summaryrefslogtreecommitdiff
path: root/arch/x86/kernel/cpu/cacheinfo.c
blob: adfa7e8bb865571cbcfc20c471be8f8bc7183e63 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
// SPDX-License-Identifier: GPL-2.0
/*
 * x86 CPU caches detection and configuration
 *
 * Previous changes
 * - Venkatesh Pallipadi:		Cache identification through CPUID(0x4)
 * - Ashok Raj <ashok.raj@intel.com>:	Work with CPU hotplug infrastructure
 * - Andi Kleen / Andreas Herrmann:	CPUID(0x4) emulation on AMD
 */

#include <linux/cacheinfo.h>
#include <linux/cpu.h>
#include <linux/cpuhotplug.h>
#include <linux/stop_machine.h>

#include <asm/amd/nb.h>
#include <asm/cacheinfo.h>
#include <asm/cpufeature.h>
#include <asm/cpuid/api.h>
#include <asm/mtrr.h>
#include <asm/smp.h>
#include <asm/tlbflush.h>

#include "cpu.h"

/* Shared last level cache maps */
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);

/* Shared L2 cache maps */
DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_l2c_shared_map);

static cpumask_var_t cpu_cacheinfo_mask;

/* Kernel controls MTRR and/or PAT MSRs. */
unsigned int memory_caching_control __ro_after_init;

enum _cache_type {
	CTYPE_NULL	= 0,
	CTYPE_DATA	= 1,
	CTYPE_INST	= 2,
	CTYPE_UNIFIED	= 3
};

union _cpuid4_leaf_eax {
	struct {
		enum _cache_type	type			:5;
		unsigned int		level			:3;
		unsigned int		is_self_initializing	:1;
		unsigned int		is_fully_associative	:1;
		unsigned int		reserved		:4;
		unsigned int		num_threads_sharing	:12;
		unsigned int		num_cores_on_die	:6;
	} split;
	u32 full;
};

union _cpuid4_leaf_ebx {
	struct {
		unsigned int		coherency_line_size	:12;
		unsigned int		physical_line_partition	:10;
		unsigned int		ways_of_associativity	:10;
	} split;
	u32 full;
};

union _cpuid4_leaf_ecx {
	struct {
		unsigned int		number_of_sets		:32;
	} split;
	u32 full;
};

struct _cpuid4_info {
	union _cpuid4_leaf_eax eax;
	union _cpuid4_leaf_ebx ebx;
	union _cpuid4_leaf_ecx ecx;
	unsigned int id;
	unsigned long size;
};

/* Map CPUID(0x4) EAX.cache_type to <linux/cacheinfo.h> types */
static const enum cache_type cache_type_map[] = {
	[CTYPE_NULL]	= CACHE_TYPE_NOCACHE,
	[CTYPE_DATA]	= CACHE_TYPE_DATA,
	[CTYPE_INST]	= CACHE_TYPE_INST,
	[CTYPE_UNIFIED] = CACHE_TYPE_UNIFIED,
};

/*
 * Fallback AMD CPUID(0x4) emulation
 * AMD CPUs with TOPOEXT can just use CPUID(0x8000001d)
 *
 * @AMD_L2_L3_INVALID_ASSOC: cache info for the respective L2/L3 cache should
 * be determined from CPUID(0x8000001d) instead of CPUID(0x80000006).
 */

#define AMD_CPUID4_FULLY_ASSOCIATIVE	0xffff
#define AMD_L2_L3_INVALID_ASSOC		0x9

union l1_cache {
	struct {
		unsigned line_size	:8;
		unsigned lines_per_tag	:8;
		unsigned assoc		:8;
		unsigned size_in_kb	:8;
	};
	unsigned int val;
};

union l2_cache {
	struct {
		unsigned line_size	:8;
		unsigned lines_per_tag	:4;
		unsigned assoc		:4;
		unsigned size_in_kb	:16;
	};
	unsigned int val;
};

union l3_cache {
	struct {
		unsigned line_size	:8;
		unsigned lines_per_tag	:4;
		unsigned assoc		:4;
		unsigned res		:2;
		unsigned size_encoded	:14;
	};
	unsigned int val;
};

