summaryrefslogtreecommitdiff
path: root/mm/page_alloc.c
AgeCommit message (Collapse)Author
2025-04-17mm: vmscan: restore high-cpu watermark safety in kswapdJohannes Weiner
Vlastimil points out that commit a211c6550efc ("mm: page_alloc: defrag_mode kswapd/kcompactd watermarks") switched kswapd from zone_watermark_ok_safe() to the standard, percpu-cached version of reading free pages, thus dropping the watermark safety precautions for systems with high CPU counts (e.g. >212 cpus on 64G). Restore them. Since zone_watermark_ok_safe() is no longer the right interface, and this was the last caller of the function anyway, open-code the zone_page_state_snapshot() conditional and delete the function. Link: https://lkml.kernel.org/r/20250416135142.778933-2-hannes@cmpxchg.org Fixes: a211c6550efc ("mm: page_alloc: defrag_mode kswapd/kcompactd watermarks") Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Brendan Jackman <jackmanb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-17mm/page_alloc: fix deadlock on cpu_hotplug_lock in __accept_page()Kirill A. Shutemov
When the last page in the zone is accepted, __accept_page() calls static_branch_dec(). This function takes cpu_hotplug_lock, which can lead to a deadlock if the allocation occurs during CPU bringup path as _cpu_up() also takes the lock. To prevent this deadlock, defer static_branch_dec() to a workqueue. Call static_branch_dec() only when the workqueue is not yet initialized. Workqueues are initialized before CPU bring up, so this will not conflict with the first scenario. Link: https://lkml.kernel.org/r/20250329171030.3942298-1-kirill.shutemov@linux.intel.com Fixes: 55ad43e8ba0f ("mm: add a helper to accept page") Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Reported-by: Srikanth Aithal <sraithal@amd.com> Tested-by: Srikanth Aithal <sraithal@amd.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Ashish Kalra <ashish.kalra@amd.com> Cc: David Hildenbrand <david@redhat.com> Cc: "Edgecombe, Rick P" <rick.p.edgecombe@intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: "Mike Rapoport (IBM)" <rppt@kernel.org> Cc: Thomas Lendacky <thomas.lendacky@amd.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-11mm: page_alloc: speed up fallbacks in rmqueue_bulk()Johannes Weiner
The test robot identified c2f6ea38fc1b ("mm: page_alloc: don't steal single pages from biggest buddy") as the root cause of a 56.4% regression in vm-scalability::lru-file-mmap-read. Carlos reports an earlier patch, c0cd6f557b90 ("mm: page_alloc: fix freelist movement during block conversion"), as the root cause for a regression in worst-case zone->lock+irqoff hold times. Both of these patches modify the page allocator's fallback path to be less greedy in an effort to stave off fragmentation. The flip side of this is that fallbacks are also less productive each time around, which means the fallback search can run much more frequently. Carlos' traces point to rmqueue_bulk() specifically, which tries to refill the percpu cache by allocating a large batch of pages in a loop. It highlights how once the native freelists are exhausted, the fallback code first scans orders top-down for whole blocks to claim, then falls back to a bottom-up search for the smallest buddy to steal. For the next batch page, it goes through the same thing again. This can be made more efficient. Since rmqueue_bulk() holds the zone->lock over the entire batch, the freelists are not subject to outside changes; when the search for a block to claim has already failed, there is no point in trying again for the next page. Modify __rmqueue() to remember the last successful fallback mode, and restart directly from there on the next rmqueue_bulk() iteration. Oliver confirms that this improves beyond the regression that the test robot reported against c2f6ea38fc1b: commit: f3b92176f4 ("tools/selftests: add guard region test for /proc/$pid/pagemap") c2f6ea38fc ("mm: page_alloc: don't steal single pages from biggest buddy") acc4d5ff0b ("Merge tag 'net-6.15-rc0' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net") 2c847f27c3 ("mm: page_alloc: speed up fallbacks in rmqueue_bulk()") <--- your patch f3b92176f4f7100f c2f6ea38fc1b640aa7a2e155cc1 acc4d5ff0b61eb1715c498b6536 2c847f27c37da65a93d23c237c5 ---------------- --------------------------- --------------------------- --------------------------- %stddev %change %stddev %change %stddev %change %stddev \ | \ | \ | \ 25525364 ± 3% -56.4% 11135467 -57.8% 10779336 +31.6% 33581409 vm-scalability.throughput Carlos confirms that worst-case times are almost fully recovered compared to before the earlier culprit patch: 2dd482ba627d (before freelist hygiene): 1ms c0cd6f557b90 (after freelist hygiene): 90ms next-20250319 (steal smallest buddy): 280ms this patch : 8ms [jackmanb@google.com: comment updates] Link: https://lkml.kernel.org/r/D92AC0P9594X.3BML64MUKTF8Z@google.com [hannes@cmpxchg.org: reset rmqueue_mode in rmqueue_buddy() error loop, per Yunsheng Lin] Link: https://lkml.kernel.org/r/20250409140023.GA2313@cmpxchg.org Link: https://lkml.kernel.org/r/20250407180154.63348-1-hannes@cmpxchg.org Fixes: c0cd6f557b90 ("mm: page_alloc: fix freelist movement during block conversion") Fixes: c2f6ea38fc1b ("mm: page_alloc: don't steal single pages from biggest buddy") Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Brendan Jackman <jackmanb@google.com> Reported-by: kernel test robot <oliver.sang@intel.com> Reported-by: Carlos Song <carlos.song@nxp.com> Tested-by: Carlos Song <carlos.song@nxp.com> Tested-by: kernel test robot <oliver.sang@intel.com> Closes: https://lore.kernel.org/oe-lkp/202503271547.fc08b188-lkp@intel.com Reviewed-by: Brendan Jackman <jackmanb@google.com> Tested-by: Shivank Garg <shivankg@amd.com> Acked-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: <stable@vger.kernel.org> [6.10+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-11mm/page_alloc: avoid second trylock of zone->lockAlexei Starovoitov
spin_trylock followed by spin_lock will cause extra write cache access. If the lock is contended it may cause unnecessary cache line bouncing and will execute redundant irq restore/save pair. Therefore, check alloc/fpi_flags first and use spin_trylock or spin_lock. Link: https://lkml.kernel.org/r/20250331002809.94758-1-alexei.starovoitov@gmail.com Fixes: 97769a53f117 ("mm, bpf: Introduce try_alloc_pages() for opportunistic page allocation") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Harry Yoo <harry.yoo@oracle.com> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: Andrii Nakryiko <andrii@kernel.org> Cc: Daniel Borkman <daniel@iogearbox.net> Cc: Martin KaFai Lau <martin.lau@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-03Merge tag 'mm-stable-2025-04-02-22-07' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull more MM updates from Andrew Morton: - The series "mm: fixes for fallouts from mem_init() cleanup" from Mike Rapoport fixes a couple of issues with the just-merged "arch, mm: reduce code duplication in mem_init()" series - The series "MAINTAINERS: add my isub-entries to MM part." from Mike Rapoport does some maintenance on MAINTAINERS - The series "remove tlb_remove_page_ptdesc()" from Qi Zheng does some cleanup work to the page mapping code - The series "mseal system mappings" from Jeff Xu permits sealing of "system mappings", such as vdso, vvar, vvar_vclock, vectors (arm compat-mode), sigpage (arm compat-mode) - Plus the usual shower of singleton patches * tag 'mm-stable-2025-04-02-22-07' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (31 commits) mseal sysmap: add arch-support txt mseal sysmap: enable s390 selftest: test system mappings are sealed mseal sysmap: update mseal.rst mseal sysmap: uprobe mapping mseal sysmap: enable arm64 mseal sysmap: enable x86-64 mseal sysmap: generic vdso vvar mapping selftests: x86: test_mremap_vdso: skip if vdso is msealed mseal sysmap: kernel config and header change mm: pgtable: remove tlb_remove_page_ptdesc() x86: pgtable: convert to use tlb_remove_ptdesc() riscv: pgtable: unconditionally use tlb_remove_ptdesc() mm: pgtable: convert some architectures to use tlb_remove_ptdesc() mm: pgtable: change pt parameter of tlb_remove_ptdesc() to struct ptdesc* mm: pgtable: make generic tlb_remove_table() use struct ptdesc microblaze/mm: put mm_cmdline_setup() in .init.text section mm/memory_hotplug: fix call folio_test_large with tail page in do_migrate_range MAINTAINERS: mm: add entry for secretmem MAINTAINERS: mm: add entry for numa memblocks and numa emulation ...
