1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2020 Western Digital Corporation or its affiliates.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/perf_event.h>
#include <linux/irq.h>
#include <linux/stringify.h>
#include <asm/processor.h>
#include <asm/ptrace.h>
#include <asm/csr.h>
#include <asm/entry-common.h>
#include <asm/hwprobe.h>
#include <asm/cpufeature.h>
#include <asm/sbi.h>
#include <asm/vector.h>
#include <asm/insn.h>
#ifdef CONFIG_FPU
#define FP_GET_RD(insn) (insn >> 7 & 0x1F)
extern void put_f32_reg(unsigned long fp_reg, unsigned long value);
static int set_f32_rd(unsigned long insn, struct pt_regs *regs,
unsigned long val)
{
unsigned long fp_reg = FP_GET_RD(insn);
put_f32_reg(fp_reg, val);
regs->status |= SR_FS_DIRTY;
return 0;
}
extern void put_f64_reg(unsigned long fp_reg, unsigned long value);
static int set_f64_rd(unsigned long insn, struct pt_regs *regs, u64 val)
{
unsigned long fp_reg = FP_GET_RD(insn);
unsigned long value;
#if __riscv_xlen == 32
value = (unsigned long) &val;
#else
value = val;
#endif
put_f64_reg(fp_reg, value);
regs->status |= SR_FS_DIRTY;
return 0;
}
#if __riscv_xlen == 32
extern void get_f64_reg(unsigned long fp_reg, u64 *value);
static u64 get_f64_rs(unsigned long insn, u8 fp_reg_offset,
struct pt_regs *regs)
{
unsigned long fp_reg = (insn >> fp_reg_offset) & 0x1F;
u64 val;
get_f64_reg(fp_reg, &val);
regs->status |= SR_FS_DIRTY;
return val;
}
#else
extern unsigned long get_f64_reg(unsigned long fp_reg);
static unsigned long get_f64_rs(unsigned long insn, u8 fp_reg_offset,
struct pt_regs *regs)
{
unsigned long fp_reg = (insn >> fp_reg_offset) & 0x1F;
unsigned long val;
val = get_f64_reg(fp_reg);
regs->status |= SR_FS_DIRTY;
return val;
}
#endif
extern unsigned long get_f32_reg(unsigned long fp_reg);
static unsigned long get_f32_rs(unsigned long insn, u8 fp_reg_offset,
struct pt_regs *regs)
{
unsigned long fp_reg = (insn >> fp_reg_offset) & 0x1F;
unsigned long val;
val = get_f32_reg(fp_reg);
regs->status |= SR_FS_DIRTY;
return val;
}
#else /* CONFIG_FPU */
static void set_f32_rd(unsigned long insn, struct pt_regs *regs,
unsigned long val) {}
static void set_f64_rd(unsigned long insn, struct pt_regs *regs, u64 val) {}
static unsigned long get_f64_rs(unsigned long insn, u8 fp_reg_offset,
struct pt_regs *regs)
{
return 0;
}
static unsigned long get_f32_rs(unsigned long insn, u8 fp_reg_offset,
struct pt_regs *regs)
{
return 0;
}
#endif
#define GET_F64_RS2(insn, regs) (get_f64_rs(insn, 20, regs))
#define GET_F64_RS2C(insn, regs) (get_f64_rs(insn, 2, regs))
#define GET_F64_RS2S(insn, regs) (get_f64_rs(RVC_RS2S(insn), 0, regs))
#define GET_F32_RS2(insn, regs) (get_f32_rs(insn, 20, regs))
#define GET_F32_RS2C(insn, regs) (get_f32_rs(insn, 2, regs))
#define GET_F32_RS2S(insn, regs) (get_f32_rs(RVC_RS2S(insn), 0, regs))
#define __read_insn(regs, insn, insn_addr, type) \
({ \
int __ret; \
\
if (user_mode(regs)) { \
__ret = get_user(insn, (type __user *) insn_addr); \
} else { \
insn = *(type *)insn_addr; \
__ret = 0; \
} \
\
__ret; \
})
static inline int get_insn(struct pt_regs *regs, ulong epc, ulong *r_insn)
{
ulong insn = 0;
if (epc & 0x2) {
ulong tmp = 0;
if (__read_insn(regs, insn, epc, u16))
return -EFAULT;
/* __get_user() uses regular "lw" which sign extend the loaded
* value make sure to clear higher order bits in case we "or" it
* below with the upper 16 bits half.
