summaryrefslogtreecommitdiff
path: root/mm/cma.h
AgeCommit message (Collapse)Author
2025-03-21mm/cma: using per-CMA locks to improve concurrent allocation performanceGe Yang
For different CMAs, concurrent allocation of CMA memory ideally should not require synchronization using locks. Currently, a global cma_mutex lock is employed to synchronize all CMA allocations, which can impact the performance of concurrent allocations across different CMAs. To test the performance impact, follow these steps: 1. Boot the kernel with the command line argument hugetlb_cma=30G to allocate a 30GB CMA area specifically for huge page allocations. (note: on my machine, which has 3 nodes, each node is initialized with 10G of CMA) 2. Use the dd command with parameters if=/dev/zero of=/dev/shm/file bs=1G count=30 to fully utilize the CMA area by writing zeroes to a file in /dev/shm. 3. Open three terminals and execute the following commands simultaneously: (Note: Each of these commands attempts to allocate 10GB [2621440 * 4KB pages] of CMA memory.) On Terminal 1: time echo 2621440 > /sys/kernel/debug/cma/hugetlb1/alloc On Terminal 2: time echo 2621440 > /sys/kernel/debug/cma/hugetlb2/alloc On Terminal 3: time echo 2621440 > /sys/kernel/debug/cma/hugetlb3/alloc We attempt to allocate pages through the CMA debug interface and use the time command to measure the duration of each allocation. Performance comparison: Without this patch With this patch Terminal1 ~7s ~7s Terminal2 ~14s ~8s Terminal3 ~21s ~7s To solve problem above, we could use per-CMA locks to improve concurrent allocation performance. This would allow each CMA to be managed independently, reducing the need for a global lock and thus improving scalability and performance. Link: https://lkml.kernel.org/r/1739152566-744-1-git-send-email-yangge1116@126.com Signed-off-by: Ge Yang <yangge1116@126.com> Reviewed-by: Barry Song <baohua@kernel.org> Acked-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Aisheng Dong <aisheng.dong@nxp.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16mm/cma: introduce interface for early reservationsFrank van der Linden
It can be desirable to reserve memory in a CMA area before it is activated, early in boot. Such reservations would effectively be memblock allocations, but they can be returned to the CMA area later. This functionality can be used to allow hugetlb bootmem allocations from a hugetlb CMA area. A new interface, cma_reserve_early is introduced. This allows for pageblock-aligned reservations. These reservations are skipped during the initial handoff of pages in a CMA area to the buddy allocator. The caller is responsible for making sure that the page structures are set up, and that the migrate type is set correctly, as with other memblock allocations that stick around. If the CMA area fails to activate (because it intersects with multiple zones), the reserved memory is not given to the buddy allocator, the caller needs to take care of that. Link: https://lkml.kernel.org/r/20250228182928.2645936-25-fvdl@google.com Signed-off-by: Frank van der Linden <fvdl@google.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Dan Carpenter <dan.carpenter@linaro.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Muchun Song <muchun.song@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev> Cc: Usama Arif <usamaarif642@gmail.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16mm/cma: introduce a cma validate functionFrank van der Linden
Define a function to check if a CMA area is valid, which means: do its ranges not cross any zone boundaries. Store the result in the newly created flags for each CMA area, so that multiple calls are dealt with. This allows for checking the validity of a CMA area early, which is needed later in order to be able to allocate hugetlb bootmem pages from it with pre-HVO. Link: https://lkml.kernel.org/r/20250228182928.2645936-24-fvdl@google.com Signed-off-by: Frank van der Linden <fvdl@google.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Dan Carpenter <dan.carpenter@linaro.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Muchun Song <muchun.song@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev> Cc: Usama Arif <usamaarif642@gmail.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16mm/cma: simplify zone intersection checkFrank van der Linden
