1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*
*/
#include <drm/drm_print.h>
#include "i915_reg.h"
#include "intel_de.h"
#include "intel_display_types.h"
#include "intel_dp.h"
#include "intel_vrr.h"
#include "intel_vrr_regs.h"
#define FIXED_POINT_PRECISION 100
#define CMRR_PRECISION_TOLERANCE 10
bool intel_vrr_is_capable(struct intel_connector *connector)
{
struct intel_display *display = to_intel_display(connector);
const struct drm_display_info *info = &connector->base.display_info;
struct intel_dp *intel_dp;
/*
* DP Sink is capable of VRR video timings if
* Ignore MSA bit is set in DPCD.
* EDID monitor range also should be atleast 10 for reasonable
* Adaptive Sync or Variable Refresh Rate end user experience.
*/
switch (connector->base.connector_type) {
case DRM_MODE_CONNECTOR_eDP:
if (!connector->panel.vbt.vrr)
return false;
fallthrough;
case DRM_MODE_CONNECTOR_DisplayPort:
if (connector->mst.dp)
return false;
intel_dp = intel_attached_dp(connector);
if (!drm_dp_sink_can_do_video_without_timing_msa(intel_dp->dpcd))
return false;
break;
default:
return false;
}
return HAS_VRR(display) &&
info->monitor_range.max_vfreq - info->monitor_range.min_vfreq > 10;
}
bool intel_vrr_is_in_range(struct intel_connector *connector, int vrefresh)
{
const struct drm_display_info *info = &connector->base.display_info;
return intel_vrr_is_capable(connector) &&
vrefresh >= info->monitor_range.min_vfreq &&
vrefresh <= info->monitor_range.max_vfreq;
}
bool intel_vrr_possible(const struct intel_crtc_state *crtc_state)
{
return crtc_state->vrr.flipline;
}
void
intel_vrr_check_modeset(struct intel_atomic_state *state)
{
int i;
struct intel_crtc_state *old_crtc_state, *new_crtc_state;
struct intel_crtc *crtc;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (new_crtc_state->uapi.vrr_enabled !=
old_crtc_state->uapi.vrr_enabled)
new_crtc_state->uapi.mode_changed = true;
}
}
static int intel_vrr_real_vblank_delay(const struct intel_crtc_state *crtc_state)
{
return crtc_state->hw.adjusted_mode.crtc_vblank_start -
crtc_state->hw.adjusted_mode.crtc_vdisplay;
}
static int intel_vrr_extra_vblank_delay(struct intel_display *display)
{
/*
* On ICL/TGL VRR hardware inserts one extra scanline
* just after vactive, which pushes the vmin decision
* boundary ahead accordingly. We'll include the extra
* scanline in our vblank delay estimates to make sure
* that we never underestimate how long we have until
* the delayed vblank has passed.
*/
return DISPLAY_VER(display) < 13 ? 1 : 0;
}
int intel_vrr_vblank_delay(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
return intel_vrr_real_vblank_delay(crtc_state) +
intel_vrr_extra_vblank_delay(display);
}
static int intel_vrr_flipline_offset(struct intel_display *display)
{
/* ICL/TGL hardware imposes flipline>=vmin+1 */
return DISPLAY_VER(display) < 13 ? 1 : 0;
}
static int intel_vrr_vmin_flipline(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
return crtc_state->vrr.vmin + intel_vrr_flipline_offset(display);
}
/*
* Without VRR registers get latched at:
* vblank_start
*
* With VRR the earliest registers can get latched is:
* intel_vrr_vmin_vblank_start(), which if we want to maintain
* the correct min vtotal is >=vblank_start+1
*
* The latest point registers can get latched is the vmax decision boundary:
* intel_vrr_vmax_vblank_start()
*
* Between those two points the vblank exit starts (and hence registers get
* latched) ASAP after a push is sent.
*
* framestart_delay is programmable 1-4.