2025-04-02mm/page_alloc: Fix try_alloc_pagesAlexei Starovoitov
Fix an obvious bug. try_alloc_pages() should set_page_refcounted. [ Not so obvious: it was probably correct at the time it was written but was at some point then rebased on top of v6.14-rc1. And at that point there was a semantic conflict with commit efabfe1420f5 ("mm/page_alloc: move set_page_refcounted() to callers of get_page_from_freelist()") and became buggy. - Linus ] Fixes: 97769a53f117 ("mm, bpf: Introduce try_alloc_pages() for opportunistic page allocation") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil BAbka <vbabka@suse.cz> Reviewed-by: Harry Yoo <harry.yoo@oracle.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2025-04-01mm/page_alloc: replace flag check with PageHWPoison() in check_new_page_bad()Ye Liu
This patch replaces the direct check for the __PG_HWPOISON flag with the PageHWPoison() macro, improving code readability and maintaining consistency with other parts of the memory management code. Link: https://lkml.kernel.org/r/20250320063346.489030-1-ye.liu@linux.dev Signed-off-by: Ye Liu <liuye@kylinos.cn> Reviewed-by: Sidhartha Kumar <sidhartha.kumar@oracle.com> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-01mm: page_alloc: fix defrag_mode's retry & OOM pathJohannes Weiner
Brendan points out that defrag_mode doesn't properly clear ALLOC_NOFRAGMENT on its last-ditch attempt to allocate. But looking closer, the problem is actually more severe: it doesn't actually *check* whether it's already retried, and keeps looping. This means the OOM path is never taken, and the thread can loop indefinitely. This is verified with an intentional OOM test on defrag_mode=1, which results in the machine hanging. After this patch, it triggers the OOM kill reliably and recovers. Clear ALLOC_NOFRAGMENT properly, and only retry once. Link: https://lkml.kernel.org/r/20250401041231.GA2117727@cmpxchg.org Fixes: e3aa7df331bc ("mm: page_alloc: defrag_mode") Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reported-by: Brendan Jackman <jackmanb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-04-01Merge tag 'mm-stable-2025-03-30-16-52' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - The series "Enable strict percpu address space checks" from Uros Bizjak uses x86 named address space qualifiers to provide compile-time checking of percpu area accesses. This has caused a small amount of fallout - two or three issues were reported. In all cases the calling code was found to be incorrect. - The series "Some cleanup for memcg" from Chen Ridong implements some relatively monir cleanups for the memcontrol code. - The series "mm: fixes for device-exclusive entries (hmm)" from David Hildenbrand fixes a boatload of issues which David found then using device-exclusive PTE entries when THP is enabled. More work is needed, but this makes thins better - our own HMM selftests now succeed. - The series "mm: zswap: remove z3fold and zbud" from Yosry Ahmed remove the z3fold and zbud implementations. They have been deprecated for half a year and nobody has complained. - The series "mm: further simplify VMA merge operation" from Lorenzo Stoakes implements numerous simplifications in this area. No runtime effects are anticipated. - The series "mm/madvise: remove redundant mmap_lock operations from process_madvise()" from SeongJae Park rationalizes the locking in the madvise() implementation. Performance gains of 20-25% were observed in one MADV_DONTNEED microbenchmark. - The series "Tiny cleanup and improvements about SWAP code" from Baoquan He contains a number of touchups to issues which Baoquan noticed when working on the swap code. - The series "mm: kmemleak: Usability improvements" from Catalin Marinas implements a couple of improvements to the kmemleak user-visible output. - The series "mm/damon/paddr: fix large folios access and schemes handling" from Usama Arif provides a couple of fixes for DAMON's handling of large folios. - The series "mm/damon/core: fix wrong and/or useless damos_walk() behaviors" from SeongJae Park fixes a few issues with the accuracy of kdamond's walking of DAMON regions. - The series "expose mapping wrprotect, fix fb_defio use" from Lorenzo Stoakes changes the interaction between framebuffer deferred-io and core MM. No functional changes are anticipated - this is preparatory work for the future removal of page structure fields. - The series "mm/damon: add support for hugepage_size DAMOS filter" from Usama Arif adds a DAMOS filter which permits the filtering by huge page sizes. - The series "mm: permit guard regions for file-backed/shmem mappings" from Lorenzo Stoakes extends the guard region feature from its present "anon mappings only" state. The feature now covers shmem and file-backed mappings. - The series "mm: batched unmap lazyfree large folios during reclamation" from Barry Song cleans up and speeds up the unmapping for pte-mapped large folios. - The series "reimplement per-vma lock as a refcount" from Suren Baghdasaryan puts the vm_lock back into the vma. Our reasons for pulling it out were largely bogus and that change made the code more messy. This patchset provides small (0-10%) improvements on one microbenchmark. - The series "Docs/mm/damon: misc DAMOS filters documentation fixes and improves" from SeongJae Park does some maintenance work on the DAMON docs. - The series "hugetlb/CMA improvements for large systems" from Frank van der Linden addresses a pile of issues which have been observed when using CMA on large machines. - The series "mm/damon: introduce DAMOS filter type for unmapped pages" from SeongJae Park enables users of DMAON/DAMOS to filter my the page's mapped/unmapped status. - The series "zsmalloc/zram: there be preemption" from Sergey Senozhatsky teaches zram to run its compression and decompression operations preemptibly. - The series "selftests/mm: Some cleanups from trying to run them" from Brendan Jackman fixes a pile of unrelated issues which Brendan encountered while runnimg our selftests. - The series "fs/proc/task_mmu: add guard region bit to pagemap" from Lorenzo Stoakes permits userspace to use /proc/pid/pagemap to determine whether a particular page is a guard page. - The series "mm, swap: remove swap slot cache" from Kairui Song removes the swap slot cache from the allocation path - it simply wasn't being effective. - The series "mm: cleanups for device-exclusive entries (hmm)" from David Hildenbrand implements a number of unrelated cleanups in this code. - The series "mm: Rework generic PTDUMP configs" from Anshuman Khandual implements a number of preparatoty cleanups to the GENERIC_PTDUMP Kconfig logic. - The series "mm/damon: auto-tune aggregation interval" from SeongJae Park implements a feedback-driven automatic tuning feature for DAMON's aggregation interval tuning. - The series "Fix lazy mmu mode" from Ryan Roberts fixes some issues in powerpc, sparc and x86 lazy MMU implementations. Ryan did this in preparation for implementing lazy mmu mode for arm64 to optimize vmalloc. - The series "mm/page_alloc: Some clarifications for migratetype fallback" from Brendan Jackman reworks some commentary to make the code easier to follow. - The series "page_counter cleanup and size reduction" from Shakeel Butt cleans up the page_counter code and fixes a size increase which we accidentally added late last year. - The series "Add a command line option that enables control of how many threads should be used to allocate huge pages" from Thomas Prescher does that. It allows the careful operator to significantly reduce boot time by tuning the parallalization of huge page initialization. - The series "Fix calculations in trace_balance_dirty_pages() for cgwb" from Tang Yizhou fixes the tracing output from the dirty page balancing code. - The series "mm/damon: make allow filters after reject filters useful and intuitive" from SeongJae Park improves the handling of allow and reject filters. Behaviour is made more consistent and the documention is updated accordingly. - The series "Switch zswap to object read/write APIs" from Yosry Ahmed updates zswap to the new object read/write APIs and thus permits the removal of some legacy code from zpool and zsmalloc. - The series "Some trivial cleanups for shmem" from Baolin Wang does as it claims. - The series "fs/dax: Fix ZONE_DEVICE page reference counts" from Alistair Popple regularizes the weird ZONE_DEVICE page refcount handling in DAX, permittig the removal of a number of special-case checks. - The series "refactor mremap and fix bug" from Lorenzo Stoakes is a preparatoty refactoring and cleanup of the mremap() code. - The series "mm: MM owner tracking for large folios (!hugetlb) + CONFIG_NO_PAGE_MAPCOUNT" from David Hildenbrand reworks the manner in which we determine whether a large folio is known to be mapped exclusively into a single MM. - The series "mm/damon: add sysfs dirs for managing DAMOS filters based on handling layers" from SeongJae Park adds a couple of new sysfs directories to ease the management of DAMON/DAMOS filters. - The series "arch, mm: reduce code duplication in mem_init()" from Mike Rapoport consolidates many per-arch implementations of mem_init() into code generic code, where that is practical. - The series "mm/damon/sysfs: commit parameters online via damon_call()" from SeongJae Park continues the cleaning up of sysfs access to DAMON internal data. - The series "mm: page_ext: Introduce new iteration API" from Luiz Capitulino reworks the page_ext initialization to fix a boot-time crash which was observed with an unusual combination of compile and cmdline options. - The series "Buddy allocator like (or non-uniform) folio split" from Zi Yan reworks the code to split a folio into smaller folios. The main benefit is lessened memory consumption: fewer post-split folios are generated. - The series "Minimize xa_node allocation during xarry split" from Zi Yan reduces the number of xarray xa_nodes which are generated during an xarray split. - The series "drivers/base/memory: Two cleanups" from Gavin Shan performs some maintenance work on the drivers/base/memory code. - The series "Add tracepoints for lowmem reserves, watermarks and totalreserve_pages" from Martin Liu adds some more tracepoints to the page allocator code. - The series "mm/madvise: cleanup requests validations and classifications" from SeongJae Park cleans up some warts which SeongJae observed during his earlier madvise work. - The series "mm/hwpoison: Fix regressions in memory failure handling" from Shuai Xue addresses two quite serious regressions which Shuai has observed in the memory-failure implementation. - The series "mm: reliable huge page allocator" from Johannes Weiner makes huge page allocations cheaper and more reliable by reducing fragmentation. - The series "Minor memcg cleanups & prep for memdescs" from Matthew Wilcox is preparatory work for the future implementation of memdescs. - The series "track memory used by balloon drivers" from Nico Pache introduces a way to track memory used by our various balloon drivers. - The series "mm/damon: introduce DAMOS filter type for active pages" from Nhat Pham permits users to filter for active/inactive pages, separately for file and anon pages. - The series "Adding Proactive Memory Reclaim Statistics" from Hao Jia separates the proactive reclaim statistics from the direct reclaim statistics. - The series "mm/vmscan: don't try to reclaim hwpoison folio" from Jinjiang Tu fixes our handling of hwpoisoned pages within the reclaim code. * tag 'mm-stable-2025-03-30-16-52' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (431 commits) mm/page_alloc: remove unnecessary __maybe_unused in order_to_pindex() x86/mm: restore early initialization of high_memory for 32-bits mm/vmscan: don't try to reclaim hwpoison folio mm/hwpoison: introduce folio_contain_hwpoisoned_page() helper cgroup: docs: add pswpin and pswpout items in cgroup v2 doc mm: vmscan: split proactive reclaim statistics from direct reclaim statistics selftests/mm: speed up split_huge_page_test selftests/mm: uffd-unit-tests support for hugepages > 2M docs/mm/damon/design: document active DAMOS filter type mm/damon: implement a new DAMOS filter type for active pages fs/dax: don't disassociate zero page entries MM documentation: add "Unaccepted" meminfo entry selftests/mm: add commentary about 9pfs bugs fork: use __vmalloc_node() for stack allocation docs/mm: Physical Memory: Populate the "Zones" section xen: balloon: update the NR_BALLOON_PAGES state hv_balloon: update the NR_BALLOON_PAGES state balloon_compaction: update the NR_BALLOON_PAGES state meminfo: add a per node counter for balloon drivers mm: remove references to folio in __memcg_kmem_uncharge_page() ...