cma_activate_area walks all pages in the area, checking their zone individually to see if the area resides in more than one zone. Make this a little more efficient by using the recently introduced pfn_range_intersects_zones() function. Store the NUMA node id (if any) in the cma structure to facilitate this. Link: https://lkml.kernel.org/r/20250228182928.2645936-23-fvdl@google.com Signed-off-by: Frank van der Linden <fvdl@google.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Dan Carpenter <dan.carpenter@linaro.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Muchun Song <muchun.song@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev> Cc: Usama Arif <usamaarif642@gmail.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16mm, cma: support multiple contiguous ranges, if requestedFrank van der Linden
Currently, CMA manages one range of physically contiguous memory. Creation of larger CMA areas with hugetlb_cma may run in to gaps in physical memory, so that they are not able to allocate that contiguous physical range from memblock when creating the CMA area. This can happen, for example, on an AMD system with > 1TB of memory, where there will be a gap just below the 1TB (40bit DMA) line. If you have set aside most of memory for potential hugetlb CMA allocation, cma_declare_contiguous_nid will fail. hugetlb_cma doesn't need the entire area to be one physically contiguous range. It just cares about being able to get physically contiguous chunks of a certain size (e.g. 1G), and it is fine to have the CMA area backed by multiple physical ranges, as long as it gets 1G contiguous allocations. Multi-range support is implemented by introducing an array of ranges, instead of just one big one. Each range has its own bitmap. Effectively, the allocate and release operations work as before, just per-range. So, instead of going through one large bitmap, they now go through a number of smaller ones. The maximum number of supported ranges is 8, as defined in CMA_MAX_RANGES. Since some current users of CMA expect a CMA area to just use one physically contiguous range, only allow for multiple ranges if a new interface, cma_declare_contiguous_nid_multi, is used. The other interfaces will work like before, creating only CMA areas with 1 range. cma_declare_contiguous_nid_multi works as follows, mimicking the default "bottom-up, above 4G" reservation approach: 0) Try cma_declare_contiguous_nid, which will use only one region. If this succeeds, return. This makes sure that for all the cases that currently work, the behavior remains unchanged even if the caller switches from cma_declare_contiguous_nid to cma_declare_contiguous_nid_multi. 1) Select the largest free memblock ranges above 4G, with a maximum number of CMA_MAX_RANGES. 2) If we did not find at most CMA_MAX_RANGES that add up to the total size requested, return -ENOMEM. 3) Sort the selected ranges by base address. 4) Reserve them bottom-up until we get what we wanted. Link: https://lkml.kernel.org/r/20250228182928.2645936-3-fvdl@google.com Signed-off-by: Frank van der Linden <fvdl@google.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Dan Carpenter <dan.carpenter@linaro.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Muchun Song <muchun.song@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev> Cc: Usama Arif <usamaarif642@gmail.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16mm/cma: export total and free number of pages for CMA areasFrank van der Linden
Patch series "hugetlb/CMA improvements for large systems", v5. On large systems, we observed some issues with hugetlb and CMA: 1) When specifying a large number of hugetlb boot pages (hugepages= on the commandline), the kernel may run out of memory before it even gets to HVO. For example, if you have a 3072G system, and want to use 3024 1G hugetlb pages for VMs, that should leave you plenty of space for the hypervisor, provided you have the hugetlb vmemmap optimization (HVO) enabled. However, since the vmemmap pages are always allocated first, and then later in boot freed, you will actually run yourself out of memory before you can do HVO. This means not getting all the hugetlb pages you want, and worse, failure to boot if there is an allocation failure in the system from which it can't recover. 2) There is a system setup where you might want to use hugetlb_cma with a large value (say, again, 3024 out of 3072G like above), and then lower that if system usage allows it, to make room for non-hugetlb processes. For this, a variation of the problem above applies: the kernel runs out of unmovable space to allocate from before you finish boot, since your CMA area takes up all the space. 