1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* EN751221 Interrupt Controller Driver.
*
* The EcoNet EN751221 Interrupt Controller is a simple interrupt controller
* designed for the MIPS 34Kc MT SMP processor with 2 VPEs. Each interrupt can
* be routed to either VPE but not both, so to support per-CPU interrupts, a
* secondary IRQ number is allocated to control masking/unmasking on VPE#1. In
* this driver, these are called "shadow interrupts". The assignment of shadow
* interrupts is defined by the SoC integrator when wiring the interrupt lines,
* so they are configurable in the device tree.
*
* If an interrupt (say 30) needs per-CPU capability, the SoC integrator
* allocates another IRQ number (say 29) to be its shadow. The device tree
* reflects this by adding the pair <30 29> to the "econet,shadow-interrupts"
* property.
*
* When VPE#1 requests IRQ 30, the driver manipulates the mask bit for IRQ 29,
* telling the hardware to mask VPE#1's view of IRQ 30.
*
* Copyright (C) 2025 Caleb James DeLisle <cjd@cjdns.fr>
*/
#include <linux/cleanup.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/irqdomain.h>
#include <linux/irqchip.h>
#include <linux/irqchip/chained_irq.h>
#define IRQ_COUNT 40
#define NOT_PERCPU 0xff
#define IS_SHADOW 0xfe
#define REG_MASK0 0x04
#define REG_MASK1 0x50
#define REG_PENDING0 0x08
#define REG_PENDING1 0x54
/**
* @membase: Base address of the interrupt controller registers
* @interrupt_shadows: Array of all interrupts, for each value,
* - NOT_PERCPU: This interrupt is not per-cpu, so it has no shadow
* - IS_SHADOW: This interrupt is a shadow of another per-cpu interrupt
* - else: This is a per-cpu interrupt whose shadow is the value
*/
static struct {
void __iomem *membase;
u8 interrupt_shadows[IRQ_COUNT];
} econet_intc __ro_after_init;
static DEFINE_RAW_SPINLOCK(irq_lock);
/* IRQs must be disabled */
static void econet_wreg(u32 reg, u32 val, u32 mask)
{
u32 v;
guard(raw_spinlock)(&irq_lock);
v = ioread32(econet_intc.membase + reg);
v &= ~mask;
v |= val & mask;
iowrite32(v, econet_intc.membase + reg);
}
/* IRQs must be disabled */
static void econet_chmask(u32 hwirq, bool unmask)
{
u32 reg, mask;
u8 shadow;
/*
* If the IRQ is a shadow, it should never be manipulated directly.
* It should only be masked/unmasked as a result of the "real" per-cpu
* irq being manipulated by a thread running on VPE#1.
* If it is per-cpu (has a shadow), and we're on VPE#1, the shadow is what we mask.
* This is single processor only, so smp_processor_id() never exceeds 1.
*/
shadow = econet_intc.interrupt_shadows[hwirq];
if (WARN_ON_ONCE(shadow == IS_SHADOW))
return;
else if (shadow != NOT_PERCPU && smp_processor_id() == 1)
hwirq = shadow;
if (hwirq >= 32) {
reg = REG_MASK1;
mask = BIT(hwirq - 32);
} else {
reg = REG_MASK0;
mask = BIT(hwirq);
}
econet_wreg(reg, unmask ? mask : 0, mask);
}
/* IRQs must be disabled */
static void econet_intc_mask(struct irq_data *d)
{
econet_chmask(d->hwirq, false);
}
/* IRQs must be disabled */
static void econet_intc_unmask(struct irq_data *d)
{
econet_chmask(d->hwirq, true);
}
static void econet_mask_all(void)
{
/* IRQs are generally disabled during init, but guarding here makes it non-obligatory. */
guard(irqsave)();
econet_wreg(REG_MASK0, 0, ~0);
econet_wreg(REG_MASK1, 0, ~0);
}
static void econet_intc_handle_pending(struct irq_domain *d, u32 pending, u32 offset)
{
int hwirq;
while (pending) {
hwirq = fls(pending) - 1;
generic_handle_domain_irq(d, hwirq + offset);
pending &= ~BIT(hwirq);
}
}
static void econet_intc_from_parent(struct irq_desc *desc)
{
struct irq_chip *chip = irq_desc_get_chip(desc);
struct irq_domain *domain;
u32 pending0, pending1;
chained_irq_enter(chip, desc);
pending0 = ioread32(econet_intc.membase + REG_PENDING0);
pending1 = ioread32(econet_intc.membase + REG_PENDING1);
if (unlikely(!(pending0 | pending1))) {
spurious_interrupt();
} else {
domain = irq_desc_get_handler_data(desc);
