1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright 2016 Freescale Semiconductor, Inc.
* Copyright 2018,2021-2025 NXP
*
* NXP System Timer Module:
*
* STM supports commonly required system and application software
* timing functions. STM includes a 32-bit count-up timer and four
* 32-bit compare channels with a separate interrupt source for each
* channel. The timer is driven by the STM module clock divided by an
* 8-bit prescale value (1 to 256). It has ability to stop the timer
* in Debug mode
*/
#include <linux/clk.h>
#include <linux/clockchips.h>
#include <linux/cpuhotplug.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/sched_clock.h>
#include <linux/units.h>
#define STM_CR(__base) (__base)
#define STM_CR_TEN BIT(0)
#define STM_CR_FRZ BIT(1)
#define STM_CR_CPS_OFFSET 8u
#define STM_CR_CPS_MASK GENMASK(15, STM_CR_CPS_OFFSET)
#define STM_CNT(__base) ((__base) + 0x04)
#define STM_CCR0(__base) ((__base) + 0x10)
#define STM_CCR1(__base) ((__base) + 0x20)
#define STM_CCR2(__base) ((__base) + 0x30)
#define STM_CCR3(__base) ((__base) + 0x40)
#define STM_CCR_CEN BIT(0)
#define STM_CIR0(__base) ((__base) + 0x14)
#define STM_CIR1(__base) ((__base) + 0x24)
#define STM_CIR2(__base) ((__base) + 0x34)
#define STM_CIR3(__base) ((__base) + 0x44)
#define STM_CIR_CIF BIT(0)
#define STM_CMP0(__base) ((__base) + 0x18)
#define STM_CMP1(__base) ((__base) + 0x28)
#define STM_CMP2(__base) ((__base) + 0x38)
#define STM_CMP3(__base) ((__base) + 0x48)
#define STM_ENABLE_MASK (STM_CR_FRZ | STM_CR_TEN)
struct stm_timer {
void __iomem *base;
unsigned long rate;
unsigned long delta;
unsigned long counter;
struct clock_event_device ced;
struct clocksource cs;
atomic_t refcnt;
};
static DEFINE_PER_CPU(struct stm_timer *, stm_timers);
static struct stm_timer *stm_sched_clock;
/*
* Global structure for multiple STMs initialization
*/
static int stm_instances;
/*
* This global lock is used to prevent race conditions with the
* stm_instances in case the driver is using the ASYNC option
*/
static DEFINE_MUTEX(stm_instances_lock);
DEFINE_GUARD(stm_instances, struct mutex *, mutex_lock(_T), mutex_unlock(_T))
static struct stm_timer *cs_to_stm(struct clocksource *cs)
{
return container_of(cs, struct stm_timer, cs);
}
static struct stm_timer *ced_to_stm(struct clock_event_device *ced)
{
return container_of(ced, struct stm_timer, ced);
}
static u64 notrace nxp_stm_read_sched_clock(void)
{
return readl(STM_CNT(stm_sched_clock->base));
}
static u32 nxp_stm_clocksource_getcnt(struct stm_timer *stm_timer)
{
return readl(STM_CNT(stm_timer->base));
}
static void nxp_stm_clocksource_setcnt(struct stm_timer *stm_timer, u32 cnt)
{
writel(cnt, STM_CNT(stm_timer->base));
}
static u64 nxp_stm_clocksource_read(struct clocksource *cs)
{
struct stm_timer *stm_timer = cs_to_stm(cs);
return (u64)nxp_stm_clocksource_getcnt(stm_timer);
}
static void nxp_stm_module_enable(struct stm_timer *stm_timer)
{
u32 reg;
reg = readl(STM_CR(stm_timer->base));
reg |= STM_ENABLE_MASK;
writel(reg, STM_CR(stm_timer->base));
}
static void nxp_stm_module_disable(struct stm_timer *stm_timer)
{
u32 reg;
reg = readl(STM_CR(stm_timer->base));
reg &= ~STM_ENABLE_MASK;
writel(reg, STM_CR(stm_timer->base));
}
static void nxp_stm_module_put(struct stm_timer *stm_timer)
{
if (atomic_dec_and_test(&stm_timer->refcnt))
nxp_stm_module_disable(stm_timer);
}
static void nxp_stm_module_get(struct stm_timer *stm_timer)
{
if (atomic_inc_return(&stm_timer->refcnt) == 1)
nxp_stm_module_enable(stm_timer);
}
static int nxp_stm_clocksource_enable(struct clocksource *cs)
{
struct stm_timer *stm_timer = cs_to_stm(cs);
nxp_stm_module_get(stm_timer);
return 0;
}
static void nxp_stm_clocksource_disable(struct clocksource *cs)
{
struct stm_timer *stm_timer = cs_to_stm(cs);
nxp_stm_module_put(stm_timer);
}
static void nxp_stm_clocksource_suspend(struct clocksource *cs)
{
struct stm_timer *stm_timer = cs_to_stm(cs);
nxp_stm_clocksource_disable(cs);
stm_timer->counter = nxp_stm_clocksource_getcnt(stm_timer);
}
static void nxp_stm_clocksource_resume(struct clocksource *cs)
{
struct stm_timer *stm_timer = cs_to_stm(cs);
nxp_stm_clocksource_setcnt(stm_timer, stm_timer->counter);
nxp_stm_clocksource_enable(cs);
}
static void __init devm_clocksource_unregister(void *data)
{
struct stm_timer *stm_timer = data;
clocksource_unregister(&stm_timer->cs);
}