3) CMA wants to use one big contiguous area for allocations. Which fails if you have the aforementioned 3T system with a gap in the middle of physical memory (like the < 40bits BIOS DMA area seen on some AMD systems). You then won't be able to set up a CMA area for one of the NUMA nodes, leading to loss of half of your hugetlb CMA area. 4) Under the scenario mentioned in 2), when trying to grow the number of hugetlb pages after dropping it for a while, new CMA allocations may fail occasionally. This is not unexpected, some transient references on pages may prevent cma_alloc from succeeding under memory pressure. However, the hugetlb code then falls back to a normal contiguous alloc, which may end up succeeding. This is not always desired behavior. If you have a large CMA area, then the kernel has a restricted amount of memory it can do unmovable allocations from (a well known issue). A normal contiguous alloc may eat further in to this space. To resolve these issues, do the following: * Add hooks to the section init code to do custom initialization of memmap pages. Hugetlb bootmem (memblock) allocated pages can then be pre-HVOed. This avoids allocating a large number of vmemmap pages early in boot, only to have them be freed again later, and also avoids running out of memory as described under 1). Using these hooks for hugetlb is optional. It requires moving hugetlb bootmem allocation to an earlier spot by the architecture. This has been enabled on x86. * hugetlb_cma doesn't care about the CMA area it uses being one large contiguous range. Multiple smaller ranges are fine. The only requirements are that the areas should be on one NUMA node, and individual gigantic pages should be allocatable from them. So, implement multi-range support for CMA, avoiding issue 3). * Introduce a hugetlb_cma_only option on the commandline. This only allows allocations from CMA for gigantic pages, if hugetlb_cma= is also specified. * With hugetlb_cma_only active, it also makes sense to be able to pre-allocate gigantic hugetlb pages at boot time from the CMA area(s). Add a rudimentary early CMA allocation interface, that just grabs a piece of memblock-allocated space from the CMA area, which gets marked as allocated in the CMA bitmap when the CMA area is initialized. With this, hugepages= can be supported with hugetlb_cma=, making scenario 2) work. Additionally, fix some minor bugs, with one worth mentioning: since hugetlb gigantic bootmem pages are allocated by memblock, they may span multiple zones, as memblock doesn't (and mostly can't) know about zones. This can cause problems. A hugetlb page spanning multiple zones is bad, and it's worse with HVO, when the de-HVO step effectively sneakily re-assigns pages to a different zone than originally configured, since the tail pages all inherit the zone from the first 60 tail pages. This condition is not common, but can be easily reproduced using ZONE_MOVABLE. To fix this, add checks to see if gigantic bootmem pages intersect with multiple zones, and do not use them if they do, giving them back to the page allocator instead. The first patch is kind of along for the ride, except that maintaining an available_count for a CMA area is convenient for the multiple range support. This patch (of 27): In addition to the number of allocations and releases, system management software may like to be aware of the size of CMA areas, and how many pages are available in it. This information is currently not available, so export it in total_page and available_pages, respectively. The name 'available_pages' was picked over 'free_pages' because 'free' implies that the pages are unused. But they might not be, they just haven't been used by cma_alloc The number of available pages is tracked regardless of CONFIG_CMA_SYSFS, allowing for a few minor shortcuts in the code, avoiding bitmap operations. Link: https://lkml.kernel.org/r/20250228182928.2645936-2-fvdl@google.com Signed-off-by: Frank van der Linden <fvdl@google.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: David Hildenbrand <david@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev> Cc: Usama Arif <usamaarif642@gmail.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Dan Carpenter <dan.carpenter@linaro.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Vasily Gorbik <gor@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-13mm: change type of cma_area_count to unsigned intJiale Yang
Prefer 'unsigned int' over plain 'unsigned'. Also make it consistent with mm/cma.c Link: https://lkml.kernel.org/r/tencent_1E5E3AA25C261196D8C1F7097F130E382008@qq.com Signed-off-by: Jiale Yang <295107659@qq.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-02-22mm/cma: add sysfs file 'release_pages_success'Anshuman Khandual