*/
static int intel_vrr_vblank_exit_length(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
if (DISPLAY_VER(display) >= 13)
return crtc_state->vrr.guardband;
else
/* hardware imposes one extra scanline somewhere */
return crtc_state->vrr.pipeline_full + crtc_state->framestart_delay + 1;
}
int intel_vrr_vmin_vtotal(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
/* Min vblank actually determined by flipline */
if (DISPLAY_VER(display) >= 13)
return intel_vrr_vmin_flipline(crtc_state);
else
return intel_vrr_vmin_flipline(crtc_state) +
intel_vrr_real_vblank_delay(crtc_state);
}
int intel_vrr_vmax_vtotal(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
if (DISPLAY_VER(display) >= 13)
return crtc_state->vrr.vmax;
else
return crtc_state->vrr.vmax +
intel_vrr_real_vblank_delay(crtc_state);
}
int intel_vrr_vmin_vblank_start(const struct intel_crtc_state *crtc_state)
{
return intel_vrr_vmin_vtotal(crtc_state) - intel_vrr_vblank_exit_length(crtc_state);
}
int intel_vrr_vmax_vblank_start(const struct intel_crtc_state *crtc_state)
{
return intel_vrr_vmax_vtotal(crtc_state) - intel_vrr_vblank_exit_length(crtc_state);
}
static bool
is_cmrr_frac_required(struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
int calculated_refresh_k, actual_refresh_k, pixel_clock_per_line;
struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
/* Avoid CMRR for now till we have VRR with fixed timings working */
if (!HAS_CMRR(display) || true)
return false;
actual_refresh_k =
drm_mode_vrefresh(adjusted_mode) * FIXED_POINT_PRECISION;
pixel_clock_per_line =
adjusted_mode->crtc_clock * 1000 / adjusted_mode->crtc_htotal;
calculated_refresh_k =
pixel_clock_per_line * FIXED_POINT_PRECISION / adjusted_mode->crtc_vtotal;
if ((actual_refresh_k - calculated_refresh_k) < CMRR_PRECISION_TOLERANCE)
return false;
return true;
}
static unsigned int
cmrr_get_vtotal(struct intel_crtc_state *crtc_state, bool video_mode_required)
{
int multiplier_m = 1, multiplier_n = 1, vtotal, desired_refresh_rate;
u64 adjusted_pixel_rate;
struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
desired_refresh_rate = drm_mode_vrefresh(adjusted_mode);
if (video_mode_required) {
multiplier_m = 1001;
multiplier_n = 1000;
}
crtc_state->cmrr.cmrr_n = mul_u32_u32(desired_refresh_rate * adjusted_mode->crtc_htotal,
multiplier_n);
vtotal = DIV_ROUND_UP_ULL(mul_u32_u32(adjusted_mode->crtc_clock * 1000, multiplier_n),
crtc_state->cmrr.cmrr_n);
adjusted_pixel_rate = mul_u32_u32(adjusted_mode->crtc_clock * 1000, multiplier_m);
crtc_state->cmrr.cmrr_m = do_div(adjusted_pixel_rate, crtc_state->cmrr.cmrr_n);
return vtotal;
}
static
void intel_vrr_compute_cmrr_timings(struct intel_crtc_state *crtc_state)
{
crtc_state->cmrr.enable = true;
/*
* TODO: Compute precise target refresh rate to determine
* if video_mode_required should be true. Currently set to
* false due to uncertainty about the precise target
* refresh Rate.
*/
crtc_state->vrr.vmax = cmrr_get_vtotal(crtc_state, false);
crtc_state->vrr.vmin = crtc_state->vrr.vmax;
crtc_state->vrr.flipline = crtc_state->vrr.vmin;
crtc_state->mode_flags |= I915_MODE_FLAG_VRR;
}
static
void intel_vrr_compute_vrr_timings(struct intel_crtc_state *crtc_state)
{
crtc_state->vrr.enable = true;
crtc_state->mode_flags |= I915_MODE_FLAG_VRR;
}
/*
* For fixed refresh rate mode Vmin, Vmax and Flipline all are set to
* Vtotal value.