2025-03-30Merge tag 'bpf_try_alloc_pages' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next Pull bpf try_alloc_pages() support from Alexei Starovoitov: "The pull includes work from Sebastian, Vlastimil and myself with a lot of help from Michal and Shakeel. This is a first step towards making kmalloc reentrant to get rid of slab wrappers: bpf_mem_alloc, kretprobe's objpool, etc. These patches make page allocator safe from any context. Vlastimil kicked off this effort at LSFMM 2024: https://lwn.net/Articles/974138/ and we continued at LSFMM 2025: https://lore.kernel.org/all/CAADnVQKfkGxudNUkcPJgwe3nTZ=xohnRshx9kLZBTmR_E1DFEg@mail.gmail.com/ Why: SLAB wrappers bind memory to a particular subsystem making it unavailable to the rest of the kernel. Some BPF maps in production consume Gbytes of preallocated memory. Top 5 in Meta: 1.5G, 1.2G, 1.1G, 300M, 200M. Once we have kmalloc that works in any context BPF map preallocation won't be necessary. How: Synchronous kmalloc/page alloc stack has multiple stages going from fast to slow: cmpxchg16 -> slab_alloc -> new_slab -> alloc_pages -> rmqueue_pcplist -> __rmqueue, where rmqueue_pcplist was already relying on trylock. This set changes rmqueue_bulk/rmqueue_buddy to attempt a trylock and return ENOMEM if alloc_flags & ALLOC_TRYLOCK. It then wraps this functionality into try_alloc_pages() helper. We make sure that the logic is sane in PREEMPT_RT. End result: try_alloc_pages()/free_pages_nolock() are safe to call from any context. try_kmalloc() for any context with similar trylock approach will follow. It will use try_alloc_pages() when slab needs a new page. Though such try_kmalloc/page_alloc() is an opportunistic allocator, this design ensures that the probability of successful allocation of small objects (up to one page in size) is high. Even before we have try_kmalloc(), we already use try_alloc_pages() in BPF arena implementation and it's going to be used more extensively in BPF" * tag 'bpf_try_alloc_pages' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: mm: Fix the flipped condition in gfpflags_allow_spinning() bpf: Use try_alloc_pages() to allocate pages for bpf needs. mm, bpf: Use memcg in try_alloc_pages(). memcg: Use trylock to access memcg stock_lock. mm, bpf: Introduce free_pages_nolock() mm, bpf: Introduce try_alloc_pages() for opportunistic page allocation locking/local_lock: Introduce localtry_lock_t
2025-03-21mm/page_alloc: remove unnecessary __maybe_unused in order_to_pindex()Liu Ye
The `movable` variable is always used when `CONFIG_TRANSPARENT_HUGEPAGE` is enabled, so the `__maybe_unused` attribute is not necessary. This patch removes it and keeps the variable declaration within the `#ifdef` block for better clarity. Link: https://lkml.kernel.org/r/20250319091726.401158-1-liuyerd@163.com Signed-off-by: Liu Ye<liuye@kylinos.cn> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-21mm: simplify split_page_memcg()Matthew Wilcox (Oracle)
The last argument to split_page_memcg() is now always 0, so remove it, effectively reverting commit b8791381d7ed. Link: https://lkml.kernel.org/r/20250314133617.138071-3-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Shakeel Butt <shakeel.butt@linux.dev> Acked-by: Zi Yan <ziy@nvidia.com> Acked-by: Roman Gushchin <roman.gushchin@linux.dev> Cc: David Hildenbrand <david@redhat.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm: page_alloc: defrag_mode kswapd/kcompactd watermarksJohannes Weiner
The previous patch added pageblock_order reclaim to kswapd/kcompactd, which helps, but produces only one block at a time. Allocation stalls and THP failure rates are still higher than they could be. To adequately reflect ALLOC_NOFRAGMENT demand for pageblocks, change the watermarking for kswapd & kcompactd: instead of targeting the high watermark in order-0 pages and checking for one suitable block, simply require that the high watermark is entirely met in pageblocks. To this end, track the number of free pages within contiguous pageblocks, then change pgdat_balanced() and compact_finished() to check watermarks against this new value. This further reduces THP latencies and allocation stalls, and improves THP success rates against the previous patch: DEFRAGMODE-ASYNC DEFRAGMODE-ASYNC-WMARKS Hugealloc Time mean 34300.36 ( +0.00%) 28904.00 ( -15.73%) Hugealloc Time stddev 36390.42 ( +0.00%) 33464.37 ( -8.04%) Kbuild Real time 196.13 ( +0.00%) 196.59 ( +0.23%) Kbuild User time 1234.74 ( +0.00%) 1231.67 ( -0.25%) Kbuild System time 62.62 ( +0.00%) 59.10 ( -5.54%) THP fault alloc 57054.53 ( +0.00%) 63223.67 ( +10.81%) THP fault fallback 11581.40 ( +0.00%) 5412.47 ( -53.26%) Direct compact fail 107.80 ( +0.00%) 59.07 ( -44.79%) Direct compact success 4.53 ( +0.00%) 2.80 ( -31.33%) Direct compact success rate % 3.20 ( +0.00%) 3.99 ( +18.66%) Compact daemon scanned migrate 5461033.93 ( +0.00%) 2267500.33 ( -58.48%) Compact daemon scanned free 5824897.93 ( +0.00%) 2339773.00 ( -59.83%) Compact direct scanned migrate 58336.93 ( +0.00%) 47659.93 ( -18.30%) Compact direct scanned free 32791.87 ( +0.00%) 40729.67 ( +24.21%) Compact total migrate scanned 5519370.87 ( +0.00%) 2315160.27 ( -58.05%) Compact total free scanned 5857689.80 ( +0.00%) 2380502.67 ( -59.36%) Alloc stall 2424.60 ( +0.00%) 638.87 ( -73.62%) Pages kswapd scanned 2657018.33 ( +0.00%) 4002186.33 ( +50.63%) Pages kswapd reclaimed 559583.07 ( +0.00%) 718577.80 ( +28.41%) Pages direct scanned 722094.07 ( +0.00%) 355172.73 ( -50.81%) Pages direct reclaimed 107257.80 ( +0.00%) 31162.80 ( -70.95%) Pages total scanned 3379112.40 ( +0.00%) 4357359.07 ( +28.95%) Pages total reclaimed 666840.87 ( +0.00%) 749740.60 ( +12.43%) Swap out 77238.20 ( +0.00%) 110084.33 ( +42.53%) Swap in 11712.80 ( +0.00%) 24457.00 ( +108.80%) File refaults 143438.80 ( +0.00%) 188226.93 ( +31.22%) Also of note is that compaction work overall is reduced. The reason for this is that when free pageblocks are more readily available, allocations are also much more likely to get physically placed in LRU order, instead of being forced to scavenge free space here and there. This means that reclaim by itself has better chances of freeing up whole blocks, and the system relies less on compaction. Comparing all changes to the vanilla kernel: VANILLA DEFRAGMODE-ASYNC-WMARKS Hugealloc Time mean 52739.45 ( +0.00%) 28904.00 ( -45.19%) Hugealloc Time stddev 56541.26 ( +0.00%) 33464.37 ( -40.81%) Kbuild Real time 197.47 ( +0.00%) 196.59 ( -0.44%) Kbuild User time 1240.49 ( +0.00%) 1231.67 ( -0.71%) Kbuild System time 70.08 ( +0.00%) 59.10 ( -15.45%) THP fault alloc 46727.07 ( +0.00%) 63223.67 ( +35.30%) THP fault fallback 21910.60 ( +0.00%) 5412.47 ( -75.29%) Direct compact fail 195.80 ( +0.00%) 59.07 ( -69.48%) Direct compact success 7.93 ( +0.00%) 2.80 ( -57.46%) Direct compact success rate % 3.51 ( +0.00%) 3.99 ( +10.49%) Compact daemon scanned migrate 3369601.27 ( +0.00%) 2267500.33 ( -32.71%) Compact daemon scanned free 5075474.47 ( +0.00%) 2339773.00 ( -53.90%) Compact direct scanned migrate 161787.27 ( +0.00%) 47659.93 ( -70.54%) Compact direct scanned free 163467.53 ( +0.00%) 40729.67 ( -75.08%) Compact total migrate scanned 3531388.53 ( +0.00%) 2315160.27 ( -34.44%) Compact total free scanned 5238942.00 ( +0.00%) 2380502.67 ( -54.56%) Alloc stall 2371.07 ( +0.00%) 638.87 ( -73.02%) Pages kswapd scanned 2160926.73 ( +0.00%) 4002186.33 ( +85.21%) Pages kswapd reclaimed 533191.07 ( +0.00%) 718577.80 ( +34.77%) Pages direct scanned 400450.33 ( +0.00%) 355172.73 ( -11.31%) Pages direct reclaimed 94441.73 ( +0.00%) 31162.80 ( -67.00%) Pages total scanned 2561377.07 ( +0.00%) 4357359.07 ( +70.12%) Pages total reclaimed 627632.80 ( +0.00%) 749740.60 ( +19.46%) Swap out 47959.53 ( +0.00%) 110084.33 ( +129.53%) Swap in 7276.00 ( +0.00%) 24457.00 ( +236.10%) File refaults 138043.00 ( +0.00%) 188226.93 ( +36.35%) THP allocation latencies and %sys time are down dramatically. THP allocation failures are down from nearly 50% to 8.5%. And to recall previous data points, the success rates are steady and reliable without the cumulative deterioration of fragmentation events. Compaction work is down overall. Direct compaction work especially is drastically reduced. As an aside, its success rate of 4% indicates there is room for improvement. For now it's good to rely on it less. Reclaim work is up overall, however direct reclaim work is down. Part of the increase can be attributed to a higher use of THPs, which due to internal fragmentation increase the memory footprint. This is not necessarily an unexpected side-effect for users of THP. However, taken both points together, there may well be some opportunities for fine tuning in the reclaim/compaction coordination. [hannes@cmpxchg.org: fix squawks from rebasing] Link: https://lkml.kernel.org/r/20250314210558.GD1316033@cmpxchg.org Link: https://lkml.kernel.org/r/20250313210647.1314586-6-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm: page_alloc: defrag_mode kswapd/kcompactd assistanceJohannes Weiner
When defrag_mode is enabled, allocation fallbacks strongly prefer whole block conversions instead of polluting or stealing partially used blocks. This means there is a demand for pageblocks even from sub-block requests. Let kswapd/kcompactd help produce them. By the time kswapd gets woken up, normal rmqueue and block conversion fallbacks have been attempted and failed. So always wake kswapd with the block order; it will take care of producing a suitable compaction gap and then chain-wake kcompactd with the block order when its done. VANILLA DEFRAGMODE-ASYNC Hugealloc Time mean 52739.45 ( +0.00%) 34300.36 ( -34.96%) Hugealloc Time stddev 56541.26 ( +0.00%) 36390.42 ( -35.64%) Kbuild Real time 197.47 ( +0.00%) 196.13 ( -0.67%) Kbuild User time 1240.49 ( +0.00%) 1234.74 ( -0.46%) Kbuild System time 70.08 ( +0.00%) 62.62 ( -10.50%) THP fault alloc 46727.07 ( +0.00%) 57054.53 ( +22.10%) THP fault fallback 21910.60 ( +0.00%) 11581.40 ( -47.14%) Direct compact fail 195.80 ( +0.00%) 107.80 ( -44.72%) Direct compact success 7.93 ( +0.00%) 4.53 ( -38.06%) Direct compact success rate % 3.51 ( +0.00%) 3.20 ( -6.89%) Compact daemon scanned migrate 3369601.27 ( +0.00%) 5461033.93 ( +62.07%) Compact daemon scanned free 5075474.47 ( +0.00%) 5824897.93 ( +14.77%) Compact direct scanned migrate 161787.27 ( +0.00%) 58336.93 ( -63.94%) Compact direct scanned free 163467.53 ( +0.00%) 32791.87 ( -79.94%) Compact total migrate scanned 3531388.53 ( +0.00%) 5519370.87 ( +56.29%) Compact total free scanned 5238942.00 ( +0.00%) 5857689.80 ( +11.81%) Alloc stall 2371.07 ( +0.00%) 2424.60 ( +2.26%) Pages kswapd scanned 2160926.73 ( +0.00%) 2657018.33 ( +22.96%) Pages kswapd reclaimed 533191.07 ( +0.00%) 559583.07 ( +4.95%) Pages direct scanned 400450.33 ( +0.00%) 722094.07 ( +80.32%) Pages direct reclaimed 94441.73 ( +0.00%) 107257.80 ( +13.57%) Pages total scanned 2561377.07 ( +0.00%) 3379112.40 ( +31.93%) Pages total reclaimed 627632.80 ( +0.00%) 666840.87 ( +6.25%) Swap out 47959.53 ( +0.00%) 77238.20 ( +61.05%) Swap in 7276.00 ( +0.00%) 11712.80 ( +60.97%) File refaults 138043.00 ( +0.00%) 143438.80 ( +3.91%) With this patch, defrag_mode=1 beats the vanilla kernel in THP success rates and allocation latencies. The trend holds over time: thp_fault_alloc VANILLA DEFRAGMODE-ASYNC 61988 52066 56474 58844 57258 58233 50187 58476 52388 54516 55409 59938 52925 57204 47648 60238 43669 55733 40621 56211 36077 59861 41721 57771 36685 58579 34641 51868 33215 56280 DEFRAGMODE-ASYNC also wins on %sys as ~3/4 of the direct compaction work is shifted to kcompactd. Reclaim activity is higher. Part of that is simply due to the increased memory footprint from higher THP use. The other aspect is that *direct* reclaim/compaction are still going for requested orders rather than targeting the page blocks required for fallbacks, which is less efficient than it could be. However, this is already a useful tradeoff to make, as in many environments peak periods are short and retaining the ability to produce THP through them is more important. Link: https://lkml.kernel.org/r/20250313210647.1314586-5-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm: page_alloc: defrag_modeJohannes Weiner