/* L2/L3 associativity mapping */
static const unsigned short assocs[] = {
	[1]		= 1,
	[2]		= 2,
	[3]		= 3,
	[4]		= 4,
	[5]		= 6,
	[6]		= 8,
	[8]		= 16,
	[0xa]		= 32,
	[0xb]		= 48,
	[0xc]		= 64,
	[0xd]		= 96,
	[0xe]		= 128,
	[0xf]		= AMD_CPUID4_FULLY_ASSOCIATIVE
};

static const unsigned char levels[] = { 1, 1, 2, 3 };
static const unsigned char types[]  = { 1, 2, 3, 3 };

static void legacy_amd_cpuid4(int index, union _cpuid4_leaf_eax *eax,
			      union _cpuid4_leaf_ebx *ebx, union _cpuid4_leaf_ecx *ecx)
{
	unsigned int dummy, line_size, lines_per_tag, assoc, size_in_kb;
	union l1_cache l1i, l1d, *l1;
	union l2_cache l2;
	union l3_cache l3;

	eax->full = 0;
	ebx->full = 0;
	ecx->full = 0;

	cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
	cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val);

	l1 = &l1d;
	switch (index) {
	case 1:
		l1 = &l1i;
		fallthrough;
	case 0:
		if (!l1->val)
			return;

		assoc		= (l1->assoc == 0xff) ? AMD_CPUID4_FULLY_ASSOCIATIVE : l1->assoc;
		line_size	= l1->line_size;
		lines_per_tag	= l1->lines_per_tag;
		size_in_kb	= l1->size_in_kb;
		break;
	case 2:
		if (!l2.assoc || l2.assoc == AMD_L2_L3_INVALID_ASSOC)
			return;

		/* Use x86_cache_size as it might have K7 errata fixes */
		assoc		= assocs[l2.assoc];
		line_size	= l2.line_size;
		lines_per_tag	= l2.lines_per_tag;
		size_in_kb	= __this_cpu_read(cpu_info.x86_cache_size);
		break;
	case 3:
		if (!l3.assoc || l3.assoc == AMD_L2_L3_INVALID_ASSOC)
			return;

		assoc		= assocs[l3.assoc];
		line_size	= l3.line_size;
		lines_per_tag	= l3.lines_per_tag;
		size_in_kb	= l3.size_encoded * 512;
		if (boot_cpu_has(X86_FEATURE_AMD_DCM)) {
			size_in_kb	= size_in_kb >> 1;
			assoc		= assoc >> 1;
		}
		break;
	default:
		return;
	}

	eax->split.is_self_initializing		= 1;
	eax->split.type				= types[index];
	eax->split.level			= levels[index];
	eax->split.num_threads_sharing		= 0;
	eax->split.num_cores_on_die		= topology_num_cores_per_package();

	if (assoc == AMD_CPUID4_FULLY_ASSOCIATIVE)
		eax->split.is_fully_associative = 1;

	ebx->split.coherency_line_size		= line_size - 1;
	ebx->split.ways_of_associativity	= assoc - 1;
	ebx->split.physical_line_partition	= lines_per_tag - 1;
	ecx->split.number_of_sets		= (size_in_kb * 1024) / line_size /
		(ebx->split.ways_of_associativity + 1) - 1;
}

static int cpuid4_info_fill_done(struct _cpuid4_info *id4, union _cpuid4_leaf_eax eax,
				 union _cpuid4_leaf_ebx ebx, union _cpuid4_leaf_ecx ecx)
{
	if (eax.split.type == CTYPE_NULL)
		return -EIO;