*/
insn &= GENMASK(15, 0);
if ((insn & __INSN_LENGTH_MASK) != __INSN_LENGTH_32) {
*r_insn = insn;
return 0;
}
epc += sizeof(u16);
if (__read_insn(regs, tmp, epc, u16))
return -EFAULT;
*r_insn = (tmp << 16) | insn;
return 0;
} else {
if (__read_insn(regs, insn, epc, u32))
return -EFAULT;
if ((insn & __INSN_LENGTH_MASK) == __INSN_LENGTH_32) {
*r_insn = insn;
return 0;
}
insn &= GENMASK(15, 0);
*r_insn = insn;
return 0;
}
}
union reg_data {
u8 data_bytes[8];
ulong data_ulong;
u64 data_u64;
};
/* sysctl hooks */
int unaligned_enabled __read_mostly = 1; /* Enabled by default */
#ifdef CONFIG_RISCV_VECTOR_MISALIGNED
static int handle_vector_misaligned_load(struct pt_regs *regs)
{
unsigned long epc = regs->epc;
unsigned long insn;
if (get_insn(regs, epc, &insn))
return -1;
/* Only return 0 when in check_vector_unaligned_access_emulated */
if (*this_cpu_ptr(&vector_misaligned_access) == RISCV_HWPROBE_MISALIGNED_VECTOR_UNKNOWN) {
*this_cpu_ptr(&vector_misaligned_access) = RISCV_HWPROBE_MISALIGNED_VECTOR_UNSUPPORTED;
regs->epc = epc + INSN_LEN(insn);
return 0;
}
/* If vector instruction we don't emulate it yet */
regs->epc = epc;
return -1;
}
#else
static int handle_vector_misaligned_load(struct pt_regs *regs)
{
return -1;
}
#endif
static int handle_scalar_misaligned_load(struct pt_regs *regs)
{
union reg_data val;
unsigned long epc = regs->epc;
unsigned long insn;
unsigned long addr = regs->badaddr;
int fp = 0, shift = 0, len = 0;
perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);
*this_cpu_ptr(&misaligned_access_speed) = RISCV_HWPROBE_MISALIGNED_SCALAR_EMULATED;
if (!unaligned_enabled)
return -1;
if (user_mode(regs) && (current->thread.align_ctl & PR_UNALIGN_SIGBUS))
return -1;
if (get_insn(regs, epc, &insn))
return -1;
regs->epc = 0;
if ((insn & INSN_MASK_LW) == INSN_MATCH_LW) {
len = 4;
shift = 8 * (sizeof(unsigned long) - len);
#if defined(CONFIG_64BIT)
} else if ((insn & INSN_MASK_LD) == INSN_MATCH_LD) {
len = 8;
shift = 8 * (sizeof(unsigned long) - len);
} else if ((insn & INSN_MASK_LWU) == INSN_MATCH_LWU) {
len = 4;
#endif
} else if ((insn & INSN_MASK_FLD) == INSN_MATCH_FLD) {
fp = 1;
len = 8;
} else if ((insn & INSN_MASK_FLW) == INSN_MATCH_FLW) {
fp = 1;
len = 4;
} else if ((insn & INSN_MASK_LH) == INSN_MATCH_LH) {
len = 2;
shift = 8 * (sizeof(unsigned long) - len);
} else if ((insn & INSN_MASK_LHU) == INSN_MATCH_LHU) {
len = 2;
#if defined(CONFIG_64BIT)
} else if ((insn & INSN_MASK_C_LD) == INSN_MATCH_C_LD) {
len = 8;
shift = 8 * (sizeof(unsigned long) - len);