This adds the following new sysfs file tracking the number of successfully released pages from a given CMA heap area. This file will be available via CONFIG_CMA_SYSFS and help in determining active CMA pages available on the CMA heap area. This adds a new 'nr_pages_released' (CONFIG_CMA_SYSFS) into 'struct cma' which gets updated during cma_release(). /sys/kernel/mm/cma/<cma-heap-area>/release_pages_success After this change, an user will be able to find active CMA pages available in a given CMA heap area via the following method. Active pages = alloc_pages_success - release_pages_success That's valuable information for both software designers, and system admins as it allows them to tune the number of CMA pages available in the system. This increases user visibility for allocated CMA area and its utilization. Link: https://lkml.kernel.org/r/20240206045731.472759-1-anshuman.khandual@arm.com Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-03-22mm/cma: provide option to opt out from exposing pages on activation failureHari Bathini
Patch series "powerpc/fadump: handle CMA activation failure appropriately", v3. Commit 072355c1cf2d ("mm/cma: expose all pages to the buddy if activation of an area fails") started exposing all pages to buddy allocator on CMA activation failure. But there can be CMA users that want to handle the reserved memory differently on CMA allocation failure. Provide an option to opt out from exposing pages to buddy for such cases. Link: https://lkml.kernel.org/r/20220117075246.36072-1-hbathini@linux.ibm.com Link: https://lkml.kernel.org/r/20220117075246.36072-2-hbathini@linux.ibm.com Signed-off-by: Hari Bathini <hbathini@linux.ibm.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mahesh Salgaonkar <mahesh@linux.ibm.com> Cc: Sourabh Jain <sourabhjain@linux.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05mm: cma: support sysfsMinchan Kim
Since CMA is getting used more widely, it's more important to keep monitoring CMA statistics for system health since it's directly related to user experience. This patch introduces sysfs statistics for CMA, in order to provide some basic monitoring of the CMA allocator. * the number of CMA page successful allocations * the number of CMA page allocation failures These two values allow the user to calcuate the allocation failure rate for each CMA area. e.g.) /sys/kernel/mm/cma/WIFI/alloc_pages_[success|fail] /sys/kernel/mm/cma/SENSOR/alloc_pages_[success|fail] /sys/kernel/mm/cma/BLUETOOTH/alloc_pages_[success|fail] The cma_stat was intentionally allocated by dynamic allocation to harmonize with kobject lifetime management. https://lore.kernel.org/linux-mm/YCOAmXqt6dZkCQYs@kroah.com/ Link: https://lkml.kernel.org/r/20210324230759.2213957-1-minchan@kernel.org Link: https://lore.kernel.org/linux-mm/20210316100433.17665-1-colin.king@canonical.com/ Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Colin Ian King <colin.king@canonical.com> Tested-by: Dmitry Osipenko <digetx@gmail.com> Reviewed-by: Dmitry Osipenko <digetx@gmail.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Tested-by: Anders Roxell <anders.roxell@linaro.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: John Dias <joaodias@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Colin Ian King <colin.king@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05mm/cma: change cma mutex to irq safe spinlockMike Kravetz
Patch series "make hugetlb put_page safe for all calling contexts", v5. This effort is the result a recent bug report [1]. Syzbot found a potential deadlock in the hugetlb put_page/free_huge_page_path. WARNING: SOFTIRQ-safe -> SOFTIRQ-unsafe lock order detected Since the free_huge_page_path already has code to 'hand off' page free requests to a workqueue, a suggestion was proposed to make the in_irq() detection accurate by always enabling PREEMPT_COUNT [2]. The outcome of that discussion was that the hugetlb put_page path (free_huge_page) path should be properly fixed and safe for all calling contexts. [1] https://lore.kernel.org/linux-mm/000000000000f1c03b05bc43aadc@google.com/ [2] http://lkml.kernel.org/r/20210311021321.127500-1-mike.kravetz@oracle.com This patch (of 8): cma_release is currently a sleepable operatation because the bitmap manipulation is protected by cma->lock mutex. Hugetlb code which relies on cma_release for CMA backed (giga) hugetlb pages, however, needs to be irq safe. The lock doesn't protect any sleepable operation so it can be changed to a (irq aware) spin lock. The bitmap processing should be quite fast in typical case but if cma sizes grow to TB then we will likely need to replace the lock by a more optimized bitmap implementation. Link: https://lkml.kernel.org/r/20210409205254.242291-1-mike.kravetz@oracle.com Link: https://lkml.kernel.org/r/20210409205254.242291-2-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Muchun Song <songmuchun@bytedance.com> Cc: David Rientjes <rientjes@google.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: Waiman Long <longman@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-01mm: cma: use CMA_MAX_NAME to define the length of cma name arrayBarry Song