static int __init nxp_stm_clocksource_init(struct device *dev, struct stm_timer *stm_timer,
const char *name, void __iomem *base, struct clk *clk)
{
int ret;
stm_timer->base = base;
stm_timer->rate = clk_get_rate(clk);
stm_timer->cs.name = name;
stm_timer->cs.rating = 460;
stm_timer->cs.read = nxp_stm_clocksource_read;
stm_timer->cs.enable = nxp_stm_clocksource_enable;
stm_timer->cs.disable = nxp_stm_clocksource_disable;
stm_timer->cs.suspend = nxp_stm_clocksource_suspend;
stm_timer->cs.resume = nxp_stm_clocksource_resume;
stm_timer->cs.mask = CLOCKSOURCE_MASK(32);
stm_timer->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
ret = clocksource_register_hz(&stm_timer->cs, stm_timer->rate);
if (ret)
return ret;
ret = devm_add_action_or_reset(dev, devm_clocksource_unregister, stm_timer);
if (ret) {
clocksource_unregister(&stm_timer->cs);
return ret;
}
stm_sched_clock = stm_timer;
sched_clock_register(nxp_stm_read_sched_clock, 32, stm_timer->rate);
dev_dbg(dev, "Registered clocksource %s\n", name);
return 0;
}
static int nxp_stm_clockevent_read_counter(struct stm_timer *stm_timer)
{
return readl(STM_CNT(stm_timer->base));
}
static void nxp_stm_clockevent_disable(struct stm_timer *stm_timer)
{
writel(0, STM_CCR0(stm_timer->base));
}
static void nxp_stm_clockevent_enable(struct stm_timer *stm_timer)
{
writel(STM_CCR_CEN, STM_CCR0(stm_timer->base));
}
static int nxp_stm_clockevent_shutdown(struct clock_event_device *ced)
{
struct stm_timer *stm_timer = ced_to_stm(ced);
nxp_stm_clockevent_disable(stm_timer);
return 0;
}
static int nxp_stm_clockevent_set_next_event(unsigned long delta, struct clock_event_device *ced)
{
struct stm_timer *stm_timer = ced_to_stm(ced);
u32 val;
nxp_stm_clockevent_disable(stm_timer);
stm_timer->delta = delta;
val = nxp_stm_clockevent_read_counter(stm_timer) + delta;
writel(val, STM_CMP0(stm_timer->base));
/*
* The counter is shared across the channels and can not be
* stopped while we are setting the next event. If the delta
* is very small it is possible the counter increases above
* the computed 'val'. The min_delta value specified when
* registering the clockevent will prevent that. The second
* case is if the counter wraps while we compute the 'val' and
* before writing the comparator register. We read the counter,
* check if we are back in time and abort the timer with -ETIME.
*/
if (val > nxp_stm_clockevent_read_counter(stm_timer) + delta)
return -ETIME;
nxp_stm_clockevent_enable(stm_timer);
return 0;
}
static int nxp_stm_clockevent_set_periodic(struct clock_event_device *ced)
{
struct stm_timer *stm_timer = ced_to_stm(ced);
return nxp_stm_clockevent_set_next_event(stm_timer->rate, ced);
}
static void nxp_stm_clockevent_suspend(struct clock_event_device *ced)
{
struct stm_timer *stm_timer = ced_to_stm(ced);
nxp_stm_module_put(stm_timer);
}
static void nxp_stm_clockevent_resume(struct clock_event_device *ced)
{
struct stm_timer *stm_timer = ced_to_stm(ced);
nxp_stm_module_get(stm_timer);
}
static int __init nxp_stm_clockevent_per_cpu_init(struct device *dev, struct stm_timer *stm_timer,
const char *name, void __iomem *base, int irq,
struct clk *clk, int cpu)
{
stm_timer->base = base;
stm_timer->rate = clk_get_rate(clk);
stm_timer->ced.name = name;
stm_timer->ced.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
stm_timer->ced.set_state_shutdown = nxp_stm_clockevent_shutdown;
stm_timer->ced.set_state_periodic = nxp_stm_clockevent_set_periodic;
stm_timer->ced.set_next_event = nxp_stm_clockevent_set_next_event;
stm_timer->ced.suspend = nxp_stm_clockevent_suspend;
stm_timer->ced.resume = nxp_stm_clockevent_resume;
stm_timer->ced.cpumask = cpumask_of(cpu);
stm_timer->ced.rating = 460;
stm_timer->ced.irq = irq;
per_cpu(stm_timers, cpu) = stm_timer;
nxp_stm_module_get(stm_timer);
dev_dbg(dev, "Initialized per cpu clockevent name=%s, irq=%d, cpu=%d\n", name, irq, cpu);
return 0;
}
static int nxp_stm_clockevent_starting_cpu(unsigned int cpu)
{
struct stm_timer *stm_timer = per_cpu(stm_timers, cpu);
int ret;
if (WARN_ON(!stm_timer))
return -EFAULT;
ret = irq_force_affinity(stm_timer->ced.irq, cpumask_of(cpu));
if (ret)
return ret;
/*
* The timings measurement show reading the counter register
* and writing to the comparator register takes as a maximum
* value 1100 ns at 133MHz rate frequency. The timer must be
* set above this value and to be secure we set the minimum
* value equal to 2000ns, so 2us.
