full folio 16K is not uptodate, if we want to read the folio,
the existing btrfs_lock_and_flush_ordered_range() will dead lock, by:
btrfs_read_folio()
| Folio 16K is already locked
|- btrfs_lock_and_flush_ordered_range()
|- btrfs_start_ordered_extent() for range [16K, 24K)
|- filemap_fdatawrite_range() for range [16K, 24K)
|- extent_write_cache_pages()
folio_lock() on folio 16K, deadlock.
But now we will have the following sequence:
btrfs_read_folio()
| Folio 16K is already locked
|- lock_extents_for_read()
|- can_skip_ordered_extent() for range [16K, 24K)
| Returned true, the range [16K, 24K) will be skipped.
|- can_skip_ordered_extent() for range [28K, 32K)
| Returned false.
|- btrfs_start_ordered_extent() for range [28K, 32K) with
[16K, 32K) as no writeback range
No writeback for folio 16K will be triggered.
And there will be no more possible deadlock on the same folio.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Inside function __cow_file_range_inline() since the inlined data no
longer take any data space, we need to free up the reserved space.
However the code is still using the old page size == sector size
assumption, and will not handle subpage case well.
Thankfully it is not going to cause any problems because we have two extra
safe nets:
- Inline data extents creation is disabled for sector size < page size
cases for now
But it won't stay that for long.
- btrfs_qgroup_free_data() will only clear ranges which have been already
reserved
So even if we pass a range larger than what we need, it should still
be fine, especially there is only reserved space for a single block at
file offset 0 of an inline data extent.
But just for the sake of consistency, fix the call site to use
sectorsize instead of page size.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Currently reading an inline data extent will zero out the remaining
range in the page.
This is not yet causing problems even for block size < page size
(subpage) cases because:
1) An inline data extent always starts at file offset 0
Meaning at page read, we always read the inline extent first, before
any other blocks in the page. Then later blocks are properly read out
and re-fill the zeroed out ranges.
2) Currently btrfs will read out the whole page if a buffered write is
not page aligned
So a page is either fully uptodate at buffered write time (covers the
whole page), or we will read out the whole page first.
Meaning there is nothing to lose for such an inline extent read.
But it's still not ideal:
- We're zeroing out the page twice
Once done by read_inline_extent()/uncompress_inline(), once done by
btrfs_do_readpage() for ranges beyond i_size.
- We're touching blocks that don't belong to the inline extent
In the incoming patches, we can have a partial uptodate folio, of
which some dirty blocks can exist while the page is not fully uptodate:
The page size is 16K and block size is 4K:
0 4K 8K 12K 16K
| | |/////////| |
And range [8K, 12K) is dirtied by a buffered write, the remaining
blocks are not uptodate.
If range [0, 4K) contains an inline data extent, and we try to read
the whole page, the current behavior will overwrite range [8K, 12K)
with zero and cause data loss.
So to make the behavior more consistent and in preparation for future
changes, limit the inline data extents read to only zero out the range
inside the first block, not the whole page.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
We now parse human-friendly size values (e.g. '1G', '2M') when setting
read policies.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
This is the trivial pattern for path auto free, initialize at the
beginning and free at the end with simple goto -> return conversions.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
This is the trivial pattern for path auto free, initialize at the
beginning and free at the end with simple goto -> return conversions.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
This is the trivial pattern for path auto free, initialize at the
beginning and free at the end with simple goto -> return conversions.
This applies to both path and path2.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
This is the trivial pattern for path auto free, initialize at the
beginning and free at the end with simple goto -> return conversions.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
This is the trivial pattern for path auto free, initialize at the
beginning and free at the end.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
This is the trivial pattern for path auto free, initialize at the
beginning and free at the end with simple goto -> return conversions.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
This is the trivial pattern for path auto free, initialize at the
beginning and free at the end with simple goto -> return conversions.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
This is the trivial pattern for path auto free, initialize at the
beginning and free at the end with some return simplifications.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
This is the trivial pattern for path auto free, initialize at the
beginning and free at the end with simple goto -> return conversions.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|