The page allocator groups requests by migratetype to stave off fragmentation. However, in practice this is routinely defeated by the fact that it gives up *before* invoking reclaim and compaction - which may well produce suitable pages. As a result, fragmentation of physical memory is a common ongoing process in many load scenarios. Fragmentation deteriorates compaction's ability to produce huge pages. Depending on the lifetime of the fragmenting allocations, those effects can be long-lasting or even permanent, requiring drastic measures like forcible idle states or even reboots as the only reliable ways to recover the address space for THP production. In a kernel build test with supplemental THP pressure, the THP allocation rate steadily declines over 15 runs: thp_fault_alloc 61988 56474 57258 50187 52388 55409 52925 47648 43669 40621 36077 41721 36685 34641 33215 This is a hurdle in adopting THP in any environment where hosts are shared between multiple overlapping workloads (cloud environments), and rarely experience true idle periods. To make THP a reliable and predictable optimization, there needs to be a stronger guarantee to avoid such fragmentation. Introduce defrag_mode. When enabled, reclaim/compaction is invoked to its full extent *before* falling back. Specifically, ALLOC_NOFRAGMENT is enforced on the allocator fastpath and the reclaiming slowpath. For now, fallbacks are permitted to avert OOMs. There is a plan to add defrag_mode=2 to prefer OOMs over fragmentation, but this requires additional prep work in compaction and the reserve management to make it ready for all possible allocation contexts. The following test results are from a kernel build with periodic bursts of THP allocations, over 15 runs: vanilla defrag_mode=1 @claimer[unmovable]: 189 103 @claimer[movable]: 92 103 @claimer[reclaimable]: 207 61 @pollute[unmovable from movable]: 25 0 @pollute[unmovable from reclaimable]: 28 0 @pollute[movable from unmovable]: 38835 0 @pollute[movable from reclaimable]: 147136 0 @pollute[reclaimable from unmovable]: 178 0 @pollute[reclaimable from movable]: 33 0 @steal[unmovable from movable]: 11 0 @steal[unmovable from reclaimable]: 5 0 @steal[reclaimable from unmovable]: 107 0 @steal[reclaimable from movable]: 90 0 @steal[movable from reclaimable]: 354 0 @steal[movable from unmovable]: 130 0 Both types of polluting fallbacks are eliminated in this workload. Interestingly, whole block conversions are reduced as well. This is because once a block is claimed for a type, its empty space remains available for future allocations, instead of being padded with fallbacks; this allows the native type to group up instead of spreading out to new blocks. The assumption in the allocator has been that pollution from movable allocations is less harmful than from other types, since they can be reclaimed or migrated out should the space be needed. However, since fallbacks occur *before* reclaim/compaction is invoked, movable pollution will still cause non-movable allocations to spread out and claim more blocks. Without fragmentation, THP rates hold steady with defrag_mode=1: thp_fault_alloc 32478 20725 45045 32130 14018 21711 40791 29134 34458 45381 28305 17265 22584 28454 30850 While the downward trend is eliminated, the keen reader will of course notice that the baseline rate is much smaller than the vanilla kernel's to begin with. This is due to deficiencies in how reclaim and compaction are currently driven: ALLOC_NOFRAGMENT increases the extent to which smaller allocations are competing with THPs for pageblocks, while making no effort themselves to reclaim or compact beyond their own request size. This effect already exists with the current usage of ALLOC_NOFRAGMENT, but is amplified by defrag_mode insisting on whole block stealing much more strongly. Subsequent patches will address defrag_mode reclaim strategy to raise the THP success baseline above the vanilla kernel. Link: https://lkml.kernel.org/r/20250313210647.1314586-4-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm: page_alloc: trace type pollution from compaction capturingJohannes Weiner
When the page allocator places pages of a certain migratetype into blocks of another type, it has lasting effects on the ability to compact and defragment down the line. For improving placement and compaction, visibility into such events is crucial. The most common case, allocator fallbacks, is already annotated, but compaction capturing is also allowed to grab pages of a different type. Extend the tracepoint to cover this case. Link: https://lkml.kernel.org/r/20250313210647.1314586-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Zi Yan <ziy@nvidia.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/page_alloc: add trace event for totalreserve_pages calculationMartin Liu
This commit introduces a new trace event, `mm_calculate_totalreserve_pages`, which reports the new reserve value at the exact time when it takes effect. The `totalreserve_pages` value represents the total amount of memory reserved across all zones and nodes in the system. This reserved memory is crucial for ensuring that critical kernel operations have access to sufficient memory, even under memory pressure. By tracing the `totalreserve_pages` value, developers can gain insights that how the total reserved memory changes over time. Link: https://lkml.kernel.org/r/20250308034606.2036033-4-liumartin@google.com Signed-off-by: Martin Liu <liumartin@google.com> Acked-by: David Rientjes <rientjes@google.com> Cc: "Masami Hiramatsu (Google)" <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/page_alloc: add trace event for per-zone lowmem reserve setupMartin Liu
This commit introduces the `mm_setup_per_zone_lowmem_reserve` trace event,which provides detailed insights into the kernel's per-zone lowmem reserve configuration. The trace event provides precise timestamps, allowing developers to 1. Correlate lowmem reserve changes with specific kernel events and able to diagnose unexpected kswapd or direct reclaim behavior triggered by dynamic changes in lowmem reserve. 2. Know memory allocation failures that occur due to insufficient lowmem reserve, by precisely correlating allocation attempts with reserve adjustments. Link: https://lkml.kernel.org/r/20250308034606.2036033-3-liumartin@google.com Signed-off-by: Martin Liu <liumartin@google.com> Acked-by: David Rientjes <rientjes@google.com> Cc: "Masami Hiramatsu (Google)" <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/page_alloc: add trace event for per-zone watermark setupMartin Liu
Patch series "Add tracepoints for lowmem reserves, watermarks and totalreserve_pages", v2. This patchset introduces tracepoints to track changes in the lowmem reserves, watermarks and totalreserve_pages. This helps to track the exact timing of such changes and understand their relation to reclaim activities. The tracepoints added are: mm_setup_per_zone_lowmem_reserve mm_setup_per_zone_wmarks mm_calculate_totalreserve_pagesi This patch (of 3): This commit introduces the `mm_setup_per_zone_wmarks` trace event, which provides detailed insights into the kernel's per-zone watermark configuration, offering precise timing and the ability to correlate watermark changes with specific kernel events. While `/proc/zoneinfo` provides some information about zone watermarks, this trace event offers: 1. The ability to link watermark changes to specific kernel events and logic. 2. The ability to capture rapid or short-lived changes in watermarks that may be missed by user-space polling 3. Diagnosing unexpected kswapd activity or excessive direct reclaim triggered by rapidly changing watermarks. Link: https://lkml.kernel.org/r/20250308034606.2036033-1-liumartin@google.com Link: https://lkml.kernel.org/r/20250308034606.2036033-2-liumartin@google.com Signed-off-by: Martin Liu <liumartin@google.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Martin Liu <liumartin@google.com> Cc: "Masami Hiramatsu (Google)" <mhiramat@kernel.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm: stop maintaining the per-page mapcount of large folios ↵David Hildenbrand
(CONFIG_NO_PAGE_MAPCOUNT) Everything is in place to stop using the per-page mapcounts in large folios: the mapcount of tail pages will always be logically 0 (-1 value), just like it currently is for hugetlb folios already, and the page mapcount of the head page is either 0 (-1 value) or contains a page type (e.g., hugetlb). Maintaining _nr_pages_mapped without per-page mapcounts is impossible, so that one also has to go with CONFIG_NO_PAGE_MAPCOUNT. There are two remaining implications: (1) Per-node, per-cgroup and per-lruvec stats of "NR_ANON_MAPPED" ("mapped anonymous memory") and "NR_FILE_MAPPED" ("mapped file memory"): As soon as any page of the folio is mapped -- folio_mapped() -- we now account the complete folio as mapped. Once the last page is unmapped -- !folio_mapped() -- we account the complete folio as unmapped. This implies that ... * "AnonPages" and "Mapped" in /proc/meminfo and /sys/devices/system/node/*/meminfo * cgroup v2: "anon" and "file_mapped" in "memory.stat" and "memory.numa_stat" * cgroup v1: "rss" and "mapped_file" in "memory.stat" and "memory.numa_stat ... can now appear higher than before. But note that these folios do consume that memory, simply not all pages are actually currently mapped. It's worth nothing that other accounting in the kernel (esp. cgroup charging on allocation) is not affected by this change. [why oh why is "anon" called "rss" in cgroup v1] (2) Detecting partial mappings Detecting whether anon THPs are partially mapped gets a bit more unreliable. As long as a single MM maps such a large folio ("exclusively mapped"), we can reliably detect it. Especially before fork() / after a short-lived child process quit, we will detect partial mappings reliably, which is the common case. In essence, if the average per-page mapcount in an anon THP is < 1, we know for sure that we have a partial mapping. However, as soon as multiple MMs are involved, we might miss detecting partial mappings: this might be relevant with long-lived child processes. If we have a fully-mapped anon folio before fork(), once our child processes and our parent all unmap (zap/COW) the same pages (but not the complete folio), we might not detect the partial mapping. However, once the child processes quit we would detect the partial mapping. How relevant this case is in practice remains to be seen. Swapout/migration will likely mitigate this. In the future, RMAP walkers could check for that for that case (e.g., when collecting access bits during reclaim) and simply flag them for deferred-splitting. Link: https://lkml.kernel.org/r/20250303163014.1128035-21-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Andy Lutomirks^H^Hski <luto@kernel.org> Cc: Borislav Betkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lance Yang <ioworker0@gmail.com> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Matthew Wilcow (Oracle) <willy@infradead.org> Cc: Michal Koutn <mkoutny@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: tejun heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zefan Li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/rmap: basic MM owner tracking for large folios (!hugetlb)David Hildenbrand