	id4->eax = eax;
	id4->ebx = ebx;
	id4->ecx = ecx;
	id4->size = (ecx.split.number_of_sets          + 1) *
		    (ebx.split.coherency_line_size     + 1) *
		    (ebx.split.physical_line_partition + 1) *
		    (ebx.split.ways_of_associativity   + 1);

	return 0;
}

static int amd_fill_cpuid4_info(int index, struct _cpuid4_info *id4)
{
	union _cpuid4_leaf_eax eax;
	union _cpuid4_leaf_ebx ebx;
	union _cpuid4_leaf_ecx ecx;
	u32 ignored;

	if (boot_cpu_has(X86_FEATURE_TOPOEXT) || boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
		cpuid_count(0x8000001d, index, &eax.full, &ebx.full, &ecx.full, &ignored);
	else
		legacy_amd_cpuid4(index, &eax, &ebx, &ecx);

	return cpuid4_info_fill_done(id4, eax, ebx, ecx);
}

static int intel_fill_cpuid4_info(int index, struct _cpuid4_info *id4)
{
	union _cpuid4_leaf_eax eax;
	union _cpuid4_leaf_ebx ebx;
	union _cpuid4_leaf_ecx ecx;
	u32 ignored;

	cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &ignored);

	return cpuid4_info_fill_done(id4, eax, ebx, ecx);
}

static int fill_cpuid4_info(int index, struct _cpuid4_info *id4)
{
	u8 cpu_vendor = boot_cpu_data.x86_vendor;

	return (cpu_vendor == X86_VENDOR_AMD || cpu_vendor == X86_VENDOR_HYGON) ?
		amd_fill_cpuid4_info(index, id4) :
		intel_fill_cpuid4_info(index, id4);
}

static int find_num_cache_leaves(struct cpuinfo_x86 *c)
{
	unsigned int eax, ebx, ecx, edx, op;
	union _cpuid4_leaf_eax cache_eax;
	int i = -1;

	/* Do a CPUID(op) loop to calculate num_cache_leaves */
	op = (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) ? 0x8000001d : 4;
	do {
		++i;
		cpuid_count(op, i, &eax, &ebx, &ecx, &edx);
		cache_eax.full = eax;
	} while (cache_eax.split.type != CTYPE_NULL);
	return i;
}

/*
 * AMD/Hygon CPUs may have multiple LLCs if L3 caches exist.
 */

void cacheinfo_amd_init_llc_id(struct cpuinfo_x86 *c, u16 die_id)
{
	if (!cpuid_amd_hygon_has_l3_cache())
		return;

	if (c->x86 < 0x17) {
		/* Pre-Zen: LLC is at the node level */
		c->topo.llc_id = die_id;
	} else if (c->x86 == 0x17 && c->x86_model <= 0x1F) {
		/*
		 * Family 17h up to 1F models: LLC is at the core
		 * complex level.  Core complex ID is ApicId[3].
		 */
		c->topo.llc_id = c->topo.apicid >> 3;
	} else {
		/*
		 * Newer families: LLC ID is calculated from the number
		 * of threads sharing the L3 cache.
		 */
		u32 eax, ebx, ecx, edx, num_sharing_cache = 0;
		u32 llc_index = find_num_cache_leaves(c) - 1;

		cpuid_count(0x8000001d, llc_index, &eax, &ebx, &ecx, &edx);
		if (eax)
			num_sharing_cache = ((eax >> 14) & 0xfff) + 1;

		if (num_sharing_cache) {
			int index_msb = get_count_order(num_sharing_cache);

			c->topo.llc_id = c->topo.apicid >> index_msb;
		}
	}
}

void cacheinfo_hygon_init_llc_id(struct cpuinfo_x86 *c)
{
	if (!cpuid_amd_hygon_has_l3_cache())
		return;

