1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Asynchronous Compression operations
*
* Copyright (c) 2016, Intel Corporation
* Authors: Weigang Li <weigang.li@intel.com>
* Giovanni Cabiddu <giovanni.cabiddu@intel.com>
*/
#include <crypto/internal/acompress.h>
#include <crypto/scatterwalk.h>
#include <linux/cryptouser.h>
#include <linux/cpumask.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/scatterlist.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/smp.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/workqueue.h>
#include <net/netlink.h>
#include "compress.h"
struct crypto_scomp;
enum {
ACOMP_WALK_SLEEP = 1 << 0,
ACOMP_WALK_SRC_LINEAR = 1 << 1,
ACOMP_WALK_DST_LINEAR = 1 << 2,
};
static const struct crypto_type crypto_acomp_type;
static void acomp_reqchain_done(void *data, int err);
static inline struct acomp_alg *__crypto_acomp_alg(struct crypto_alg *alg)
{
return container_of(alg, struct acomp_alg, calg.base);
}
static inline struct acomp_alg *crypto_acomp_alg(struct crypto_acomp *tfm)
{
return __crypto_acomp_alg(crypto_acomp_tfm(tfm)->__crt_alg);
}
static int __maybe_unused crypto_acomp_report(
struct sk_buff *skb, struct crypto_alg *alg)
{
struct crypto_report_acomp racomp;
memset(&racomp, 0, sizeof(racomp));
strscpy(racomp.type, "acomp", sizeof(racomp.type));
return nla_put(skb, CRYPTOCFGA_REPORT_ACOMP, sizeof(racomp), &racomp);
}
static void crypto_acomp_show(struct seq_file *m, struct crypto_alg *alg)
__maybe_unused;
static void crypto_acomp_show(struct seq_file *m, struct crypto_alg *alg)
{
seq_puts(m, "type : acomp\n");
}
static void crypto_acomp_exit_tfm(struct crypto_tfm *tfm)
{
struct crypto_acomp *acomp = __crypto_acomp_tfm(tfm);
struct acomp_alg *alg = crypto_acomp_alg(acomp);
if (alg->exit)
alg->exit(acomp);
if (acomp_is_async(acomp))
crypto_free_acomp(crypto_acomp_fb(acomp));
}
static int crypto_acomp_init_tfm(struct crypto_tfm *tfm)
{
struct crypto_acomp *acomp = __crypto_acomp_tfm(tfm);
struct acomp_alg *alg = crypto_acomp_alg(acomp);
struct crypto_acomp *fb = NULL;
int err;
if (tfm->__crt_alg->cra_type != &crypto_acomp_type)
return crypto_init_scomp_ops_async(tfm);
if (acomp_is_async(acomp)) {
fb = crypto_alloc_acomp(crypto_acomp_alg_name(acomp), 0,
CRYPTO_ALG_ASYNC);
if (IS_ERR(fb))
return PTR_ERR(fb);
err = -EINVAL;
if (crypto_acomp_reqsize(fb) > MAX_SYNC_COMP_REQSIZE)
goto out_free_fb;
tfm->fb = crypto_acomp_tfm(fb);
}
acomp->compress = alg->compress;
acomp->decompress = alg->decompress;
acomp->reqsize = alg->base.cra_reqsize;
acomp->base.exit = crypto_acomp_exit_tfm;
if (!alg->init)
return 0;
err = alg->init(acomp);
if (err)
goto out_free_fb;
return 0;
out_free_fb:
crypto_free_acomp(fb);
return err;
}
static unsigned int crypto_acomp_extsize(struct crypto_alg *alg)
{
int extsize = crypto_alg_extsize(alg);
if (alg->cra_type != &crypto_acomp_type)
extsize += sizeof(struct crypto_scomp *);
return extsize;
}
static const struct crypto_type crypto_acomp_type = {
.extsize = crypto_acomp_extsize,
.init_tfm = crypto_acomp_init_tfm,
#ifdef CONFIG_PROC_FS
.show = crypto_acomp_show,
#endif
#if IS_ENABLED(CONFIG_CRYPTO_USER)
.report = crypto_acomp_report,
#endif
.maskclear = ~CRYPTO_ALG_TYPE_MASK,
.maskset = CRYPTO_ALG_TYPE_ACOMPRESS_MASK,
.type = CRYPTO_ALG_TYPE_ACOMPRESS,