insn = RVC_RS2S(insn) << SH_RD;
} else if ((insn & INSN_MASK_C_LDSP) == INSN_MATCH_C_LDSP &&
((insn >> SH_RD) & 0x1f)) {
len = 8;
shift = 8 * (sizeof(unsigned long) - len);
#endif
} else if ((insn & INSN_MASK_C_LW) == INSN_MATCH_C_LW) {
len = 4;
shift = 8 * (sizeof(unsigned long) - len);
insn = RVC_RS2S(insn) << SH_RD;
} else if ((insn & INSN_MASK_C_LWSP) == INSN_MATCH_C_LWSP &&
((insn >> SH_RD) & 0x1f)) {
len = 4;
shift = 8 * (sizeof(unsigned long) - len);
} else if ((insn & INSN_MASK_C_FLD) == INSN_MATCH_C_FLD) {
fp = 1;
len = 8;
insn = RVC_RS2S(insn) << SH_RD;
} else if ((insn & INSN_MASK_C_FLDSP) == INSN_MATCH_C_FLDSP) {
fp = 1;
len = 8;
#if defined(CONFIG_32BIT)
} else if ((insn & INSN_MASK_C_FLW) == INSN_MATCH_C_FLW) {
fp = 1;
len = 4;
insn = RVC_RS2S(insn) << SH_RD;
} else if ((insn & INSN_MASK_C_FLWSP) == INSN_MATCH_C_FLWSP) {
fp = 1;
len = 4;
#endif
} else if ((insn & INSN_MASK_C_LHU) == INSN_MATCH_C_LHU) {
len = 2;
insn = RVC_RS2S(insn) << SH_RD;
} else if ((insn & INSN_MASK_C_LH) == INSN_MATCH_C_LH) {
len = 2;
shift = 8 * (sizeof(ulong) - len);
insn = RVC_RS2S(insn) << SH_RD;
} else {
regs->epc = epc;
return -1;
}
if (!IS_ENABLED(CONFIG_FPU) && fp)
return -EOPNOTSUPP;
val.data_u64 = 0;
if (user_mode(regs)) {
if (copy_from_user(&val, (u8 __user *)addr, len))
return -1;
} else {
memcpy(&val, (u8 *)addr, len);
}
if (!fp)
SET_RD(insn, regs, (long)(val.data_ulong << shift) >> shift);
else if (len == 8)
set_f64_rd(insn, regs, val.data_u64);
else
set_f32_rd(insn, regs, val.data_ulong);
regs->epc = epc + INSN_LEN(insn);
return 0;
}
static int handle_scalar_misaligned_store(struct pt_regs *regs)
{
union reg_data val;
unsigned long epc = regs->epc;
unsigned long insn;
unsigned long addr = regs->badaddr;
int len = 0, fp = 0;
perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);
if (!unaligned_enabled)
return -1;
if (user_mode(regs) && (current->thread.align_ctl & PR_UNALIGN_SIGBUS))
return -1;
if (get_insn(regs, epc, &insn))
return -1;
regs->epc = 0;
val.data_ulong = GET_RS2(insn, regs);
if ((insn & INSN_MASK_SW) == INSN_MATCH_SW) {
len = 4;
#if defined(CONFIG_64BIT)
} else if ((insn & INSN_MASK_SD) == INSN_MATCH_SD) {
len = 8;
#endif
} else if ((insn & INSN_MASK_FSD) == INSN_MATCH_FSD) {
fp = 1;
len = 8;
val.data_u64 = GET_F64_RS2(insn, regs);
} else if ((insn & INSN_MASK_FSW) == INSN_MATCH_FSW) {
fp = 1;
len = 4;
val.data_ulong = GET_F32_RS2(insn, regs);
} else if ((insn & INSN_MASK_SH) == INSN_MATCH_SH) {
len = 2;
#if defined(CONFIG_64BIT)