	/*
	 * Hygons are similar to AMD Family 17h up to 1F models: LLC is
	 * at the core complex level.  Core complex ID is ApicId[3].
	 */
	c->topo.llc_id = c->topo.apicid >> 3;
}

void init_amd_cacheinfo(struct cpuinfo_x86 *c)
{
	struct cpu_cacheinfo *ci = get_cpu_cacheinfo(c->cpu_index);

	if (boot_cpu_has(X86_FEATURE_TOPOEXT))
		ci->num_leaves = find_num_cache_leaves(c);
	else if (c->extended_cpuid_level >= 0x80000006)
		ci->num_leaves = (cpuid_edx(0x80000006) & 0xf000) ? 4 : 3;
}

void init_hygon_cacheinfo(struct cpuinfo_x86 *c)
{
	struct cpu_cacheinfo *ci = get_cpu_cacheinfo(c->cpu_index);

	ci->num_leaves = find_num_cache_leaves(c);
}

static void intel_cacheinfo_done(struct cpuinfo_x86 *c, unsigned int l3,
				 unsigned int l2, unsigned int l1i, unsigned int l1d)
{
	/*
	 * If llc_id is still unset, then cpuid_level < 4, which implies
	 * that the only possibility left is SMT.  Since CPUID(0x2) doesn't
	 * specify any shared caches and SMT shares all caches, we can
	 * unconditionally set LLC ID to the package ID so that all
	 * threads share it.
	 */
	if (c->topo.llc_id == BAD_APICID)
		c->topo.llc_id = c->topo.pkg_id;

	c->x86_cache_size = l3 ? l3 : (l2 ? l2 : l1i + l1d);

	if (!l2)
		cpu_detect_cache_sizes(c);
}

/*
 * Legacy Intel CPUID(0x2) path if CPUID(0x4) is not available.
 */
static void intel_cacheinfo_0x2(struct cpuinfo_x86 *c)
{
	unsigned int l1i = 0, l1d = 0, l2 = 0, l3 = 0;
	const struct leaf_0x2_table *desc;
	union leaf_0x2_regs regs;
	u8 *ptr;

	if (c->cpuid_level < 2)
		return;

	cpuid_leaf_0x2(&regs);
	for_each_cpuid_0x2_desc(regs, ptr, desc) {
		switch (desc->c_type) {
		case CACHE_L1_INST:	l1i += desc->c_size; break;
		case CACHE_L1_DATA:	l1d += desc->c_size; break;
		case CACHE_L2:		l2  += desc->c_size; break;
		case CACHE_L3:		l3  += desc->c_size; break;
		}
	}

	intel_cacheinfo_done(c, l3, l2, l1i, l1d);
}

static unsigned int calc_cache_topo_id(struct cpuinfo_x86 *c, const struct _cpuid4_info *id4)
{
	unsigned int num_threads_sharing;
	int index_msb;

	num_threads_sharing = 1 + id4->eax.split.num_threads_sharing;
	index_msb = get_count_order(num_threads_sharing);
	return c->topo.apicid & ~((1 << index_msb) - 1);
}

static bool intel_cacheinfo_0x4(struct cpuinfo_x86 *c)
{
	struct cpu_cacheinfo *ci = get_cpu_cacheinfo(c->cpu_index);
	unsigned int l2_id = BAD_APICID, l3_id = BAD_APICID;
	unsigned int l1d = 0, l1i = 0, l2 = 0, l3 = 0;

	if (c->cpuid_level < 4)
		return false;

	/*
	 * There should be at least one leaf. A non-zero value means
	 * that the number of leaves has been previously initialized.
	 */
	if (!ci->num_leaves)
		ci->num_leaves = find_num_cache_leaves(c);

	if (!ci->num_leaves)
		return false;

	for (int i = 0; i < ci->num_leaves; i++) {
		struct _cpuid4_info id4 = {};
		int ret;

		ret = intel_fill_cpuid4_info(i, &id4);
		if (ret < 0)
			continue;