.tfmsize = offsetof(struct crypto_acomp, base),
.algsize = offsetof(struct acomp_alg, base),
};
struct crypto_acomp *crypto_alloc_acomp(const char *alg_name, u32 type,
u32 mask)
{
return crypto_alloc_tfm(alg_name, &crypto_acomp_type, type, mask);
}
EXPORT_SYMBOL_GPL(crypto_alloc_acomp);
struct crypto_acomp *crypto_alloc_acomp_node(const char *alg_name, u32 type,
u32 mask, int node)
{
return crypto_alloc_tfm_node(alg_name, &crypto_acomp_type, type, mask,
node);
}
EXPORT_SYMBOL_GPL(crypto_alloc_acomp_node);
static void acomp_save_req(struct acomp_req *req, crypto_completion_t cplt)
{
struct acomp_req_chain *state = &req->chain;
state->compl = req->base.complete;
state->data = req->base.data;
req->base.complete = cplt;
req->base.data = state;
}
static void acomp_restore_req(struct acomp_req *req)
{
struct acomp_req_chain *state = req->base.data;
req->base.complete = state->compl;
req->base.data = state->data;
}
static void acomp_reqchain_virt(struct acomp_req *req)
{
struct acomp_req_chain *state = &req->chain;
unsigned int slen = req->slen;
unsigned int dlen = req->dlen;
if (state->flags & CRYPTO_ACOMP_REQ_SRC_VIRT)
acomp_request_set_src_dma(req, state->src, slen);
if (state->flags & CRYPTO_ACOMP_REQ_DST_VIRT)
acomp_request_set_dst_dma(req, state->dst, dlen);
}
static void acomp_virt_to_sg(struct acomp_req *req)
{
struct acomp_req_chain *state = &req->chain;
state->flags = req->base.flags & (CRYPTO_ACOMP_REQ_SRC_VIRT |
CRYPTO_ACOMP_REQ_DST_VIRT);
if (acomp_request_src_isvirt(req)) {
unsigned int slen = req->slen;
const u8 *svirt = req->svirt;
state->src = svirt;
sg_init_one(&state->ssg, svirt, slen);
acomp_request_set_src_sg(req, &state->ssg, slen);
}
if (acomp_request_dst_isvirt(req)) {
unsigned int dlen = req->dlen;
u8 *dvirt = req->dvirt;
state->dst = dvirt;
sg_init_one(&state->dsg, dvirt, dlen);
acomp_request_set_dst_sg(req, &state->dsg, dlen);
}
}
static int acomp_do_nondma(struct acomp_req *req, bool comp)
{
ACOMP_FBREQ_ON_STACK(fbreq, req);
int err;
if (comp)
err = crypto_acomp_compress(fbreq);
else
err = crypto_acomp_decompress(fbreq);
req->dlen = fbreq->dlen;
return err;
}
static int acomp_do_one_req(struct acomp_req *req, bool comp)
{
if (acomp_request_isnondma(req))
return acomp_do_nondma(req, comp);
acomp_virt_to_sg(req);
return comp ? crypto_acomp_reqtfm(req)->compress(req) :
crypto_acomp_reqtfm(req)->decompress(req);
}
static int acomp_reqchain_finish(struct acomp_req *req, int err)
{
acomp_reqchain_virt(req);
acomp_restore_req(req);
return err;
}
static void acomp_reqchain_done(void *data, int err)
{
struct acomp_req *req = data;
crypto_completion_t compl;
compl = req->chain.compl;
data = req->chain.data;
if (err == -EINPROGRESS)
goto notify;
err = acomp_reqchain_finish(req, err);
notify:
compl(data, err);
}
static int acomp_do_req_chain(struct acomp_req *req, bool comp)
{
int err;
acomp_save_req(req, acomp_reqchain_done);
err = acomp_do_one_req(req, comp);
if (err == -EBUSY || err == -EINPROGRESS)
return err;
return acomp_reqchain_finish(req, err);
}
int crypto_acomp_compress(struct acomp_req *req)
{
struct crypto_acomp *tfm = crypto_acomp_reqtfm(req);
if (acomp_req_on_stack(req) && acomp_is_async(tfm))
return -EAGAIN;
if (crypto_acomp_req_virt(tfm) || acomp_request_issg(req))
return crypto_acomp_reqtfm(req)->compress(req);