For small folios, we traditionally use the mapcount to decide whether it was "certainly mapped exclusively" by a single MM (mapcount == 1) or whether it "maybe mapped shared" by multiple MMs (mapcount > 1). For PMD-sized folios that were PMD-mapped, we were able to use a similar mechanism (single PMD mapping), but for PTE-mapped folios and in the future folios that span multiple PMDs, this does not work. So we need a different mechanism to handle large folios. Let's add a new mechanism to detect whether a large folio is "certainly mapped exclusively", or whether it is "maybe mapped shared". We'll use this information next to optimize CoW reuse for PTE-mapped anonymous THP, and to convert folio_likely_mapped_shared() to folio_maybe_mapped_shared(), independent of per-page mapcounts. For each large folio, we'll have two slots, whereby a slot stores: (1) an MM id: unique id assigned to each MM (2) a per-MM mapcount If a slot is unoccupied, it can be taken by the next MM that maps folio page. In addition, we'll remember the current state -- "mapped exclusively" vs. "maybe mapped shared" -- and use a bit spinlock to sync on updates and to reduce the total number of atomic accesses on updates. In the future, it might be possible to squeeze a proper spinlock into "struct folio". For now, keep it simple, as we require the whole thing with THP only, that is incompatible with RT. As we have to squeeze this information into the "struct folio" of even folios of order-1 (2 pages), and we generally want to reduce the required metadata, we'll assign each MM a unique ID that can fit into an int. In total, we can squeeze everything into 4x int (2x long) on 64bit. 32bit support is a bit challenging, because we only have 2x long == 2x int in order-1 folios. But we can make it work for now, because we neither expect many MMs nor very large folios on 32bit. We will reliably detect folios as "mapped exclusively" vs. "mapped shared" as long as only two MMs map pages of a folio at one point in time -- for example with fork() and short-lived child processes, or with apps that hand over state from one instance to another. As soon as three MMs are involved at the same time, we might detect "maybe mapped shared" although the folio is "mapped exclusively". Example 1: (1) App1 faults in a (shmem/file-backed) folio page -> Tracked as MM0 (2) App2 faults in a folio page -> Tracked as MM1 (4) App1 unmaps all folio pages -> We will detect "mapped exclusively". Example 2: (1) App1 faults in a (shmem/file-backed) folio page -> Tracked as MM0 (2) App2 faults in a folio page -> Tracked as MM1 (3) App3 faults in a folio page -> No slot available, tracked as "unknown" (4) App1 and App2 unmap all folio pages -> We will detect "maybe mapped shared". Make use of __always_inline to keep possible performance degradation when (un)mapping large folios to a minimum. Note: by squeezing the two flags into the "unsigned long" that stores the MM ids, we can use non-atomic __bit_spin_unlock() and non-atomic setting/clearing of the "maybe mapped shared" bit, effectively not adding any new atomics on the hot path when updating the large mapcount + new metadata, which further helps reduce the runtime overhead in micro-benchmarks. Link: https://lkml.kernel.org/r/20250303163014.1128035-13-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Andy Lutomirks^H^Hski <luto@kernel.org> Cc: Borislav Betkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lance Yang <ioworker0@gmail.com> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Matthew Wilcow (Oracle) <willy@infradead.org> Cc: Michal Koutn <mkoutny@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: tejun heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zefan Li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm: move _entire_mapcount in folio to page[2] on 32bitDavid Hildenbrand
Let's free up some space on 32bit in page[1] by moving the _pincount to page[2]. Ordinary folios only use the entire mapcount with PMD mappings, so order-1 folios don't apply. Similarly, hugetlb folios are always larger than order-1, turning the entire mapcount essentially unused for all order-1 folios. Moving it to order-1 folios will not change anything. On 32bit, simply check in folio_entire_mapcount() whether we have an order-1 folio, and return 0 in that case. Note that THPs on 32bit are not particularly common (and we don't care too much about performance), but we want to keep it working reliably, because likely we want to use large folios there as well in the future, independent of PMD leaf support. Once we dynamically allocate "struct folio", the 32bit specifics will go away again; even small folios could then have a pincount. Link: https://lkml.kernel.org/r/20250303163014.1128035-7-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Andy Lutomirks^H^Hski <luto@kernel.org> Cc: Borislav Betkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lance Yang <ioworker0@gmail.com> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Matthew Wilcow (Oracle) <willy@infradead.org> Cc: Michal Koutn <mkoutny@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: tejun heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zefan Li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm: move _pincount in folio to page[2] on 32bitDavid Hildenbrand
Let's free up some space on 32bit in page[1] by moving the _pincount to page[2]. For order-1 folios (never anon folios!) on 32bit, we will now also use the GUP_PIN_COUNTING_BIAS approach. A fully-mapped order-1 folio requires 2 references. With GUP_PIN_COUNTING_BIAS being 1024, we'd detect such folios as "maybe pinned" with 512 full mappings, instead of 1024 for order-0. As anon folios are out of the picture (which are the most relevant users of checking for pinnings on *mapped* pages) and we are talking about 32bit, this is not expected to cause any trouble. In __dump_page(), copy one additional folio page if we detect a folio with an order > 1, so we can dump the pincount on order > 1 folios reliably. Note that THPs on 32bit are not particularly common (and we don't care too much about performance), but we want to keep it working reliably, because likely we want to use large folios there as well in the future, independent of PMD leaf support. Once we dynamically allocate "struct folio", fortunately the 32bit specifics will likely go away again; even small folios could then have a pincount and folio_has_pincount() would essentially always return "true". Link: https://lkml.kernel.org/r/20250303163014.1128035-6-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Andy Lutomirks^H^Hski <luto@kernel.org> Cc: Borislav Betkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lance Yang <ioworker0@gmail.com> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Matthew Wilcow (Oracle) <willy@infradead.org> Cc: Michal Koutn <mkoutny@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: tejun heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zefan Li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm: move hugetlb specific things in folio to page[3]David Hildenbrand
Let's just move the hugetlb specific stuff to a separate page, and stop letting it overlay other fields for now. This frees up some space in page[2], which we will use on 32bit to free up some space in page[1]. While we could move these things to page[3] instead, it's cleaner to just move the hugetlb specific things out of the way and pack the core-folio stuff as tight as possible. ... and we can minimize the work required in dump_folio. We can now avoid re-initializing &folio->_deferred_list in hugetlb code. Hopefully dynamically allocating "strut folio" in the future will further clean this up. Link: https://lkml.kernel.org/r/20250303163014.1128035-5-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Cc: Andy Lutomirks^H^Hski <luto@kernel.org> Cc: Borislav Betkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Lance Yang <ioworker0@gmail.com> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Matthew Wilcow (Oracle) <willy@infradead.org> Cc: Michal Koutn <mkoutny@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: tejun heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zefan Li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm: let _folio_nr_pages overlay memcg_data in first tail pageDavid Hildenbrand
Let's free up some more of the "unconditionally available on 64BIT" space in order-1 folios by letting _folio_nr_pages overlay memcg_data in the first tail page (second folio page). Consequently, we have the optimization now whenever we have CONFIG_MEMCG, independent of 64BIT. We have to make sure that page->memcg on tail pages does not return "surprises". page_memcg_check() already properly refuses PageTail(). Let's do that earlier in print_page_owner_memcg() to avoid printing wrong "Slab cache page" information. No other code should touch that field on tail pages of compound pages. Reset the "_nr_pages" to 0 when splitting folios, or when freeing them back to the buddy (to avoid false page->memcg_data "bad page" reports). Note that in __split_huge_page(), folio_nr_pages() would stop working already as soon as we start messing with the subpages. Most kernel configs should have at least CONFIG_MEMCG enabled, even if disabled at runtime. 64byte "struct memmap" is what we usually have on 64BIT. While at it, rename "_folio_nr_pages" to "_nr_pages". Hopefully memdescs / dynamically allocating "strut folio" in the future will further clean this up, e.g., making _nr_pages available in all configs and maybe even in small folios. Doing that should be fairly easy on top of this change. [david@redhat.com: make "make htmldoc" happy] Link: https://lkml.kernel.org/r/a97f8a91-ec41-4796-81e3-7c9e0e491ba4@redhat.com Link: https://lkml.kernel.org/r/20250303163014.1128035-4-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andy Lutomirks^H^Hski <luto@kernel.org> Cc: Borislav Betkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Lance Yang <ioworker0@gmail.com> Cc: Liam Howlett <liam.howlett@oracle.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Cc: Matthew Wilcow (Oracle) <willy@infradead.org> Cc: Michal Koutn <mkoutny@suse.com> Cc: Muchun Song <muchun.song@linux.dev> Cc: tejun heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Zefan Li <lizefan.x@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/page_alloc: clarify should_claim_block() commentaryBrendan Jackman
There's lots of text here but it's a little hard to follow, this is an attempt to break it up and align its structure more closely with the code. Reword the top-level function comment to just explain what question the function answers from the point of view of the caller. Break up the internal logic into different sections that can have their own commentary describing why that part of the rationale is present. Note the page_group_by_mobility_disabled logic is not explained in the commentary, that is outside the scope of this patch... Link: https://lkml.kernel.org/r/20250228-clarify-steal-v4-2-cb2ef1a4e610@google.com Signed-off-by: Brendan Jackman <jackmanb@google.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Yosry Ahmed <yosry.ahmed@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-17mm/page_alloc: clarify terminology in migratetype fallback codeBrendan Jackman
Patch series "mm/page_alloc: Some clarifications for migratetype fallback", v4. A couple of patches to try and make the code easier to follow. This patch (of 2): This code is rather confusing because: 1. "Steal" is sometimes used to refer to the general concept of allocating from a from a block of a fallback migratetype (steal_suitable_fallback()) but sometimes it refers specifically to converting a whole block's migratetype (can_steal_fallback()). 2. can_steal_fallback() sounds as though it's answering the question "am I functionally permitted to allocate from that other type" but in fact it is encoding a heuristic preference. 3. The same piece of data has different names in different places: can_steal vs whole_block. This reinforces point 2 because it looks like the different names reflect a shift in intent from "am I allowed to steal" to "do I want to steal", but no such shift exists. Fix 1. by avoiding the term "steal" in ambiguous contexts. Start using the term "claim" to refer to the special case of stealing the entire block. Fix 2. by using "should" instead of "can", and also rename its parameters and add some commentary to make it more explicit what they mean. Fix 3. by adopting the new "claim" terminology universally for this set of variables. Link: https://lkml.kernel.org/r/20250228-clarify-steal-v4-0-cb2ef1a4e610@google.com Link: https://lkml.kernel.org/r/20250228-clarify-steal-v4-1-cb2ef1a4e610@google.com Signed-off-by: Brendan Jackman <jackmanb@google.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Yosry Ahmed <yosry.ahmed@linux.dev> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16mm/page_alloc: warn on nr_reserved_highatomic underflowBrendan Jackman