		switch (id4.eax.split.level) {
		case 1:
			if (id4.eax.split.type == CTYPE_DATA)
				l1d = id4.size / 1024;
			else if (id4.eax.split.type == CTYPE_INST)
				l1i = id4.size / 1024;
			break;
		case 2:
			l2 = id4.size / 1024;
			l2_id = calc_cache_topo_id(c, &id4);
			break;
		case 3:
			l3 = id4.size / 1024;
			l3_id = calc_cache_topo_id(c, &id4);
			break;
		default:
			break;
		}
	}

	c->topo.l2c_id = l2_id;
	c->topo.llc_id = (l3_id == BAD_APICID) ? l2_id : l3_id;
	intel_cacheinfo_done(c, l3, l2, l1i, l1d);
	return true;
}

void init_intel_cacheinfo(struct cpuinfo_x86 *c)
{
	/* Don't use CPUID(0x2) if CPUID(0x4) is supported. */
	if (intel_cacheinfo_0x4(c))
		return;

	intel_cacheinfo_0x2(c);
}

/*
 * <linux/cacheinfo.h> shared_cpu_map setup, AMD/Hygon
 */
static int __cache_amd_cpumap_setup(unsigned int cpu, int index,
				    const struct _cpuid4_info *id4)
{
	struct cpu_cacheinfo *this_cpu_ci;
	struct cacheinfo *ci;
	int i, sibling;

	/*
	 * For L3, always use the pre-calculated cpu_llc_shared_mask
	 * to derive shared_cpu_map.
	 */
	if (index == 3) {
		for_each_cpu(i, cpu_llc_shared_mask(cpu)) {
			this_cpu_ci = get_cpu_cacheinfo(i);
			if (!this_cpu_ci->info_list)
				continue;

			ci = this_cpu_ci->info_list + index;
			for_each_cpu(sibling, cpu_llc_shared_mask(cpu)) {
				if (!cpu_online(sibling))
					continue;
				cpumask_set_cpu(sibling, &ci->shared_cpu_map);
			}
		}
	} else if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
		unsigned int apicid, nshared, first, last;

		nshared = id4->eax.split.num_threads_sharing + 1;
		apicid = cpu_data(cpu).topo.apicid;
		first = apicid - (apicid % nshared);
		last = first + nshared - 1;

		for_each_online_cpu(i) {
			this_cpu_ci = get_cpu_cacheinfo(i);
			if (!this_cpu_ci->info_list)
				continue;

			apicid = cpu_data(i).topo.apicid;
			if ((apicid < first) || (apicid > last))
				continue;

			ci = this_cpu_ci->info_list + index;

			for_each_online_cpu(sibling) {
				apicid = cpu_data(sibling).topo.apicid;
				if ((apicid < first) || (apicid > last))
					continue;
				cpumask_set_cpu(sibling, &ci->shared_cpu_map);
			}
		}
	} else
		return 0;

	return 1;
}

/*
 * <linux/cacheinfo.h> shared_cpu_map setup, Intel + fallback AMD/Hygon
 */
static void __cache_cpumap_setup(unsigned int cpu, int index,
				 const struct _cpuid4_info *id4)
{
	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
	struct cpuinfo_x86 *c = &cpu_data(cpu);
	struct cacheinfo *ci, *sibling_ci;
	unsigned long num_threads_sharing;
	int index_msb, i;

	if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
		if (__cache_amd_cpumap_setup(cpu, index, id4))
			return;
	}

	ci = this_cpu_ci->info_list + index;
	num_threads_sharing = 1 + id4->eax.split.num_threads_sharing;

	cpumask_set_cpu(cpu, &ci->shared_cpu_map);
	if (num_threads_sharing == 1)
		return;

	index_msb = get_count_order(num_threads_sharing);

	for_each_online_cpu(i)
		if (cpu_data(i).topo.apicid >> index_msb == c->topo.apicid >> index_msb) {
			struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);