*/
static
int intel_vrr_fixed_rr_vtotal(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
int crtc_vtotal = crtc_state->hw.adjusted_mode.crtc_vtotal;
if (DISPLAY_VER(display) >= 13)
return crtc_vtotal;
else
return crtc_vtotal -
intel_vrr_real_vblank_delay(crtc_state);
}
static
int intel_vrr_fixed_rr_vmax(const struct intel_crtc_state *crtc_state)
{
return intel_vrr_fixed_rr_vtotal(crtc_state);
}
static
int intel_vrr_fixed_rr_vmin(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
return intel_vrr_fixed_rr_vtotal(crtc_state) -
intel_vrr_flipline_offset(display);
}
static
int intel_vrr_fixed_rr_flipline(const struct intel_crtc_state *crtc_state)
{
return intel_vrr_fixed_rr_vtotal(crtc_state);
}
void intel_vrr_set_fixed_rr_timings(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (!intel_vrr_possible(crtc_state))
return;
intel_de_write(display, TRANS_VRR_VMIN(display, cpu_transcoder),
intel_vrr_fixed_rr_vmin(crtc_state) - 1);
intel_de_write(display, TRANS_VRR_VMAX(display, cpu_transcoder),
intel_vrr_fixed_rr_vmax(crtc_state) - 1);
intel_de_write(display, TRANS_VRR_FLIPLINE(display, cpu_transcoder),
intel_vrr_fixed_rr_flipline(crtc_state) - 1);
}
static
void intel_vrr_compute_fixed_rr_timings(struct intel_crtc_state *crtc_state)
{
/*
* For fixed rr, vmin = vmax = flipline.
* vmin is already set to crtc_vtotal set vmax and flipline the same.
*/
crtc_state->vrr.vmax = crtc_state->hw.adjusted_mode.crtc_vtotal;
crtc_state->vrr.flipline = crtc_state->hw.adjusted_mode.crtc_vtotal;
}
static
int intel_vrr_compute_vmin(struct intel_crtc_state *crtc_state)
{
/*
* To make fixed rr and vrr work seamless the guardband/pipeline full
* should be set such that it satisfies both the fixed and variable
* timings.
* For this set the vmin as crtc_vtotal. With this we never need to
* change anything to do with the guardband.
*/
return crtc_state->hw.adjusted_mode.crtc_vtotal;
}
static
int intel_vrr_compute_vmax(struct intel_connector *connector,
const struct drm_display_mode *adjusted_mode)
{
const struct drm_display_info *info = &connector->base.display_info;
int vmax;
vmax = adjusted_mode->crtc_clock * 1000 /
(adjusted_mode->crtc_htotal * info->monitor_range.min_vfreq);
vmax = max_t(int, vmax, adjusted_mode->crtc_vtotal);
return vmax;
}
void
intel_vrr_compute_config(struct intel_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_connector *connector =
to_intel_connector(conn_state->connector);
struct intel_dp *intel_dp = intel_attached_dp(connector);
bool is_edp = intel_dp_is_edp(intel_dp);
struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
int vmin, vmax;
if (!HAS_VRR(display))
return;
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
return;
crtc_state->vrr.in_range =
intel_vrr_is_in_range(connector, drm_mode_vrefresh(adjusted_mode));
/*
* Allow fixed refresh rate with VRR Timing Generator.
* For now set the vrr.in_range to 0, to allow fixed_rr but skip actual
* VRR and LRR.
* #TODO For actual VRR with joiner, we need to figure out how to
* correctly sequence transcoder level stuff vs. pipe level stuff
* in the commit.
*/
if (crtc_state->joiner_pipes)
crtc_state->vrr.in_range = false;
vmin = intel_vrr_compute_vmin(crtc_state);
if (crtc_state->vrr.in_range) {
if (HAS_LRR(display))
crtc_state->update_lrr = true;
vmax = intel_vrr_compute_vmax(connector, adjusted_mode);
} else {
vmax = vmin;
}
crtc_state->vrr.vmin = vmin;
crtc_state->vrr.vmax = vmax;
crtc_state->vrr.flipline = crtc_state->vrr.vmin;
if (crtc_state->uapi.vrr_enabled && vmin < vmax)
intel_vrr_compute_vrr_timings(crtc_state);
else if (is_cmrr_frac_required(crtc_state) && is_edp)
intel_vrr_compute_cmrr_timings(crtc_state);
else
intel_vrr_compute_fixed_rr_timings(crtc_state);
/*
* flipline determines the min vblank length the hardware will
* generate, and on ICL/TGL flipline>=vmin+1, hence we reduce
* vmin by one to make sure we can get the actual min vblank length.