As documented in the comment this underflow should not happen. The locking has indeed changed here since the comment was written, see the migratetype hygiene patches[0]. However, those changes made the locking _safer_, so the underflow _really_ shouldn't happen now. So upgrade the comment to a warning. [0] https://lore.kernel.org/all/20240320180429.678181-7-hannes@cmpxchg.org/T/#m3da87e6cc3348a4640aa298137bc9f8f61b76c84 Link: https://lkml.kernel.org/r/20250225-warn-underflow-v1-1-3dc542941d3a@google.com Signed-off-by: Brendan Jackman <jackmanb@google.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16mm: page_alloc: group fallback functions togetherJohannes Weiner
The way the fallback rules are spread out makes them hard to follow. Move the functions next to each other at least. Link: https://lkml.kernel.org/r/20250225001023.1494422-4-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Brendan Jackman <jackmanb@google.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16mm: page_alloc: remove remnants of unlocked migratetype updatesJohannes Weiner
The freelist hygiene patches made migratetype accesses fully protected under the zone->lock. Remove remnants of handling the race conditions that existed before from the MIGRATE_HIGHATOMIC code. Link: https://lkml.kernel.org/r/20250225001023.1494422-3-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Brendan Jackman <jackmanb@google.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16mm: page_alloc: don't steal single pages from biggest buddyJohannes Weiner
The fallback code searches for the biggest buddy first in an attempt to steal the whole block and encourage type grouping down the line. The approach used to be this: - Non-movable requests will split the largest buddy and steal the remainder. This splits up contiguity, but it allows subsequent requests of this type to fall back into adjacent space. - Movable requests go and look for the smallest buddy instead. The thinking is that movable requests can be compacted, so grouping is less important than retaining contiguity. c0cd6f557b90 ("mm: page_alloc: fix freelist movement during block conversion") enforces freelist type hygiene, which restricts stealing to either claiming the whole block or just taking the requested chunk; no additional pages or buddy remainders can be stolen any more. The patch mishandled when to switch to finding the smallest buddy in that new reality. As a result, it may steal the exact request size, but from the biggest buddy. This causes fracturing for no good reason. Fix this by committing to the new behavior: either steal the whole block, or fall back to the smallest buddy. Remove single-page stealing from steal_suitable_fallback(). Rename it to try_to_steal_block() to make the intentions clear. If this fails, always fall back to the smallest buddy. The following is from 4 runs of mmtest's thpchallenge. "Pollute" is single page fallback, "steal" is conversion of a partially used block. The numbers for free block conversions (omitted) are comparable. vanilla patched @pollute[unmovable from reclaimable]: 27 106 @pollute[unmovable from movable]: 82 46 @pollute[reclaimable from unmovable]: 256 83 @pollute[reclaimable from movable]: 46 8 @pollute[movable from unmovable]: 4841 868 @pollute[movable from reclaimable]: 5278 12568 @steal[unmovable from reclaimable]: 11 12 @steal[unmovable from movable]: 113 49 @steal[reclaimable from unmovable]: 19 34 @steal[reclaimable from movable]: 47 21 @steal[movable from unmovable]: 250 183 @steal[movable from reclaimable]: 81 93 The allocator appears to do a better job at keeping stealing and polluting to the first fallback preference. As a result, the numbers for "from movable" - the least preferred fallback option, and most detrimental to compactability - are down across the board. Link: https://lkml.kernel.org/r/20250225001023.1494422-2-hannes@cmpxchg.org Fixes: c0cd6f557b90 ("mm: page_alloc: fix freelist movement during block conversion") Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Brendan Jackman <jackmanb@google.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16alloc_tag: uninline code gated by mem_alloc_profiling_key in page allocatorSuren Baghdasaryan
When a sizable code section is protected by a disabled static key, that code gets into the instruction cache even though it's not executed and consumes the cache, increasing cache misses. This can be remedied by moving such code into a separate uninlined function. On a Pixel6 phone, page allocation profiling overhead measured with CONFIG_MEM_ALLOC_PROFILING=y and profiling disabled is: baseline modified Big core 4.93% 1.53% Medium core 4.39% 1.41% Little core 1.02% 0.36% This improvement comes at the expense of the configuration when profiling gets enabled, since there is now an additional function call. The overhead from this additional call on Pixel6 is: Big core 0.24% Middle core 0.63% Little core 1.1% However this is negligible when compared with the overall overhead of the memory allocation profiling when it is enabled. On x86 this patch does not make noticeable difference because the overhead with mem_alloc_profiling_key disabled is much lower (under 1%) to start with, so any improvement is less visible and hard to distinguish from the noise. The overhead from additional call when profiling is enabled is also within noise levels. Link: https://lkml.kernel.org/r/20250201231803.2661189-3-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: David Wang <00107082@163.com> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Sourav Panda <souravpanda@google.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yu Zhao <yuzhao@google.com> Cc: Zhenhua Huang <quic_zhenhuah@quicinc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16mm: avoid extra mem_alloc_profiling_enabled() checksSuren Baghdasaryan
Refactor code to avoid extra mem_alloc_profiling_enabled() checks inside pgalloc_tag_get() function which is often called after that check was already done. Link: https://lkml.kernel.org/r/20250201231803.2661189-1-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Cc: David Wang <00107082@163.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Kent Overstreet <kent.overstreet@linux.dev> Cc: Minchan Kim <minchan@google.com> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Sourav Panda <souravpanda@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yu Zhao <yuzhao@google.com> Cc: Zhenhua Huang <quic_zhenhuah@quicinc.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-16mm/page_alloc: fix memory accept before watermarks gets initializedKirill A. Shutemov
Watermarks are initialized during the postcore initcall. Until then, all watermarks are set to zero. This causes cond_accept_memory() to incorrectly skip memory acceptance because a watermark of 0 is always met. This can lead to a premature OOM on boot. To ensure progress, accept one MAX_ORDER page if the watermark is zero. Link: https://lkml.kernel.org/r/20250310082855.2587122-1-kirill.shutemov@linux.intel.com Fixes: dcdfdd40fa82 ("mm: Add support for unaccepted memory") Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Farrah Chen <farrah.chen@intel.com> Reported-by: Farrah Chen <farrah.chen@intel.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Pankaj Gupta <pankaj.gupta@amd.com> Cc: Ashish Kalra <ashish.kalra@amd.com> Cc: David Hildenbrand <david@redhat.com> Cc: "Edgecombe, Rick P" <rick.p.edgecombe@intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: "Mike Rapoport (IBM)" <rppt@kernel.org> Cc: Thomas Lendacky <thomas.lendacky@amd.com> Cc: <stable@vger.kernel.org> [6.5+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-05mm/page_alloc: fix uninitialized variableHao Zhang
The variable "compact_result" is not initialized in function __alloc_pages_slowpath(). It causes should_compact_retry() to use an uninitialized value. Initialize variable "compact_result" with the value COMPACT_SKIPPED. BUG: KMSAN: uninit-value in __alloc_pages_slowpath+0xee8/0x16c0 mm/page_alloc.c:4416 __alloc_pages_slowpath+0xee8/0x16c0 mm/page_alloc.c:4416 __alloc_frozen_pages_noprof+0xa4c/0xe00 mm/page_alloc.c:4752 alloc_pages_mpol+0x4cd/0x890 mm/mempolicy.c:2270 alloc_frozen_pages_noprof mm/mempolicy.c:2341 [inline] alloc_pages_noprof mm/mempolicy.c:2361 [inline] folio_alloc_noprof+0x1dc/0x350 mm/mempolicy.c:2371 filemap_alloc_folio_noprof+0xa6/0x440 mm/filemap.c:1019 __filemap_get_folio+0xb9a/0x1840 mm/filemap.c:1970 grow_dev_folio fs/buffer.c:1039 [inline] grow_buffers fs/buffer.c:1105 [inline] __getblk_slow fs/buffer.c:1131 [inline] bdev_getblk+0x2c9/0xab0 fs/buffer.c:1431 getblk_unmovable include/linux/buffer_head.h:369 [inline] ext4_getblk+0x3b7/0xe50 fs/ext4/inode.c:864 ext4_bread_batch+0x9f/0x7d0 fs/ext4/inode.c:933 __ext4_find_entry+0x1ebb/0x36c0 fs/ext4/namei.c:1627 ext4_lookup_entry fs/ext4/namei.c:1729 [inline] ext4_lookup+0x189/0xb40 fs/ext4/namei.c:1797 __lookup_slow+0x538/0x710 fs/namei.c:1793 lookup_slow+0x6a/0xd0 fs/namei.c:1810 walk_component fs/namei.c:2114 [inline] link_path_walk+0xf29/0x1420 fs/namei.c:2479 path_openat+0x30f/0x6250 fs/namei.c:3985 do_filp_open+0x268/0x600 fs/namei.c:4016 do_sys_openat2+0x1bf/0x2f0 fs/open.c:1428 do_sys_open fs/open.c:1443 [inline] __do_sys_openat fs/open.c:1459 [inline] __se_sys_openat fs/open.c:1454 [inline] __x64_sys_openat+0x2a1/0x310 fs/open.c:1454 x64_sys_call+0x36f5/0x3c30 arch/x86/include/generated/asm/syscalls_64.h:258 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Local variable compact_result created at: __alloc_pages_slowpath+0x66/0x16c0 mm/page_alloc.c:4218 __alloc_frozen_pages_noprof+0xa4c/0xe00 mm/page_alloc.c:4752 Link: https://lkml.kernel.org/r/tencent_ED1032321D6510B145CDBA8CBA0093178E09@qq.com Reported-by: syzbot+0cfd5e38e96a5596f2b6@syzkaller.appspotmail.com Closes: https://syzkaller.appspot.com/bug?extid=0cfd5e38e96a5596f2b6 Signed-off-by: Hao Zhang <zhanghao1@kylinos.cn> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-03-05Revert "mm/page_alloc.c: don't show protection in zone's ->lowmem_reserve[] ↵Gabriel Krisman Bertazi
for empty zone" Commit 96a5c186efff ("mm/page_alloc.c: don't show protection in zone's ->lowmem_reserve[] for empty zone") removes the protection of lower zones from allocations targeting memory-less high zones. This had an unintended impact on the pattern of reclaims because it makes the high-zone-targeted allocation more likely to succeed in lower zones, which adds pressure to said zones. I.e, the following corresponding checks in zone_watermark_ok/zone_watermark_fast are less likely to trigger: if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) return false; As a result, we are observing an increase in reclaim and kswapd scans, due to the increased pressure. This was initially observed as increased latency in filesystem operations when benchmarking with fio on a machine with some memory-less zones, but it has since been associated with increased contention in locks related to memory reclaim. By reverting this patch, the original performance was recovered on that machine. The original commit was introduced as a clarification of the /proc/zoneinfo output, so it doesn't seem there are usecases depending on it, making the revert a simple solution. For reference, I collected vmstat with and without this patch on a freshly booted system running intensive randread io from an nvme for 5 minutes. I got: rpm-6.12.0-slfo.1.2 -> pgscan_kswapd 5629543865 Patched -> pgscan_kswapd 33580844 33M scans is similar to what we had in kernels predating this patch. These numbers is fairly representative of the workload on this machine, as measured in several runs. So we are talking about a 2-order of magnitude increase. Link: https://lkml.kernel.org/r/20250226032258.234099-1-krisman@suse.de Fixes: 96a5c186efff ("mm/page_alloc.c: don't show protection in zone's ->lowmem_reserve[] for empty zone") Signed-off-by: Gabriel Krisman Bertazi <krisman@suse.de> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Baoquan He <bhe@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-02-27mm, bpf: Use memcg in try_alloc_pages().Alexei Starovoitov