			/* Skip if itself or no cacheinfo */
			if (i == cpu || !sib_cpu_ci->info_list)
				continue;

			sibling_ci = sib_cpu_ci->info_list + index;
			cpumask_set_cpu(i, &ci->shared_cpu_map);
			cpumask_set_cpu(cpu, &sibling_ci->shared_cpu_map);
		}
}

static void ci_info_init(struct cacheinfo *ci, const struct _cpuid4_info *id4,
			 struct amd_northbridge *nb)
{
	ci->id				= id4->id;
	ci->attributes			= CACHE_ID;
	ci->level			= id4->eax.split.level;
	ci->type			= cache_type_map[id4->eax.split.type];
	ci->coherency_line_size		= id4->ebx.split.coherency_line_size + 1;
	ci->ways_of_associativity	= id4->ebx.split.ways_of_associativity + 1;
	ci->size			= id4->size;
	ci->number_of_sets		= id4->ecx.split.number_of_sets + 1;
	ci->physical_line_partition	= id4->ebx.split.physical_line_partition + 1;
	ci->priv			= nb;
}

int init_cache_level(unsigned int cpu)
{
	struct cpu_cacheinfo *ci = get_cpu_cacheinfo(cpu);

	/* There should be at least one leaf. */
	if (!ci->num_leaves)
		return -ENOENT;

	return 0;
}

/*
 * The max shared threads number comes from CPUID(0x4) EAX[25-14] with input
 * ECX as cache index. Then right shift apicid by the number's order to get
 * cache id for this cache node.
 */
static void get_cache_id(int cpu, struct _cpuid4_info *id4)
{
	struct cpuinfo_x86 *c = &cpu_data(cpu);
	unsigned long num_threads_sharing;
	int index_msb;

	num_threads_sharing = 1 + id4->eax.split.num_threads_sharing;
	index_msb = get_count_order(num_threads_sharing);
	id4->id = c->topo.apicid >> index_msb;
}

int populate_cache_leaves(unsigned int cpu)
{
	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
	struct cacheinfo *ci = this_cpu_ci->info_list;
	u8 cpu_vendor = boot_cpu_data.x86_vendor;
	struct amd_northbridge *nb = NULL;
	struct _cpuid4_info id4 = {};
	int idx, ret;

	for (idx = 0; idx < this_cpu_ci->num_leaves; idx++) {
		ret = fill_cpuid4_info(idx, &id4);
		if (ret)
			return ret;

		get_cache_id(cpu, &id4);

		if (cpu_vendor == X86_VENDOR_AMD || cpu_vendor == X86_VENDOR_HYGON)
			nb = amd_init_l3_cache(idx);

		ci_info_init(ci++, &id4, nb);
		__cache_cpumap_setup(cpu, idx, &id4);
	}

	this_cpu_ci->cpu_map_populated = true;
	return 0;
}

/*
 * Disable and enable caches. Needed for changing MTRRs and the PAT MSR.
 *
 * Since we are disabling the cache don't allow any interrupts,
 * they would run extremely slow and would only increase the pain.
 *
 * The caller must ensure that local interrupts are disabled and
 * are reenabled after cache_enable() has been called.
 */
static unsigned long saved_cr4;
static DEFINE_RAW_SPINLOCK(cache_disable_lock);

/*
 * Cache flushing is the most time-consuming step when programming the
 * MTRRs.  On many Intel CPUs without known erratas, it can be skipped
 * if the CPU declares cache self-snooping support.
 */
static void maybe_flush_caches(void)
{
	if (!static_cpu_has(X86_FEATURE_SELFSNOOP))
		wbinvd();
}

void cache_disable(void) __acquires(cache_disable_lock)
{
	unsigned long cr0;

	/*
	 * This is not ideal since the cache is only flushed/disabled
	 * for this CPU while the MTRRs are changed, but changing this
	 * requires more invasive changes to the way the kernel boots.
	 */
	raw_spin_lock(&cache_disable_lock);

	/* Enter the no-fill (CD=1, NW=0) cache mode and flush caches. */
	cr0 = read_cr0() | X86_CR0_CD;
	write_cr0(cr0);

	maybe_flush_caches();