*/
crtc_state->vrr.vmin -= intel_vrr_flipline_offset(display);
if (HAS_AS_SDP(display)) {
crtc_state->vrr.vsync_start =
(crtc_state->hw.adjusted_mode.crtc_vtotal -
crtc_state->hw.adjusted_mode.vsync_start);
crtc_state->vrr.vsync_end =
(crtc_state->hw.adjusted_mode.crtc_vtotal -
crtc_state->hw.adjusted_mode.vsync_end);
}
}
void intel_vrr_compute_config_late(struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
if (!intel_vrr_possible(crtc_state))
return;
if (DISPLAY_VER(display) >= 13) {
crtc_state->vrr.guardband =
crtc_state->vrr.vmin - adjusted_mode->crtc_vblank_start;
} else {
/* hardware imposes one extra scanline somewhere */
crtc_state->vrr.pipeline_full =
min(255, crtc_state->vrr.vmin - adjusted_mode->crtc_vblank_start -
crtc_state->framestart_delay - 1);
/*
* vmin/vmax/flipline also need to be adjusted by
* the vblank delay to maintain correct vtotals.
*/
crtc_state->vrr.vmin -= intel_vrr_real_vblank_delay(crtc_state);
crtc_state->vrr.vmax -= intel_vrr_real_vblank_delay(crtc_state);
crtc_state->vrr.flipline -= intel_vrr_real_vblank_delay(crtc_state);
}
}
static u32 trans_vrr_ctl(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
if (DISPLAY_VER(display) >= 14)
return VRR_CTL_FLIP_LINE_EN |
XELPD_VRR_CTL_VRR_GUARDBAND(crtc_state->vrr.guardband);
else if (DISPLAY_VER(display) >= 13)
return VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN |
XELPD_VRR_CTL_VRR_GUARDBAND(crtc_state->vrr.guardband);
else
return VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN |
VRR_CTL_PIPELINE_FULL(crtc_state->vrr.pipeline_full) |
VRR_CTL_PIPELINE_FULL_OVERRIDE;
}
void intel_vrr_set_transcoder_timings(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
/*
* This bit seems to have two meanings depending on the platform:
* TGL: generate VRR "safe window" for DSB vblank waits
* ADL/DG2: make TRANS_SET_CONTEXT_LATENCY effective with VRR
*/
if (IS_DISPLAY_VER(display, 12, 13))
intel_de_rmw(display, CHICKEN_TRANS(display, cpu_transcoder),
0, PIPE_VBLANK_WITH_DELAY);
if (!intel_vrr_possible(crtc_state)) {
intel_de_write(display,
TRANS_VRR_CTL(display, cpu_transcoder), 0);
return;
}
if (crtc_state->cmrr.enable) {
intel_de_write(display, TRANS_CMRR_M_HI(display, cpu_transcoder),
upper_32_bits(crtc_state->cmrr.cmrr_m));
intel_de_write(display, TRANS_CMRR_M_LO(display, cpu_transcoder),
lower_32_bits(crtc_state->cmrr.cmrr_m));
intel_de_write(display, TRANS_CMRR_N_HI(display, cpu_transcoder),
upper_32_bits(crtc_state->cmrr.cmrr_n));
intel_de_write(display, TRANS_CMRR_N_LO(display, cpu_transcoder),
lower_32_bits(crtc_state->cmrr.cmrr_n));
}
intel_vrr_set_fixed_rr_timings(crtc_state);
if (!intel_vrr_always_use_vrr_tg(display) && !crtc_state->vrr.enable)
intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder),
trans_vrr_ctl(crtc_state));
if (HAS_AS_SDP(display))
intel_de_write(display,
TRANS_VRR_VSYNC(display, cpu_transcoder),
VRR_VSYNC_END(crtc_state->vrr.vsync_end) |
VRR_VSYNC_START(crtc_state->vrr.vsync_start));
}
void intel_vrr_send_push(struct intel_dsb *dsb,
const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (!crtc_state->vrr.enable)
return;
if (dsb)
intel_dsb_nonpost_start(dsb);
intel_de_write_dsb(display, dsb,
TRANS_PUSH(display, cpu_transcoder),
TRANS_PUSH_EN | TRANS_PUSH_SEND);
if (dsb)
intel_dsb_nonpost_end(dsb);
}
void intel_vrr_check_push_sent(struct intel_dsb *dsb,
const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (!crtc_state->vrr.enable)
return;
/*
* Make sure the push send bit has cleared. This should
* already be the case as long as the caller makes sure
* this is called after the delayed vblank has occurred.