} else if ((insn & INSN_MASK_C_SD) == INSN_MATCH_C_SD) {
len = 8;
val.data_ulong = GET_RS2S(insn, regs);
} else if ((insn & INSN_MASK_C_SDSP) == INSN_MATCH_C_SDSP) {
len = 8;
val.data_ulong = GET_RS2C(insn, regs);
#endif
} else if ((insn & INSN_MASK_C_SW) == INSN_MATCH_C_SW) {
len = 4;
val.data_ulong = GET_RS2S(insn, regs);
} else if ((insn & INSN_MASK_C_SWSP) == INSN_MATCH_C_SWSP) {
len = 4;
val.data_ulong = GET_RS2C(insn, regs);
} else if ((insn & INSN_MASK_C_FSD) == INSN_MATCH_C_FSD) {
fp = 1;
len = 8;
val.data_u64 = GET_F64_RS2S(insn, regs);
} else if ((insn & INSN_MASK_C_FSDSP) == INSN_MATCH_C_FSDSP) {
fp = 1;
len = 8;
val.data_u64 = GET_F64_RS2C(insn, regs);
#if !defined(CONFIG_64BIT)
} else if ((insn & INSN_MASK_C_FSW) == INSN_MATCH_C_FSW) {
fp = 1;
len = 4;
val.data_ulong = GET_F32_RS2S(insn, regs);
} else if ((insn & INSN_MASK_C_FSWSP) == INSN_MATCH_C_FSWSP) {
fp = 1;
len = 4;
val.data_ulong = GET_F32_RS2C(insn, regs);
#endif
} else if ((insn & INSN_MASK_C_SH) == INSN_MATCH_C_SH) {
len = 2;
val.data_ulong = GET_RS2S(insn, regs);
} else {
regs->epc = epc;
return -1;
}
if (!IS_ENABLED(CONFIG_FPU) && fp)
return -EOPNOTSUPP;
if (user_mode(regs)) {
if (copy_to_user((u8 __user *)addr, &val, len))
return -1;
} else {
memcpy((u8 *)addr, &val, len);
}
regs->epc = epc + INSN_LEN(insn);
return 0;
}
int handle_misaligned_load(struct pt_regs *regs)
{
unsigned long epc = regs->epc;
unsigned long insn;
if (IS_ENABLED(CONFIG_RISCV_VECTOR_MISALIGNED)) {
if (get_insn(regs, epc, &insn))
return -1;
if (insn_is_vector(insn))
return handle_vector_misaligned_load(regs);
}
if (IS_ENABLED(CONFIG_RISCV_SCALAR_MISALIGNED))
return handle_scalar_misaligned_load(regs);
return -1;
}
int handle_misaligned_store(struct pt_regs *regs)
{
if (IS_ENABLED(CONFIG_RISCV_SCALAR_MISALIGNED))
return handle_scalar_misaligned_store(regs);
return -1;
}
#ifdef CONFIG_RISCV_VECTOR_MISALIGNED
void check_vector_unaligned_access_emulated(struct work_struct *work __always_unused)
{
long *mas_ptr = this_cpu_ptr(&vector_misaligned_access);
unsigned long tmp_var;
*mas_ptr = RISCV_HWPROBE_MISALIGNED_VECTOR_UNKNOWN;
kernel_vector_begin();
/*
* In pre-13.0.0 versions of GCC, vector registers cannot appear in
* the clobber list. This inline asm clobbers v0, but since we do not
* currently build the kernel with V enabled, the v0 clobber arg is not
* needed (as the compiler will not emit vector code itself). If the kernel
* is changed to build with V enabled, the clobber arg will need to be
* added here.
