1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
.. SPDX-License-Identifier: GPL-2.0
Indirect Target Selection (ITS)
===============================
ITS is a vulnerability in some Intel CPUs that support Enhanced IBRS and were
released before Alder Lake. ITS may allow an attacker to control the prediction
of indirect branches and RETs located in the lower half of a cacheline.
ITS is assigned CVE-2024-28956 with a CVSS score of 4.7 (Medium).
Scope of Impact
---------------
- **eIBRS Guest/Host Isolation**: Indirect branches in KVM/kernel may still be
predicted with unintended target corresponding to a branch in the guest.
- **Intra-Mode BTI**: In-kernel training such as through cBPF or other native
gadgets.
- **Indirect Branch Prediction Barrier (IBPB)**: After an IBPB, indirect
branches may still be predicted with targets corresponding to direct branches
executed prior to the IBPB. This is fixed by the IPU 2025.1 microcode, which
should be available via distro updates. Alternatively microcode can be
obtained from Intel's github repository [#f1]_.
Affected CPUs
-------------
Below is the list of ITS affected CPUs [#f2]_ [#f3]_:
======================== ============ ==================== ===============
Common name Family_Model eIBRS Intra-mode BTI
Guest/Host Isolation
======================== ============ ==================== ===============
SKYLAKE_X (step >= 6) 06_55H Affected Affected
ICELAKE_X 06_6AH Not affected Affected
ICELAKE_D 06_6CH Not affected Affected
ICELAKE_L 06_7EH Not affected Affected
TIGERLAKE_L 06_8CH Not affected Affected
TIGERLAKE 06_8DH Not affected Affected
KABYLAKE_L (step >= 12) 06_8EH Affected Affected
KABYLAKE (step >= 13) 06_9EH Affected Affected
COMETLAKE 06_A5H Affected Affected
COMETLAKE_L 06_A6H Affected Affected
ROCKETLAKE 06_A7H Not affected Affected
======================== ============ ==================== ===============
- All affected CPUs enumerate Enhanced IBRS feature.
- IBPB isolation is affected on all ITS affected CPUs, and need a microcode
update for mitigation.
- None of the affected CPUs enumerate BHI_CTRL which was introduced in Golden
Cove (Alder Lake and Sapphire Rapids). This can help guests to determine the
host's affected status.
- Intel Atom CPUs are not affected by ITS.
Mitigation
----------
As only the indirect branches and RETs that have their last byte of instruction
in the lower half of the cacheline are vulnerable to ITS, the basic idea behind
the mitigation is to not allow indirect branches in the lower half.
This is achieved by relying on existing retpoline support in the kernel, and in
compilers. ITS-vulnerable retpoline sites are runtime patched to point to newly
added ITS-safe thunks. These safe thunks consists of indirect branch in the
second half of the cacheline. Not all retpoline sites are patched to thunks, if
a retpoline site is evaluated to be ITS-safe, it is replaced with an inline
indirect branch.
Dynamic thunks
~~~~~~~~~~~~~~
From a dynamically allocated pool of safe-thunks, each vulnerable site is
replaced with a new thunk, such that they get a unique address. This could
improve the branch prediction accuracy. Also, it is a defense-in-depth measure
against aliasing.
Note, for simplicity, indirect branches in eBPF programs are always replaced
with a jump to a static thunk in __x86_indirect_its_thunk_array. If required,
in future this can be changed to use dynamic thunks.
All vulnerable RETs are replaced with a static thunk, they do not use dynamic
thunks. This is because RETs get their prediction from RSB mostly that does not
depend on source address. RETs that underflow RSB may benefit from dynamic
thunks. But, RETs significantly outnumber indirect branches, and any benefit
from a unique source address could be outweighed by the increased icache
footprint and iTLB pressure.
Retpoline
~~~~~~~~~
Retpoline sequence also mitigates ITS-unsafe indirect branches. For this
reason, when retpoline is enabled, ITS mitigation only relocates the RETs to
safe thunks. Unless user requested the RSB-stuffing mitigation.
RSB Stuffing
~~~~~~~~~~~~
RSB-stuffing via Call Depth Tracking is a mitigation for Retbleed RSB-underflow
attacks. And it also mitigates RETs that are vulnerable to ITS.
Mitigation in guests
^^^^^^^^^^^^^^^^^^^^
All guests deploy ITS mitigation by default, irrespective of eIBRS enumeration
and Family/Model of the guest. This is because eIBRS feature could be hidden
from a guest. One exception to this is when a guest enumerates BHI_DIS_S, which
indicates that the guest is running on an unaffected host.
To prevent guests from unnecessarily deploying the mitigation on unaffected
platforms, Intel has defined ITS_NO bit(62) in MSR IA32_ARCH_CAPABILITIES. When
a guest sees this bit set, it should not enumerate the ITS bug. Note, this bit
is not set by any hardware, but is **intended for VMMs to synthesize** it for
guests as per the host's affected status.
Mitigation options
^^^^^^^^^^^^^^^^^^
The ITS mitigation can be controlled using the "indirect_target_selection"
kernel parameter. The available options are:
======== ===================================================================
on (default) Deploy the "Aligned branch/return thunks" mitigation.
If spectre_v2 mitigation enables retpoline, aligned-thunks are only
deployed for the affected RET instructions. Retpoline mitigates
indirect branches.
off Disable ITS mitigation.
vmexit Equivalent to "=on" if the CPU is affected by guest/host isolation
part of ITS. Otherwise, mitigation is not deployed. This option is
useful when host userspace is not in the threat model, and only
attacks from guest to host are considered.
stuff Deploy RSB-fill mitigation when retpoline is also deployed.
Otherwise, deploy the default mitigation. When retpoline mitigation
is enabled, RSB-stuffing via Call-Depth-Tracking also mitigates
ITS.
force Force the ITS bug and deploy the default mitigation.
======== ===================================================================
Sysfs reporting
---------------
The sysfs file showing ITS mitigation status is:
/sys/devices/system/cpu/vulnerabilities/indirect_target_selection
Note, microcode mitigation status is not reported in this file.
The possible values in this file are:
.. list-table::
* - Not affected
- The processor is not vulnerable.
* - Vulnerable
- System is vulnerable and no mitigation has been applied.
* - Vulnerable, KVM: Not affected
- System is vulnerable to intra-mode BTI, but not affected by eIBRS
guest/host isolation.
* - Mitigation: Aligned branch/return thunks
- The mitigation is enabled, affected indirect branches and RETs are
relocated to safe thunks.
* - Mitigation: Retpolines, Stuffing RSB
- The mitigation is enabled using retpoline and RSB stuffing.
References
----------
.. [#f1] Microcode repository - https://github.com/intel/Intel-Linux-Processor-Microcode-Data-Files
.. [#f2] Affected Processors list - https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
.. [#f3] Affected Processors list (machine readable) - https://github.com/intel/Intel-affected-processor-list
|