*
* minimum ticks = (rate / MICRO) * 2
*/
clockevents_config_and_register(&stm_timer->ced, stm_timer->rate,
(stm_timer->rate / MICRO) * 2, ULONG_MAX);
return 0;
}
static irqreturn_t nxp_stm_module_interrupt(int irq, void *dev_id)
{
struct stm_timer *stm_timer = dev_id;
struct clock_event_device *ced = &stm_timer->ced;
u32 val;
/*
* The interrupt is shared across the channels in the
* module. But this one is configured to run only one channel,
* consequently it is pointless to test the interrupt flags
* before and we can directly reset the channel 0 irq flag
* register.
*/
writel(STM_CIR_CIF, STM_CIR0(stm_timer->base));
/*
* Update STM_CMP value using the counter value
*/
val = nxp_stm_clockevent_read_counter(stm_timer) + stm_timer->delta;
writel(val, STM_CMP0(stm_timer->base));
/*
* stm hardware doesn't support oneshot, it will generate an
* interrupt and start the counter again so software needs to
* disable the timer to stop the counter loop in ONESHOT mode.
*/
if (likely(clockevent_state_oneshot(ced)))
nxp_stm_clockevent_disable(stm_timer);
ced->event_handler(ced);
return IRQ_HANDLED;
}
static int __init nxp_stm_timer_probe(struct platform_device *pdev)
{
struct stm_timer *stm_timer;
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
const char *name = of_node_full_name(np);
struct clk *clk;
void __iomem *base;
int irq, ret;
/*
* The device tree can have multiple STM nodes described, so
* it makes this driver a good candidate for the async probe.
* It is still unclear if the time framework correctly handles
* parallel loading of the timers but at least this driver is
* ready to support the option.
*/
guard(stm_instances)(&stm_instances_lock);
/*
* The S32Gx are SoCs featuring a diverse set of cores. Linux
* is expected to run on Cortex-A53 cores, while other
* software stacks will operate on Cortex-M cores. The number
* of STM instances has been sized to include at most one
* instance per core.
*
* As we need a clocksource and a clockevent per cpu, we
* simply initialize a clocksource per cpu along with the
* clockevent which makes the resulting code simpler.
*
* However if the device tree is describing more STM instances
* than the number of cores, then we ignore them.
*/
if (stm_instances >= num_possible_cpus())
return 0;
base = devm_of_iomap(dev, np, 0, NULL);
if (IS_ERR(base))
return dev_err_probe(dev, PTR_ERR(base), "Failed to iomap %pOFn\n", np);
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return dev_err_probe(dev, irq, "Failed to get IRQ\n");
clk = devm_clk_get_enabled(dev, NULL);
if (IS_ERR(clk))
return dev_err_probe(dev, PTR_ERR(clk), "Clock not found\n");
stm_timer = devm_kzalloc(dev, sizeof(*stm_timer), GFP_KERNEL);
if (!stm_timer)
return -ENOMEM;
ret = devm_request_irq(dev, irq, nxp_stm_module_interrupt,
IRQF_TIMER | IRQF_NOBALANCING, name, stm_timer);
if (ret)
return dev_err_probe(dev, ret, "Unable to allocate interrupt line\n");
ret = nxp_stm_clocksource_init(dev, stm_timer, name, base, clk);
if (ret)
return ret;
/*
* Next probed STM will be a per CPU clockevent, until we
* probe as many as we have CPUs available on the system, we
* do a partial initialization
*/
ret = nxp_stm_clockevent_per_cpu_init(dev, stm_timer, name,
base, irq, clk,
stm_instances);
if (ret)
return ret;
stm_instances++;
/*
* The number of probed STMs for per CPU clockevent is
* equal to the number of available CPUs on the
* system. We install the cpu hotplug to finish the
* initialization by registering the clockevents
*/
if (stm_instances == num_possible_cpus()) {
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "STM timer:starting",
nxp_stm_clockevent_starting_cpu, NULL);
if (ret < 0)
return ret;
}
return 0;
}
static const struct of_device_id nxp_stm_of_match[] = {
{ .compatible = "nxp,s32g2-stm" },
{ }
};
MODULE_DEVICE_TABLE(of, nxp_stm_of_match);
static struct platform_driver nxp_stm_probe = {
.probe = nxp_stm_timer_probe,
.driver = {
.name = "nxp-stm",
.of_match_table = nxp_stm_of_match,
},
};
module_platform_driver(nxp_stm_probe);
MODULE_DESCRIPTION("NXP System Timer Module driver");
MODULE_LICENSE("GPL");
|