*/
if (dsb) {
int wait_us, count;
wait_us = 2;
count = 1;
/*
* If the bit hasn't cleared the DSB will
* raise the poll error interrupt.
*/
intel_dsb_poll(dsb, TRANS_PUSH(display, cpu_transcoder),
TRANS_PUSH_SEND, 0, wait_us, count);
} else {
if (intel_vrr_is_push_sent(crtc_state))
drm_err(display->drm, "[CRTC:%d:%s] VRR push send still pending\n",
crtc->base.base.id, crtc->base.name);
}
}
bool intel_vrr_is_push_sent(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (!crtc_state->vrr.enable)
return false;
return intel_de_read(display, TRANS_PUSH(display, cpu_transcoder)) & TRANS_PUSH_SEND;
}
bool intel_vrr_always_use_vrr_tg(struct intel_display *display)
{
if (!HAS_VRR(display))
return false;
if (DISPLAY_VER(display) >= 30)
return true;
return false;
}
void intel_vrr_enable(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (!crtc_state->vrr.enable)
return;
intel_de_write(display, TRANS_VRR_VMIN(display, cpu_transcoder),
crtc_state->vrr.vmin - 1);
intel_de_write(display, TRANS_VRR_VMAX(display, cpu_transcoder),
crtc_state->vrr.vmax - 1);
intel_de_write(display, TRANS_VRR_FLIPLINE(display, cpu_transcoder),
crtc_state->vrr.flipline - 1);
intel_de_write(display, TRANS_PUSH(display, cpu_transcoder),
TRANS_PUSH_EN);
if (!intel_vrr_always_use_vrr_tg(display)) {
if (crtc_state->cmrr.enable) {
intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder),
VRR_CTL_VRR_ENABLE | VRR_CTL_CMRR_ENABLE |
trans_vrr_ctl(crtc_state));
} else {
intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder),
VRR_CTL_VRR_ENABLE | trans_vrr_ctl(crtc_state));
}
}
}
void intel_vrr_disable(const struct intel_crtc_state *old_crtc_state)
{
struct intel_display *display = to_intel_display(old_crtc_state);
enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
if (!old_crtc_state->vrr.enable)
return;
if (!intel_vrr_always_use_vrr_tg(display)) {
intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder),
trans_vrr_ctl(old_crtc_state));
intel_de_wait_for_clear(display,
TRANS_VRR_STATUS(display, cpu_transcoder),
VRR_STATUS_VRR_EN_LIVE, 1000);
intel_de_write(display, TRANS_PUSH(display, cpu_transcoder), 0);
}
intel_vrr_set_fixed_rr_timings(old_crtc_state);
}
void intel_vrr_transcoder_enable(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (!HAS_VRR(display))
return;
if (!intel_vrr_possible(crtc_state))
return;
if (!intel_vrr_always_use_vrr_tg(display)) {
intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder),
trans_vrr_ctl(crtc_state));
return;
}
intel_de_write(display, TRANS_PUSH(display, cpu_transcoder),
TRANS_PUSH_EN);
intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder),
VRR_CTL_VRR_ENABLE | trans_vrr_ctl(crtc_state));
}
void intel_vrr_transcoder_disable(const struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (!HAS_VRR(display))
return;
if (!intel_vrr_possible(crtc_state))
return;
intel_de_write(display, TRANS_VRR_CTL(display, cpu_transcoder), 0);