econet_intc_handle_pending(domain, pending0, 0);
econet_intc_handle_pending(domain, pending1, 32);
}
chained_irq_exit(chip, desc);
}
static const struct irq_chip econet_irq_chip;
static int econet_intc_map(struct irq_domain *d, u32 irq, irq_hw_number_t hwirq)
{
int ret;
if (hwirq >= IRQ_COUNT) {
pr_err("%s: hwirq %lu out of range\n", __func__, hwirq);
return -EINVAL;
} else if (econet_intc.interrupt_shadows[hwirq] == IS_SHADOW) {
pr_err("%s: can't map hwirq %lu, it is a shadow interrupt\n", __func__, hwirq);
return -EINVAL;
}
if (econet_intc.interrupt_shadows[hwirq] == NOT_PERCPU) {
irq_set_chip_and_handler(irq, &econet_irq_chip, handle_level_irq);
} else {
irq_set_chip_and_handler(irq, &econet_irq_chip, handle_percpu_devid_irq);
ret = irq_set_percpu_devid(irq);
if (ret)
pr_warn("%s: Failed irq_set_percpu_devid for %u: %d\n", d->name, irq, ret);
}
irq_set_chip_data(irq, NULL);
return 0;
}
static const struct irq_chip econet_irq_chip = {
.name = "en751221-intc",
.irq_unmask = econet_intc_unmask,
.irq_mask = econet_intc_mask,
.irq_mask_ack = econet_intc_mask,
};
static const struct irq_domain_ops econet_domain_ops = {
.xlate = irq_domain_xlate_onecell,
.map = econet_intc_map
};
static int __init get_shadow_interrupts(struct device_node *node)
{
const char *field = "econet,shadow-interrupts";
int num_shadows;
num_shadows = of_property_count_u32_elems(node, field);
memset(econet_intc.interrupt_shadows, NOT_PERCPU,
sizeof(econet_intc.interrupt_shadows));
if (num_shadows <= 0) {
return 0;
} else if (num_shadows % 2) {
pr_err("%pOF: %s count is odd, ignoring\n", node, field);
return 0;
}
u32 *shadows __free(kfree) = kmalloc_array(num_shadows, sizeof(u32), GFP_KERNEL);
if (!shadows)
return -ENOMEM;
if (of_property_read_u32_array(node, field, shadows, num_shadows)) {
pr_err("%pOF: Failed to read %s\n", node, field);
return -EINVAL;
}
for (int i = 0; i < num_shadows; i += 2) {
u32 shadow = shadows[i + 1];
u32 target = shadows[i];
if (shadow > IRQ_COUNT) {
pr_err("%pOF: %s[%d] shadow(%d) out of range\n",
node, field, i + 1, shadow);
continue;
}
if (target >= IRQ_COUNT) {
pr_err("%pOF: %s[%d] target(%d) out of range\n", node, field, i, target);
continue;
}
if (econet_intc.interrupt_shadows[target] != NOT_PERCPU) {
pr_err("%pOF: %s[%d] target(%d) already has a shadow\n",
node, field, i, target);
continue;
}
if (econet_intc.interrupt_shadows[shadow] != NOT_PERCPU) {
pr_err("%pOF: %s[%d] shadow(%d) already has a target\n",
node, field, i + 1, shadow);
continue;
}
econet_intc.interrupt_shadows[target] = shadow;
econet_intc.interrupt_shadows[shadow] = IS_SHADOW;
}
return 0;
}
static int __init econet_intc_of_init(struct device_node *node, struct device_node *parent)
{
struct irq_domain *domain;
struct resource res;
int ret, irq;
ret = get_shadow_interrupts(node);
if (ret)
return ret;
irq = irq_of_parse_and_map(node, 0);
if (!irq) {
pr_err("%pOF: DT: Failed to get IRQ from 'interrupts'\n", node);
return -EINVAL;
}
if (of_address_to_resource(node, 0, &res)) {
pr_err("%pOF: DT: Failed to get 'reg'\n", node);
ret = -EINVAL;
goto err_dispose_mapping;
}
if (!request_mem_region(res.start, resource_size(&res), res.name)) {
pr_err("%pOF: Failed to request memory\n", node);
ret = -EBUSY;
goto err_dispose_mapping;
}
econet_intc.membase = ioremap(res.start, resource_size(&res));
if (!econet_intc.membase) {
pr_err("%pOF: Failed to remap membase\n", node);
ret = -ENOMEM;
goto err_release;
}
econet_mask_all();
domain = irq_domain_create_linear(of_fwnode_handle(node), IRQ_COUNT,
&econet_domain_ops, NULL);
if (!domain) {
pr_err("%pOF: Failed to add irqdomain\n", node);
ret = -ENOMEM;
goto err_unmap;
}
irq_set_chained_handler_and_data(irq, econet_intc_from_parent, domain);
return 0;
err_unmap:
iounmap(econet_intc.membase);
err_release:
release_mem_region(res.start, resource_size(&res));
err_dispose_mapping:
irq_dispose_mapping(irq);
return ret;
}
IRQCHIP_DECLARE(econet_en751221_intc, "econet,en751221-intc", econet_intc_of_init);
|