CMA_MAX_NAME should be visible to CMA's users as they might need it to set the name of CMA areas and avoid hardcoding the size locally. So this patch moves CMA_MAX_NAME from local header file to include/linux header file and removes the hardcode in both hugetlb.c and contiguous.c. Signed-off-by: Barry Song <song.bao.hua@hisilicon.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2020-08-12mm: cma: fix the name of CMA areasBarry Song
Patch series "mm: fix the names of general cma and hugetlb cma", v2. The current code of CMA can only work when users pass a const string as name parameter. we need to fix the way to handle names in CMA. On the other hand, to avoid name conflicts after enabling CMA_DEBUGFS, each hugetlb should get a different CMA name. This patch (of 2): If users give a name saved in stack, the current code will generate magic pointer. if users don't give a name(NULL), kasprintf() will always return NULL as we are at the early stage. that means cma_init_reserved_mem() will return -ENOMEM if users set name parameter as NULL. [natechancellor@gmail.com: return cma->name directly in cma_get_name] Link: https://github.com/ClangBuiltLinux/linux/issues/1063 Link: http://lkml.kernel.org/r/20200623015840.621964-1-natechancellor@gmail.com Signed-off-by: Barry Song <song.bao.hua@hisilicon.com> Signed-off-by: Nathan Chancellor <natechancellor@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Roman Gushchin <guro@fb.com> Link: http://lkml.kernel.org/r/20200616223131.33828-2-song.bao.hua@hisilicon.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-07-10debugfs: make sure we can remove u32_array files cleanlyJakub Kicinski
debugfs_create_u32_array() allocates a small structure to wrap the data and size information about the array. If users ever try to remove the file this leads to a leak since nothing ever frees this wrapper. That said there are no upstream users of debugfs_create_u32_array() that'd remove a u32 array file (we only have one u32 array user in CMA), so there is no real bug here. Make callers pass a wrapper they allocated. This way the lifetime management of the wrapper is on the caller, and we can avoid the potential leak in debugfs. CC: Chucheng Luo <luochucheng@vivo.com> Signed-off-by: Jakub Kicinski <kuba@kernel.org> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-04-18cma: Store a name in the cma structureLaura Abbott
Frameworks that may want to enumerate CMA heaps (e.g. Ion) will find it useful to have an explicit name attached to each region. Store the name in each CMA structure. Signed-off-by: Laura Abbott <labbott@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-08-14mm: cma: mark cma_bitmap_maxno() inline in headerGregory Fong
cma_bitmap_maxno() was marked as static and not static inline, which can cause warnings about this function not being used if this file is included in a file that does not call that function, and violates the conventions used elsewhere. The two options are to move the function implementation back to mm/cma.c or make it inline here, and it's simple enough for the latter to make sense. Signed-off-by: Gregory Fong <gregory.0xf0@gmail.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14mm: cma: allocation triggerSasha Levin
Provides a userspace interface to trigger a CMA allocation. Usage: echo [pages] > alloc This would provide testing/fuzzing access to the CMA allocation paths. Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Laura Abbott <lauraa@codeaurora.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14mm: cma: debugfs interfaceSasha Levin
I've noticed that there is no interfaces exposed by CMA which would let me fuzz what's going on in there. This small patchset exposes some information out to userspace, plus adds the ability to trigger allocation and freeing from userspace. This patch (of 3): Implement a simple debugfs interface to expose information about CMA areas in the system. Useful for testing/sanity checks for CMA since it was impossible to previously retrieve this information in userspace. Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Laura Abbott <lauraa@codeaurora.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>