intel_de_wait_for_clear(display, TRANS_VRR_STATUS(display, cpu_transcoder),
VRR_STATUS_VRR_EN_LIVE, 1000);
intel_de_write(display, TRANS_PUSH(display, cpu_transcoder), 0);
}
bool intel_vrr_is_fixed_rr(const struct intel_crtc_state *crtc_state)
{
return crtc_state->vrr.flipline &&
crtc_state->vrr.flipline == crtc_state->vrr.vmax &&
crtc_state->vrr.flipline == intel_vrr_vmin_flipline(crtc_state);
}
void intel_vrr_get_config(struct intel_crtc_state *crtc_state)
{
struct intel_display *display = to_intel_display(crtc_state);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 trans_vrr_ctl, trans_vrr_vsync;
bool vrr_enable;
trans_vrr_ctl = intel_de_read(display,
TRANS_VRR_CTL(display, cpu_transcoder));
if (HAS_CMRR(display))
crtc_state->cmrr.enable = (trans_vrr_ctl & VRR_CTL_CMRR_ENABLE);
if (crtc_state->cmrr.enable) {
crtc_state->cmrr.cmrr_n =
intel_de_read64_2x32(display, TRANS_CMRR_N_LO(display, cpu_transcoder),
TRANS_CMRR_N_HI(display, cpu_transcoder));
crtc_state->cmrr.cmrr_m =
intel_de_read64_2x32(display, TRANS_CMRR_M_LO(display, cpu_transcoder),
TRANS_CMRR_M_HI(display, cpu_transcoder));
}
if (DISPLAY_VER(display) >= 13)
crtc_state->vrr.guardband =
REG_FIELD_GET(XELPD_VRR_CTL_VRR_GUARDBAND_MASK, trans_vrr_ctl);
else
if (trans_vrr_ctl & VRR_CTL_PIPELINE_FULL_OVERRIDE)
crtc_state->vrr.pipeline_full =
REG_FIELD_GET(VRR_CTL_PIPELINE_FULL_MASK, trans_vrr_ctl);
if (trans_vrr_ctl & VRR_CTL_FLIP_LINE_EN) {
crtc_state->vrr.flipline = intel_de_read(display,
TRANS_VRR_FLIPLINE(display, cpu_transcoder)) + 1;
crtc_state->vrr.vmax = intel_de_read(display,
TRANS_VRR_VMAX(display, cpu_transcoder)) + 1;
crtc_state->vrr.vmin = intel_de_read(display,
TRANS_VRR_VMIN(display, cpu_transcoder)) + 1;
/*
* For platforms that always use VRR Timing Generator, the VTOTAL.Vtotal
* bits are not filled. Since for these platforms TRAN_VMIN is always
* filled with crtc_vtotal, use TRAN_VRR_VMIN to get the vtotal for
* adjusted_mode.
*/
if (intel_vrr_always_use_vrr_tg(display))
crtc_state->hw.adjusted_mode.crtc_vtotal =
intel_vrr_vmin_vtotal(crtc_state);
if (HAS_AS_SDP(display)) {
trans_vrr_vsync =
intel_de_read(display,
TRANS_VRR_VSYNC(display, cpu_transcoder));
crtc_state->vrr.vsync_start =
REG_FIELD_GET(VRR_VSYNC_START_MASK, trans_vrr_vsync);
crtc_state->vrr.vsync_end =
REG_FIELD_GET(VRR_VSYNC_END_MASK, trans_vrr_vsync);
}
}
vrr_enable = trans_vrr_ctl & VRR_CTL_VRR_ENABLE;
if (intel_vrr_always_use_vrr_tg(display))
crtc_state->vrr.enable = vrr_enable && !intel_vrr_is_fixed_rr(crtc_state);
else
crtc_state->vrr.enable = vrr_enable;
/*
* #TODO: For Both VRR and CMRR the flag I915_MODE_FLAG_VRR is set for mode_flags.
* Since CMRR is currently disabled, set this flag for VRR for now.
* Need to keep this in mind while re-enabling CMRR.
*/
if (crtc_state->vrr.enable)
crtc_state->mode_flags |= I915_MODE_FLAG_VRR;
}
|