*/
__asm__ __volatile__ (
".balign 4\n\t"
".option push\n\t"
".option arch, +zve32x\n\t"
" vsetivli zero, 1, e16, m1, ta, ma\n\t" // Vectors of 16b
" vle16.v v0, (%[ptr])\n\t" // Load bytes
".option pop\n\t"
: : [ptr] "r" ((u8 *)&tmp_var + 1));
kernel_vector_end();
}
bool __init check_vector_unaligned_access_emulated_all_cpus(void)
{
int cpu;
/*
* While being documented as very slow, schedule_on_each_cpu() is used since
* kernel_vector_begin() expects irqs to be enabled or it will panic()
*/
schedule_on_each_cpu(check_vector_unaligned_access_emulated);
for_each_online_cpu(cpu)
if (per_cpu(vector_misaligned_access, cpu)
== RISCV_HWPROBE_MISALIGNED_VECTOR_UNKNOWN)
return false;
return true;
}
#else
bool __init check_vector_unaligned_access_emulated_all_cpus(void)
{
return false;
}
#endif
static bool all_cpus_unaligned_scalar_access_emulated(void)
{
int cpu;
for_each_online_cpu(cpu)
if (per_cpu(misaligned_access_speed, cpu) !=
RISCV_HWPROBE_MISALIGNED_SCALAR_EMULATED)
return false;
return true;
}
#ifdef CONFIG_RISCV_SCALAR_MISALIGNED
static bool unaligned_ctl __read_mostly;
static void check_unaligned_access_emulated(void *arg __always_unused)
{
int cpu = smp_processor_id();
long *mas_ptr = per_cpu_ptr(&misaligned_access_speed, cpu);
unsigned long tmp_var, tmp_val;
*mas_ptr = RISCV_HWPROBE_MISALIGNED_SCALAR_UNKNOWN;
__asm__ __volatile__ (
" "REG_L" %[tmp], 1(%[ptr])\n"
: [tmp] "=r" (tmp_val) : [ptr] "r" (&tmp_var) : "memory");
}
static int cpu_online_check_unaligned_access_emulated(unsigned int cpu)
{
long *mas_ptr = per_cpu_ptr(&misaligned_access_speed, cpu);
check_unaligned_access_emulated(NULL);
/*
* If unaligned_ctl is already set, this means that we detected that all
* CPUS uses emulated misaligned access at boot time. If that changed
* when hotplugging the new cpu, this is something we don't handle.
*/
if (unlikely(unaligned_ctl && (*mas_ptr != RISCV_HWPROBE_MISALIGNED_SCALAR_EMULATED))) {
pr_crit("CPU misaligned accesses non homogeneous (expected all emulated)\n");
return -EINVAL;
}
return 0;
}
bool __init check_unaligned_access_emulated_all_cpus(void)
{
/*
* We can only support PR_UNALIGN controls if all CPUs have misaligned
* accesses emulated since tasks requesting such control can run on any
* CPU.
*/
on_each_cpu(check_unaligned_access_emulated, NULL, 1);
if (!all_cpus_unaligned_scalar_access_emulated())
return false;
unaligned_ctl = true;
return true;
}
bool unaligned_ctl_available(void)
{
return unaligned_ctl;
}
#else
bool __init check_unaligned_access_emulated_all_cpus(void)
{
return false;
}
static int cpu_online_check_unaligned_access_emulated(unsigned int cpu)
{
return 0;
}
#endif
static bool misaligned_traps_delegated;
#ifdef CONFIG_RISCV_SBI
static int cpu_online_sbi_unaligned_setup(unsigned int cpu)
{
if (sbi_fwft_set(SBI_FWFT_MISALIGNED_EXC_DELEG, 1, 0) &&
misaligned_traps_delegated) {
pr_crit("Misaligned trap delegation non homogeneous (expected delegated)");
return -EINVAL;
}
return 0;
}
void __init unaligned_access_init(void)
{
int ret;
ret = sbi_fwft_set_online_cpus(SBI_FWFT_MISALIGNED_EXC_DELEG, 1, 0);
if (ret)
return;
misaligned_traps_delegated = true;
pr_info("SBI misaligned access exception delegation ok\n");
/*
* Note that we don't have to take any specific action here, if
* the delegation is successful, then
* check_unaligned_access_emulated() will verify that indeed the
* platform traps on misaligned accesses.
*/
}
#else
void __init unaligned_access_init(void) {}
static int cpu_online_sbi_unaligned_setup(unsigned int cpu __always_unused)
{
return 0;
}
#endif
int cpu_online_unaligned_access_init(unsigned int cpu)
{
int ret;
ret = cpu_online_sbi_unaligned_setup(cpu);
if (ret)
return ret;
return cpu_online_check_unaligned_access_emulated(cpu);
}
bool misaligned_traps_can_delegate(void)
{
/*
* Either we successfully requested misaligned traps delegation for all
* CPUs, or the SBI does not implement the FWFT extension but delegated
* the exception by default.
*/
return misaligned_traps_delegated ||
all_cpus_unaligned_scalar_access_emulated();
}
EXPORT_SYMBOL_GPL(misaligned_traps_can_delegate);
|