Unconditionally use __GFP_ACCOUNT in try_alloc_pages(). The caller is responsible to setup memcg correctly. All BPF memory accounting is memcg based. Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Shakeel Butt <shakeel.butt@linux.dev> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/r/20250222024427.30294-6-alexei.starovoitov@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2025-02-27mm, bpf: Introduce free_pages_nolock()Alexei Starovoitov
Introduce free_pages_nolock() that can free pages without taking locks. It relies on trylock and can be called from any context. Since spin_trylock() cannot be used in PREEMPT_RT from hard IRQ or NMI it uses lockless link list to stash the pages which will be freed by subsequent free_pages() from good context. Do not use llist unconditionally. BPF maps continuously allocate/free, so we cannot unconditionally delay the freeing to llist. When the memory becomes free make it available to the kernel and BPF users right away if possible, and fallback to llist as the last resort. Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/r/20250222024427.30294-4-alexei.starovoitov@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2025-02-27mm, bpf: Introduce try_alloc_pages() for opportunistic page allocationAlexei Starovoitov
Tracing BPF programs execute from tracepoints and kprobes where running context is unknown, but they need to request additional memory. The prior workarounds were using pre-allocated memory and BPF specific freelists to satisfy such allocation requests. Instead, introduce gfpflags_allow_spinning() condition that signals to the allocator that running context is unknown. Then rely on percpu free list of pages to allocate a page. try_alloc_pages() -> get_page_from_freelist() -> rmqueue() -> rmqueue_pcplist() will spin_trylock to grab the page from percpu free list. If it fails (due to re-entrancy or list being empty) then rmqueue_bulk()/rmqueue_buddy() will attempt to spin_trylock zone->lock and grab the page from there. spin_trylock() is not safe in PREEMPT_RT when in NMI or in hard IRQ. Bailout early in such case. The support for gfpflags_allow_spinning() mode for free_page and memcg comes in the next patches. This is a first step towards supporting BPF requirements in SLUB and getting rid of bpf_mem_alloc. That goal was discussed at LSFMM: https://lwn.net/Articles/974138/ Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/r/20250222024427.30294-3-alexei.starovoitov@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2025-01-28treewide: const qualify ctl_tables where applicableJoel Granados
Add the const qualifier to all the ctl_tables in the tree except for watchdog_hardlockup_sysctl, memory_allocation_profiling_sysctls, loadpin_sysctl_table and the ones calling register_net_sysctl (./net, drivers/inifiniband dirs). These are special cases as they use a registration function with a non-const qualified ctl_table argument or modify the arrays before passing them on to the registration function. Constifying ctl_table structs will prevent the modification of proc_handler function pointers as the arrays would reside in .rodata. This is made possible after commit 78eb4ea25cd5 ("sysctl: treewide: constify the ctl_table argument of proc_handlers") constified all the proc_handlers. Created this by running an spatch followed by a sed command: Spatch: virtual patch @ depends on !(file in "net") disable optional_qualifier @ identifier table_name != { watchdog_hardlockup_sysctl, iwcm_ctl_table, ucma_ctl_table, memory_allocation_profiling_sysctls, loadpin_sysctl_table }; @@ + const struct ctl_table table_name [] = { ... }; sed: sed --in-place \ -e "s/struct ctl_table .table = &uts_kern/const struct ctl_table *table = \&uts_kern/" \ kernel/utsname_sysctl.c Reviewed-by: Song Liu <song@kernel.org> Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org> # for kernel/trace/ Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> # SCSI Reviewed-by: Darrick J. Wong <djwong@kernel.org> # xfs Acked-by: Jani Nikula <jani.nikula@intel.com> Acked-by: Corey Minyard <cminyard@mvista.com> Acked-by: Wei Liu <wei.liu@kernel.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Bill O'Donnell <bodonnel@redhat.com> Acked-by: Baoquan He <bhe@redhat.com> Acked-by: Ashutosh Dixit <ashutosh.dixit@intel.com> Acked-by: Anna Schumaker <anna.schumaker@oracle.com> Signed-off-by: Joel Granados <joel.granados@kernel.org>
2025-01-26Merge tag 'mm-stable-2025-01-26-14-59' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: "The various patchsets are summarized below. Plus of course many indivudual patches which are described in their changelogs. - "Allocate and free frozen pages" from Matthew Wilcox reorganizes the page allocator so we end up with the ability to allocate and free zero-refcount pages. So that callers (ie, slab) can avoid a refcount inc & dec - "Support large folios for tmpfs" from Baolin Wang teaches tmpfs to use large folios other than PMD-sized ones - "Fix mm/rodata_test" from Petr Tesarik performs some maintenance and fixes for this small built-in kernel selftest - "mas_anode_descend() related cleanup" from Wei Yang tidies up part of the mapletree code - "mm: fix format issues and param types" from Keren Sun implements a few minor code cleanups - "simplify split calculation" from Wei Yang provides a few fixes and a test for the mapletree code - "mm/vma: make more mmap logic userland testable" from Lorenzo Stoakes continues the work of moving vma-related code into the (relatively) new mm/vma.c - "mm/page_alloc: gfp flags cleanups for alloc_contig_*()" from David Hildenbrand cleans up and rationalizes handling of gfp flags in the page allocator - "readahead: Reintroduce fix for improper RA window sizing" from Jan Kara is a second attempt at fixing a readahead window sizing issue. It should reduce the amount of unnecessary reading - "synchronously scan and reclaim empty user PTE pages" from Qi Zheng addresses an issue where "huge" amounts of pte pagetables are accumulated: https://lore.kernel.org/lkml/cover.1718267194.git.zhengqi.arch@bytedance.com/ Qi's series addresses this windup by synchronously freeing PTE memory within the context of madvise(MADV_DONTNEED) - "selftest/mm: Remove warnings found by adding compiler flags" from Muhammad Usama Anjum fixes some build warnings in the selftests code when optional compiler warnings are enabled - "mm: don't use __GFP_HARDWALL when migrating remote pages" from David Hildenbrand tightens the allocator's observance of __GFP_HARDWALL - "pkeys kselftests improvements" from Kevin Brodsky implements various fixes and cleanups in the MM selftests code, mainly pertaining to the pkeys tests - "mm/damon: add sample modules" from SeongJae Park enhances DAMON to estimate application working set size - "memcg/hugetlb: Rework memcg hugetlb charging" from Joshua Hahn provides some cleanups to memcg's hugetlb charging logic - "mm/swap_cgroup: remove global swap cgroup lock" from Kairui Song removes the global swap cgroup lock. A speedup of 10% for a tmpfs-based kernel build was demonstrated - "zram: split page type read/write handling" from Sergey Senozhatsky has several fixes and cleaups for zram in the area of zram_write_page(). A watchdog softlockup warning was eliminated - "move pagetable_*_dtor() to __tlb_remove_table()" from Kevin Brodsky cleans up the pagetable destructor implementations. A rare use-after-free race is fixed - "mm/debug: introduce and use VM_WARN_ON_VMG()" from Lorenzo Stoakes simplifies and cleans up the debugging code in the VMA merging logic - "Account page tables at all levels" from Kevin Brodsky cleans up and regularizes the pagetable ctor/dtor handling. This results in improvements in accounting accuracy - "mm/damon: replace most damon_callback usages in sysfs with new core functions" from SeongJae Park cleans up and generalizes DAMON's sysfs file interface logic - "mm/damon: enable page level properties based monitoring" from SeongJae Park increases the amount of information which is presented in response to DAMOS actions - "mm/damon: remove DAMON debugfs interface" from SeongJae Park removes DAMON's long-deprecated debugfs interfaces. Thus the migration to sysfs is completed - "mm/hugetlb: Refactor hugetlb allocation resv accounting" from Peter Xu cleans up and generalizes the hugetlb reservation accounting - "mm: alloc_pages_bulk: small API refactor" from Luiz Capitulino removes a never-used feature of the alloc_pages_bulk() interface - "mm/damon: extend DAMOS filters for inclusion" from SeongJae Park extends DAMOS filters to support not only exclusion (rejecting), but also inclusion (allowing) behavior - "Add zpdesc memory descriptor for zswap.zpool" from Alex Shi introduces a new memory descriptor for zswap.zpool that currently overlaps with struct page for now. This is part of the effort to reduce the size of struct page and to enable dynamic allocation of memory descriptors - "mm, swap: rework of swap allocator locks" from Kairui Song redoes and simplifies the swap allocator locking. A speedup of 400% was demonstrated for one workload. As was a 35% reduction for kernel build time with swap-on-zram - "mm: update mips to use do_mmap(), make mmap_region() internal" from Lorenzo Stoakes reworks MIPS's use of mmap_region() so that mmap_region() can be made MM-internal - "mm/mglru: performance optimizations" from Yu Zhao fixes a few MGLRU regressions and otherwise improves MGLRU performance - "Docs/mm/damon: add tuning guide and misc updates" from SeongJae Park updates DAMON documentation - "Cleanup for memfd_create()" from Isaac Manjarres does that thing - "mm: hugetlb+THP folio and migration cleanups" from David Hildenbrand provides various cleanups in the areas of hugetlb folios, THP folios and migration - "Uncached buffered IO" from Jens Axboe implements the new RWF_DONTCACHE flag which provides synchronous dropbehind for pagecache reading and writing. To permite userspace to address issues with massive buildup of useless pagecache when reading/writing fast devices - "selftests/mm: virtual_address_range: Reduce memory" from Thomas Weißschuh fixes and optimizes some of the MM selftests" * tag 'mm-stable-2025-01-26-14-59' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (321 commits) mm/compaction: fix UBSAN shift-out-of-bounds warning s390/mm: add missing ctor/dtor on page table upgrade kasan: sw_tags: use str_on_off() helper in kasan_init_sw_tags() tools: add VM_WARN_ON_VMG definition mm/damon/core: use str_high_low() helper in damos_wmark_wait_us() seqlock: add missing parameter documentation for raw_seqcount_try_begin() mm/page-writeback: consolidate wb_thresh bumping logic into __wb_calc_thresh mm/page_alloc: remove the incorrect and misleading comment zram: remove zcomp_stream_put() from write_incompressible_page() mm: separate move/undo parts from migrate_pages_batch() mm/kfence: use str_write_read() helper in get_access_type() selftests/mm/mkdirty: fix memory leak in test_uffdio_copy() kasan: hw_tags: Use str_on_off() helper in kasan_init_hw_tags() selftests/mm: virtual_address_range: avoid reading from VM_IO mappings selftests/mm: vm_util: split up /proc/self/smaps parsing selftests/mm: virtual_address_range: unmap chunks after validation selftests/mm: virtual_address_range: mmap() without PROT_WRITE selftests/memfd/memfd_test: fix possible NULL pointer dereference mm: add FGP_DONTCACHE folio creation flag mm: call filemap_fdatawrite_range_kick() after IOCB_DONTCACHE issue ...