	/* Save value of CR4 and clear Page Global Enable (bit 7) */
	if (cpu_feature_enabled(X86_FEATURE_PGE)) {
		saved_cr4 = __read_cr4();
		__write_cr4(saved_cr4 & ~X86_CR4_PGE);
	}

	/* Flush all TLBs via a mov %cr3, %reg; mov %reg, %cr3 */
	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
	flush_tlb_local();

	if (cpu_feature_enabled(X86_FEATURE_MTRR))
		mtrr_disable();

	maybe_flush_caches();
}

void cache_enable(void) __releases(cache_disable_lock)
{
	/* Flush TLBs (no need to flush caches - they are disabled) */
	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
	flush_tlb_local();

	if (cpu_feature_enabled(X86_FEATURE_MTRR))
		mtrr_enable();

	/* Enable caches */
	write_cr0(read_cr0() & ~X86_CR0_CD);

	/* Restore value of CR4 */
	if (cpu_feature_enabled(X86_FEATURE_PGE))
		__write_cr4(saved_cr4);

	raw_spin_unlock(&cache_disable_lock);
}

static void cache_cpu_init(void)
{
	unsigned long flags;

	local_irq_save(flags);

	if (memory_caching_control & CACHE_MTRR) {
		cache_disable();
		mtrr_generic_set_state();
		cache_enable();
	}

	if (memory_caching_control & CACHE_PAT)
		pat_cpu_init();

	local_irq_restore(flags);
}

static bool cache_aps_delayed_init = true;

void set_cache_aps_delayed_init(bool val)
{
	cache_aps_delayed_init = val;
}

bool get_cache_aps_delayed_init(void)
{
	return cache_aps_delayed_init;
}

static int cache_rendezvous_handler(void *unused)
{
	if (get_cache_aps_delayed_init() || !cpu_online(smp_processor_id()))
		cache_cpu_init();

	return 0;
}

void __init cache_bp_init(void)
{
	mtrr_bp_init();
	pat_bp_init();

	if (memory_caching_control)
		cache_cpu_init();
}

void cache_bp_restore(void)
{
	if (memory_caching_control)
		cache_cpu_init();
}

static int cache_ap_online(unsigned int cpu)
{
	cpumask_set_cpu(cpu, cpu_cacheinfo_mask);

	if (!memory_caching_control || get_cache_aps_delayed_init())
		return 0;

	/*
	 * Ideally we should hold mtrr_mutex here to avoid MTRR entries
	 * changed, but this routine will be called in CPU boot time,
	 * holding the lock breaks it.
	 *
	 * This routine is called in two cases:
	 *
	 *   1. very early time of software resume, when there absolutely
	 *      isn't MTRR entry changes;
	 *
	 *   2. CPU hotadd time. We let mtrr_add/del_page hold cpuhotplug
	 *      lock to prevent MTRR entry changes
	 */
	stop_machine_from_inactive_cpu(cache_rendezvous_handler, NULL,
				       cpu_cacheinfo_mask);

	return 0;
}

static int cache_ap_offline(unsigned int cpu)
{
	cpumask_clear_cpu(cpu, cpu_cacheinfo_mask);
	return 0;
}

/*
 * Delayed cache initialization for all AP's
 */
void cache_aps_init(void)
{
	if (!memory_caching_control || !get_cache_aps_delayed_init())
		return;

	stop_machine(cache_rendezvous_handler, NULL, cpu_online_mask);
	set_cache_aps_delayed_init(false);
}

static int __init cache_ap_register(void)
{
	zalloc_cpumask_var(&cpu_cacheinfo_mask, GFP_KERNEL);
	cpumask_set_cpu(smp_processor_id(), cpu_cacheinfo_mask);

	cpuhp_setup_state_nocalls(CPUHP_AP_CACHECTRL_STARTING,
				  "x86/cachectrl:starting",
				  cache_ap_online, cache_ap_offline);
	return 0;
}
early_initcall(cache_ap_register);