1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2025 Ant Group
* Author: Tiwei Bie <tiwei.btw@antgroup.com>
*
* Based on the previous implementation in TT mode
* Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
*/
#include <linux/sched.h>
#include <linux/sched/task.h>
#include <linux/sched/task_stack.h>
#include <linux/module.h>
#include <linux/processor.h>
#include <linux/threads.h>
#include <linux/cpu.h>
#include <linux/hardirq.h>
#include <linux/smp.h>
#include <linux/smp-internal.h>
#include <init.h>
#include <kern.h>
#include <os.h>
#include <smp.h>
enum {
UML_IPI_RES = 0,
UML_IPI_CALL_SINGLE,
UML_IPI_CALL,
UML_IPI_STOP,
};
void arch_smp_send_reschedule(int cpu)
{
os_send_ipi(cpu, UML_IPI_RES);
}
void arch_send_call_function_single_ipi(int cpu)
{
os_send_ipi(cpu, UML_IPI_CALL_SINGLE);
}
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
{
int cpu;
for_each_cpu(cpu, mask)
os_send_ipi(cpu, UML_IPI_CALL);
}
void smp_send_stop(void)
{
int cpu, me = smp_processor_id();
for_each_online_cpu(cpu) {
if (cpu == me)
continue;
os_send_ipi(cpu, UML_IPI_STOP);
}
}
static void ipi_handler(int vector, struct uml_pt_regs *regs)
{
struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
int cpu = raw_smp_processor_id();
irq_enter();
if (current->mm)
os_alarm_process(current->mm->context.id.pid);
switch (vector) {
case UML_IPI_RES:
inc_irq_stat(irq_resched_count);
scheduler_ipi();
break;
case UML_IPI_CALL_SINGLE:
inc_irq_stat(irq_call_count);
generic_smp_call_function_single_interrupt();
break;
case UML_IPI_CALL:
inc_irq_stat(irq_call_count);
generic_smp_call_function_interrupt();
break;
case UML_IPI_STOP:
set_cpu_online(cpu, false);
while (1)
pause();
break;
default:
pr_err("CPU#%d received unknown IPI (vector=%d)!\n", cpu, vector);
break;
}
irq_exit();
set_irq_regs(old_regs);
}
void uml_ipi_handler(int vector)
{
struct uml_pt_regs r = { .is_user = 0 };
preempt_disable();
ipi_handler(vector, &r);
preempt_enable();
}
/* AP states used only during CPU startup */
enum {
UML_CPU_PAUSED = 0,
UML_CPU_RUNNING,
};
static int cpu_states[NR_CPUS];
static int start_secondary(void *unused)
{
int err, cpu = raw_smp_processor_id();
notify_cpu_starting(cpu);
set_cpu_online(cpu, true);
err = um_setup_timer();
if (err)
panic("CPU#%d failed to setup timer, err = %d", cpu, err);
local_irq_enable();
cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
return 0;
}
void uml_start_secondary(void *opaque)
{
int cpu = raw_smp_processor_id();
struct mm_struct *mm = &init_mm;
struct task_struct *idle;
stack_protections((unsigned long) &cpu_irqstacks[cpu]);
set_sigstack(&cpu_irqstacks[cpu], THREAD_SIZE);
set_cpu_present(cpu, true);
os_futex_wait(&cpu_states[cpu], UML_CPU_PAUSED);
smp_rmb(); /* paired with smp_wmb() in __cpu_up() */
idle = cpu_tasks[cpu];
idle->thread_info.cpu = cpu;
mmgrab(mm);
idle->active_mm = mm;
idle->thread.request.thread.proc = start_secondary;
idle->thread.request.thread.arg = NULL;
new_thread(task_stack_page(idle), &idle->thread.switch_buf,
new_thread_handler);
os_start_secondary(opaque, &idle->thread.switch_buf);
}
void __init smp_prepare_cpus(unsigned int max_cpus)
{
int err, cpu, me = smp_processor_id();
unsigned long deadline;
os_init_smp();
for_each_possible_cpu(cpu) {
if (cpu == me)
continue;
pr_debug("Booting processor %d...\n", cpu);
err = os_start_cpu_thread(cpu);
if (err) {
pr_crit("CPU#%d failed to start cpu thread, err = %d",
cpu, err);
continue;
}
deadline = jiffies + msecs_to_jiffies(1000);
spin_until_cond(cpu_present(cpu) ||
time_is_before_jiffies(deadline));
if (!cpu_present(cpu))
pr_crit("CPU#%d failed to boot\n", cpu);
}
}
int __cpu_up(unsigned int cpu, struct task_struct *tidle)
{
cpu_tasks[cpu] = tidle;
smp_wmb(); /* paired with smp_rmb() in uml_start_secondary() */
cpu_states[cpu] = UML_CPU_RUNNING;
os_futex_wake(&cpu_states[cpu]);
spin_until_cond(cpu_online(cpu));
return 0;
}
void __init smp_cpus_done(unsigned int max_cpus)
{
}
/* Set in uml_ncpus_setup */
int uml_ncpus = 1;
void __init prefill_possible_map(void)
{
int cpu;
for (cpu = 0; cpu < uml_ncpus; cpu++)
set_cpu_possible(cpu, true);
for (; cpu < NR_CPUS; cpu++)
set_cpu_possible(cpu, false);
}
static int __init uml_ncpus_setup(char *line, int *add)
{
*add = 0;
if (kstrtoint(line, 10, ¨_ncpus)) {
os_warn("%s: Couldn't parse '%s'\n", __func__, line);
return -1;
}
uml_ncpus = clamp(uml_ncpus, 1, NR_CPUS);
return 0;
}
__uml_setup("ncpus=", uml_ncpus_setup,
"ncpus=<# of desired CPUs>\n"
" This tells UML how many virtual processors to start. The maximum\n"
" number of supported virtual processors can be obtained by querying\n"
" the CONFIG_NR_CPUS option using --showconfig.\n\n"
);
EXPORT_SYMBOL(uml_curr_cpu);
|