return acomp_do_req_chain(req, true);
}
EXPORT_SYMBOL_GPL(crypto_acomp_compress);
int crypto_acomp_decompress(struct acomp_req *req)
{
struct crypto_acomp *tfm = crypto_acomp_reqtfm(req);
if (acomp_req_on_stack(req) && acomp_is_async(tfm))
return -EAGAIN;
if (crypto_acomp_req_virt(tfm) || acomp_request_issg(req))
return crypto_acomp_reqtfm(req)->decompress(req);
return acomp_do_req_chain(req, false);
}
EXPORT_SYMBOL_GPL(crypto_acomp_decompress);
void comp_prepare_alg(struct comp_alg_common *alg)
{
struct crypto_alg *base = &alg->base;
base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
}
int crypto_register_acomp(struct acomp_alg *alg)
{
struct crypto_alg *base = &alg->calg.base;
comp_prepare_alg(&alg->calg);
base->cra_type = &crypto_acomp_type;
base->cra_flags |= CRYPTO_ALG_TYPE_ACOMPRESS;
return crypto_register_alg(base);
}
EXPORT_SYMBOL_GPL(crypto_register_acomp);
void crypto_unregister_acomp(struct acomp_alg *alg)
{
crypto_unregister_alg(&alg->base);
}
EXPORT_SYMBOL_GPL(crypto_unregister_acomp);
int crypto_register_acomps(struct acomp_alg *algs, int count)
{
int i, ret;
for (i = 0; i < count; i++) {
ret = crypto_register_acomp(&algs[i]);
if (ret)
goto err;
}
return 0;
err:
for (--i; i >= 0; --i)
crypto_unregister_acomp(&algs[i]);
return ret;
}
EXPORT_SYMBOL_GPL(crypto_register_acomps);
void crypto_unregister_acomps(struct acomp_alg *algs, int count)
{
int i;
for (i = count - 1; i >= 0; --i)
crypto_unregister_acomp(&algs[i]);
}
EXPORT_SYMBOL_GPL(crypto_unregister_acomps);
static void acomp_stream_workfn(struct work_struct *work)
{
struct crypto_acomp_streams *s =
container_of(work, struct crypto_acomp_streams, stream_work);
struct crypto_acomp_stream __percpu *streams = s->streams;
int cpu;
for_each_cpu(cpu, &s->stream_want) {
struct crypto_acomp_stream *ps;
void *ctx;
ps = per_cpu_ptr(streams, cpu);
if (ps->ctx)
continue;
ctx = s->alloc_ctx();
if (IS_ERR(ctx))
break;
spin_lock_bh(&ps->lock);
ps->ctx = ctx;
spin_unlock_bh(&ps->lock);
cpumask_clear_cpu(cpu, &s->stream_want);
}
}
void crypto_acomp_free_streams(struct crypto_acomp_streams *s)
{
struct crypto_acomp_stream __percpu *streams = s->streams;
void (*free_ctx)(void *);
int i;
s->streams = NULL;
if (!streams)
return;
cancel_work_sync(&s->stream_work);
free_ctx = s->free_ctx;
for_each_possible_cpu(i) {
struct crypto_acomp_stream *ps = per_cpu_ptr(streams, i);
if (!ps->ctx)
continue;
free_ctx(ps->ctx);
}
free_percpu(streams);
}
EXPORT_SYMBOL_GPL(crypto_acomp_free_streams);
int crypto_acomp_alloc_streams(struct crypto_acomp_streams *s)
{
struct crypto_acomp_stream __percpu *streams;
struct crypto_acomp_stream *ps;
unsigned int i;
void *ctx;
if (s->streams)
return 0;
streams = alloc_percpu(struct crypto_acomp_stream);
if (!streams)
return -ENOMEM;
ctx = s->alloc_ctx();
if (IS_ERR(ctx)) {
free_percpu(streams);
return PTR_ERR(ctx);
}
i = cpumask_first(cpu_possible_mask);
ps = per_cpu_ptr(streams, i);
ps->ctx = ctx;
for_each_possible_cpu(i) {
ps = per_cpu_ptr(streams, i);
spin_lock_init(&ps->lock);
}
s->streams = streams;
INIT_WORK(&s->stream_work, acomp_stream_workfn);
return 0;
}
EXPORT_SYMBOL_GPL(crypto_acomp_alloc_streams);
struct crypto_acomp_stream *crypto_acomp_lock_stream_bh(
struct crypto_acomp_streams *s) __acquires(stream)
{
struct crypto_acomp_stream __percpu *streams = s->streams;