2025-01-25mm/page_alloc: remove the incorrect and misleading commentYuntao Wang
The comment removed in this patch originally belonged to the build_zonelists_in_zone_order() function, which was introduced by commit f0c0b2b808f2 ("change zonelist order: zonelist order selection logic"). Later, commit c9bff3eebc09 ("mm, page_alloc: rip out ZONELIST_ORDER_ZONE") removed build_zonelists_in_zone_order() but left its comment behind. Subsequently, commit 9d3be21bf9c0 ("mm, page_alloc: simplify zonelist initialization") moved the node_order variable into build_zonelists(), making the comment originally belonged to build_zonelists_in_zone_order() appear as if it were part of build_zonelists(). Remove this misleading comment. Link: https://lkml.kernel.org/r/20250115041634.63387-1-yuntao.wang@linux.dev Signed-off-by: Yuntao Wang <yuntao.wang@linux.dev> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm: alloc_pages_bulk_noprof: drop page_list argumentLuiz Capitulino
Patch series "mm: alloc_pages_bulk: small API refactor", v2. Today, alloc_pages_bulk_noprof() supports two arguments to return allocated pages: a linked list and an array. There are also higher level APIs for both. However, the linked list API has apparently never been used. So, this series removes it along with the list API and also refactors the remaining API naming for consistency. This patch (of 2): commit 387ba26fb1cb ("mm/page_alloc: add a bulk page allocator") added __alloc_pages_bulk() along with the page_list argument. The next commit 0f87d9d30f21 ("mm/page_alloc: add an array-based interface to the bulk page allocator") added the array-based argument. As it turns out, the page_list argument has no users in the current tree (if it ever had any). Dropping it allows for a slight simplification and eliminates some unnecessary checks, now that page_array is required. Also, note that the removal of the page_list argument was proposed before in the thread below, where Matthew Wilcox mentions that: """ Iterating a linked list is _expensive_. It is about 10x quicker to iterate an array than a linked list. """ (https://lore.kernel.org/linux-mm/20231025093254.xvomlctwhcuerzky@techsingularity.net) Link: https://lkml.kernel.org/r/cover.1734991165.git.luizcap@redhat.com Link: https://lkml.kernel.org/r/f1c75db91d08cafd211eca6a3b199b629d4ffe16.1734991165.git.luizcap@redhat.com Signed-off-by: Luiz Capitulino <luizcap@redhat.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Yunsheng Lin <linyunsheng@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-25mm: replace free hugepage folios after migrationyangge
My machine has 4 NUMA nodes, each equipped with 32GB of memory. I have configured each NUMA node with 16GB of CMA and 16GB of in-use hugetlb pages. The allocation of contiguous memory via cma_alloc() can fail probabilistically. When there are free hugetlb folios in the hugetlb pool, during the migration of in-use hugetlb folios, new folios are allocated from the free hugetlb pool. After the migration is completed, the old folios are released back to the free hugetlb pool instead of being returned to the buddy system. This can cause test_pages_isolated() check to fail, ultimately leading to the failure of cma_alloc(). Call trace: cma_alloc() __alloc_contig_migrate_range() // migrate in-use hugepage test_pages_isolated() __test_page_isolated_in_pageblock() PageBuddy(page) // check if the page is in buddy To address this issue, we introduce a function named replace_free_hugepage_folios(). This function will replace the hugepage in the free hugepage pool with a new one and release the old one to the buddy system. After the migration of in-use hugetlb pages is completed, we will invoke replace_free_hugepage_folios() to ensure that these hugepages are properly released to the buddy system. Following this step, when test_pages_isolated() is executed for inspection, it will successfully pass. Additionally, when alloc_contig_range() is used to migrate multiple in-use hugetlb pages, it can result in some in-use hugetlb pages being released back to the free hugetlb pool and subsequently being reallocated and used again. For example: [huge 0] [huge 1] To migrate huge 0, we obtain huge x from the pool. After the migration is completed, we return the now-freed huge 0 back to the pool. When it's time to migrate huge 1, we can simply reuse the now-freed huge 0 from the pool. As a result, when replace_free_hugepage_folios() is executed, it cannot release huge 0 back to the buddy system. To address this issue, we should prevent the reuse of isolated free hugepages during the migration process. Link: https://lkml.kernel.org/r/1734503588-16254-1-git-send-email-yangge1116@126.com Link: https://lkml.kernel.org/r/1736582300-11364-1-git-send-email-yangge1116@126.com Signed-off-by: yangge <yangge1116@126.com> Cc: Baolin Wang <baolin.wang@linux.alibaba.com> Cc: Barry Song <21cnbao@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: SeongJae Park <sj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-15mm: page_alloc: fix missed updates of lowmem_reserve in ↵zihan zhou
adjust_managed_page_count In the kernel, the zone's lowmem_reserve and _watermark, and the global variable 'totalreserve_pages' depend on the value of managed_pages, but after running adjust_managed_page_count, these values aren't updated, which causes some problems. For example, in a system with six 1GB large pages, we found that the value of protection in zoneinfo (zone->lowmem_reserve), is not right. Its value seems to be calculated from the initial managed_pages, but after the managed_pages changed, was not updated. Only after reading the file /proc/sys/vm/lowmem_reserve_ratio, updates happen. read file /proc/sys/vm/lowmem_reserve_ratio: lowmem_reserve_ratio_sysctl_handler ----setup_per_zone_lowmem_reserve --------calculate_totalreserve_pages protection changed after reading file: [root@test ~]# cat /proc/zoneinfo | grep protection protection: (0, 2719, 57360, 0) protection: (0, 0, 54640, 0) protection: (0, 0, 0, 0) protection: (0, 0, 0, 0) [root@test ~]# cat /proc/sys/vm/lowmem_reserve_ratio 256 256 32 0 [root@test ~]# cat /proc/zoneinfo | grep protection protection: (0, 2735, 63524, 0) protection: (0, 0, 60788, 0) protection: (0, 0, 0, 0) protection: (0, 0, 0, 0) lowmem_reserve increased also makes the totalreserve_pages increased, which causes a decrease in available memory. The one above is just a test machine, and the increase is not significant. On our online machine, the reserved memory will increase by several GB due to reading this file. It is clearly unreasonable to cause a sharp drop in available memory just by reading a file. In this patch, we update reserve memory when update managed_pages, The size of reserved memory becomes stable. But it seems that the _watermark should also be updated along with the managed_pages. We have not done it because we are unsure if it is reasonable to set the watermark through the initial managed_pages. If it is not reasonable, we will propose new patch. Link: https://lkml.kernel.org/r/20241225021034.45693-1-15645113830zzh@gmail.com Signed-off-by: zihan zhou <15645113830zzh@gmail.com> Signed-off-by: yaowenchao <yaowenchao@jd.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-13mm/page_alloc: don't use __GFP_HARDWALL when migrating pages via alloc_contig*()David Hildenbrand
Patch series "mm: don't use __GFP_HARDWALL when migrating remote pages". __GFP_HARDWALL means that we will be respecting the cpuset of the caller when allocating a page. However, when we are migrating remote allocations (pages allocated from other context), the cpuset of the current context is irrelevant. For memory offlining + alloc_contig_*(), this is rather obvious. There might be other such page migration users, let's start with the obvious ones. This patch (of 2): We'll migrate pages allocated by other contexts; respecting the cpuset of the alloc_contig*() caller when allocating a migration target does not make sense. Drop the __GFP_HARDWALL. Note that in an ideal world, migration code could figure out the cpuset of the original context and take that into consideration. Link: https://lkml.kernel.org/r/20241205090508.2095225-1-david@redhat.com Link: https://lkml.kernel.org/r/20241205090508.2095225-2-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Suggested-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-13mm/page_alloc: forward the gfp flags from alloc_contig_range() to ↵David Hildenbrand
post_alloc_hook() In the __GFP_COMP case, we already pass the gfp_flags to prep_new_page()->post_alloc_hook(). However, in the !__GFP_COMP case, we essentially pass only hardcoded __GFP_MOVABLE to post_alloc_hook(), preventing some action modifiers from being effective.. Let's pass our now properly adjusted gfp flags there as well. This way, we can now support __GFP_ZERO for alloc_contig_*(). As a side effect, we now also support __GFP_SKIP_ZERO and__GFP_ZEROTAGS; but we'll keep the more special stuff (KASAN, NOLOCKDEP) disabled for now. It's worth noting that with __GFP_ZERO, we might unnecessarily zero pages when we have to release part of our range using free_contig_range() again. This can be optimized in the future, if ever required; the caller we'll be converting (powernv/memtrace) next won't trigger this. Link: https://lkml.kernel.org/r/20241203094732.200195-6-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Naveen N Rao <naveen@kernel.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-13mm/page_alloc: sort out the alloc_contig_range() gfp flags messDavid Hildenbrand
It's all a bit complicated for alloc_contig_range(). For example, we don't support many flags, so let's start bailing out on unsupported ones -- ignoring the placement hints, as we are already given the range to allocate. While we currently set cc.gfp_mask, in __alloc_contig_migrate_range() we simply create yet another GFP mask whereby we ignore the reclaim flags specify by the caller. That looks very inconsistent. Let's clean it up, constructing the gfp flags used for compaction/migration exactly once. Update the documentation of the gfp_mask parameter for alloc_contig_range() and alloc_contig_pages(). Link: https://lkml.kernel.org/r/20241203094732.200195-5-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Acked-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Naveen N Rao <naveen@kernel.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-13mm/page_alloc: make __alloc_contig_migrate_range() staticDavid Hildenbrand
The single user is in page_alloc.c. Link: https://lkml.kernel.org/r/20241203094732.200195-4-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Naveen N Rao <naveen@kernel.org> Cc: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-01-13mm/page_isolation: don't pass gfp flags to start_isolate_page_range()David Hildenbrand
The parameter is unused, so let's stop passing it. Link: https://lkml.kernel.org/r/20241203094732.200195-3-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Vishal Moola (Oracle) <vishal.moola@gmail.com> Cc: Christophe Leroy <christophe.leroy@csgroup.eu> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Naveen N Rao <naveen@kernel.org> Cc: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>