int cpu = raw_smp_processor_id();
struct crypto_acomp_stream *ps;
ps = per_cpu_ptr(streams, cpu);
spin_lock_bh(&ps->lock);
if (likely(ps->ctx))
return ps;
spin_unlock(&ps->lock);
cpumask_set_cpu(cpu, &s->stream_want);
schedule_work(&s->stream_work);
ps = per_cpu_ptr(streams, cpumask_first(cpu_possible_mask));
spin_lock(&ps->lock);
return ps;
}
EXPORT_SYMBOL_GPL(crypto_acomp_lock_stream_bh);
void acomp_walk_done_src(struct acomp_walk *walk, int used)
{
walk->slen -= used;
if ((walk->flags & ACOMP_WALK_SRC_LINEAR))
scatterwalk_advance(&walk->in, used);
else
scatterwalk_done_src(&walk->in, used);
if ((walk->flags & ACOMP_WALK_SLEEP))
cond_resched();
}
EXPORT_SYMBOL_GPL(acomp_walk_done_src);
void acomp_walk_done_dst(struct acomp_walk *walk, int used)
{
walk->dlen -= used;
if ((walk->flags & ACOMP_WALK_DST_LINEAR))
scatterwalk_advance(&walk->out, used);
else
scatterwalk_done_dst(&walk->out, used);
if ((walk->flags & ACOMP_WALK_SLEEP))
cond_resched();
}
EXPORT_SYMBOL_GPL(acomp_walk_done_dst);
int acomp_walk_next_src(struct acomp_walk *walk)
{
unsigned int slen = walk->slen;
unsigned int max = UINT_MAX;
if (!preempt_model_preemptible() && (walk->flags & ACOMP_WALK_SLEEP))
max = PAGE_SIZE;
if ((walk->flags & ACOMP_WALK_SRC_LINEAR)) {
walk->in.__addr = (void *)(((u8 *)walk->in.sg) +
walk->in.offset);
return min(slen, max);
}
return slen ? scatterwalk_next(&walk->in, slen) : 0;
}
EXPORT_SYMBOL_GPL(acomp_walk_next_src);
int acomp_walk_next_dst(struct acomp_walk *walk)
{
unsigned int dlen = walk->dlen;
unsigned int max = UINT_MAX;
if (!preempt_model_preemptible() && (walk->flags & ACOMP_WALK_SLEEP))
max = PAGE_SIZE;
if ((walk->flags & ACOMP_WALK_DST_LINEAR)) {
walk->out.__addr = (void *)(((u8 *)walk->out.sg) +
walk->out.offset);
return min(dlen, max);
}
return dlen ? scatterwalk_next(&walk->out, dlen) : 0;
}
EXPORT_SYMBOL_GPL(acomp_walk_next_dst);
int acomp_walk_virt(struct acomp_walk *__restrict walk,
struct acomp_req *__restrict req, bool atomic)
{
struct scatterlist *src = req->src;
struct scatterlist *dst = req->dst;
walk->slen = req->slen;
walk->dlen = req->dlen;
if (!walk->slen || !walk->dlen)
return -EINVAL;
walk->flags = 0;
if ((req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) && !atomic)
walk->flags |= ACOMP_WALK_SLEEP;
if ((req->base.flags & CRYPTO_ACOMP_REQ_SRC_VIRT))
walk->flags |= ACOMP_WALK_SRC_LINEAR;
if ((req->base.flags & CRYPTO_ACOMP_REQ_DST_VIRT))
walk->flags |= ACOMP_WALK_DST_LINEAR;
if ((walk->flags & ACOMP_WALK_SRC_LINEAR)) {
walk->in.sg = (void *)req->svirt;
walk->in.offset = 0;
} else
scatterwalk_start(&walk->in, src);
if ((walk->flags & ACOMP_WALK_DST_LINEAR)) {
walk->out.sg = (void *)req->dvirt;
walk->out.offset = 0;
} else
scatterwalk_start(&walk->out, dst);
return 0;
}
EXPORT_SYMBOL_GPL(acomp_walk_virt);
struct acomp_req *acomp_request_clone(struct acomp_req *req,
size_t total, gfp_t gfp)
{
struct acomp_req *nreq;
nreq = container_of(crypto_request_clone(&req->base, total, gfp),
struct acomp_req, base);
if (nreq == req)
return req;
if (req->src == &req->chain.ssg)
nreq->src = &nreq->chain.ssg;
if (req->dst == &req->chain.dsg)
nreq->dst = &nreq->chain.dsg;
return nreq;
}
EXPORT_SYMBOL_GPL(acomp_request_clone);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Asynchronous compression type");
|