summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/raw/loongson1-nand-controller.c
blob: ef8e4f9ce2877b9a62591eb1befa8e1758c80b2f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * NAND Controller Driver for Loongson-1 SoC
 *
 * Copyright (C) 2015-2025 Keguang Zhang <keguang.zhang@gmail.com>
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/iopoll.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/sizes.h>

/* Loongson-1 NAND Controller Registers */
#define LS1X_NAND_CMD		0x0
#define LS1X_NAND_ADDR1		0x4
#define LS1X_NAND_ADDR2		0x8
#define LS1X_NAND_TIMING	0xc
#define LS1X_NAND_IDL		0x10
#define LS1X_NAND_IDH_STATUS	0x14
#define LS1X_NAND_PARAM		0x18
#define LS1X_NAND_OP_NUM	0x1c

/* NAND Command Register Bits */
#define LS1X_NAND_CMD_OP_DONE		BIT(10)
#define LS1X_NAND_CMD_OP_SPARE		BIT(9)
#define LS1X_NAND_CMD_OP_MAIN		BIT(8)
#define LS1X_NAND_CMD_STATUS		BIT(7)
#define LS1X_NAND_CMD_RESET		BIT(6)
#define LS1X_NAND_CMD_READID		BIT(5)
#define LS1X_NAND_CMD_BLOCKS_ERASE	BIT(4)
#define LS1X_NAND_CMD_ERASE		BIT(3)
#define LS1X_NAND_CMD_WRITE		BIT(2)
#define LS1X_NAND_CMD_READ		BIT(1)
#define LS1X_NAND_CMD_VALID		BIT(0)

#define LS1X_NAND_WAIT_CYCLE_MASK	GENMASK(7, 0)
#define LS1X_NAND_HOLD_CYCLE_MASK	GENMASK(15, 8)
#define LS1X_NAND_CELL_SIZE_MASK	GENMASK(11, 8)

#define LS1X_NAND_COL_ADDR_CYC		2U
#define LS1X_NAND_MAX_ADDR_CYC		5U

#define BITS_PER_WORD		(4 * BITS_PER_BYTE)

struct ls1x_nand_host;

struct ls1x_nand_op {
	char addrs[LS1X_NAND_MAX_ADDR_CYC];
	unsigned int naddrs;
	unsigned int addrs_offset;
	unsigned int aligned_offset;
	unsigned int cmd_reg;
	unsigned int row_start;
	unsigned int rdy_timeout_ms;
	unsigned int orig_len;
	bool is_readid;
	bool is_erase;
	bool is_write;
	bool is_read;
	bool is_change_column;
	size_t len;
	char *buf;
};

struct ls1x_nand_data {
	unsigned int status_field;
	unsigned int op_scope_field;
	unsigned int hold_cycle;
	unsigned int wait_cycle;
	void (*set_addr)(struct ls1x_nand_host *host, struct ls1x_nand_op *op);
};

struct ls1x_nand_host {
	struct device *dev;
	struct nand_chip chip;
	struct nand_controller controller;
	const struct ls1x_nand_data *data;
	void __iomem *reg_base;
	struct regmap *regmap;
	/* DMA Engine stuff */
	dma_addr_t dma_base;
	struct dma_chan *dma_chan;
	dma_cookie_t dma_cookie;
	struct completion dma_complete;
};

static const struct regmap_config ls1x_nand_regmap_config = {
	.reg_bits = 32,
	.val_bits = 32,
	.reg_stride = 4,
};

static int ls1x_nand_op_cmd_mapping(struct nand_chip *chip, struct ls1x_nand_op *op, u8 opcode)
{
	struct ls1x_nand_host *host = nand_get_controller_data(chip);

	op->row_start = chip->page_shift + 1;

	/* The controller abstracts the following NAND operations. */
	switch (opcode) {
	case NAND_CMD_STATUS:
		op->cmd_reg = LS1X_NAND_CMD_STATUS;
		break;
	case NAND_CMD_RESET:
		op->cmd_reg = LS1X_NAND_CMD_RESET;
		break;
	case NAND_CMD_READID:
		op->is_readid = true;
		op->cmd_reg = LS1X_NAND_CMD_READID;
		break;
	case NAND_CMD_ERASE1:
		op->is_erase = true;
		op->addrs_offset = LS1X_NAND_COL_ADDR_CYC;
		break;
	case NAND_CMD_ERASE2:
		if (!op->is_erase)
			return -EOPNOTSUPP;
		/* During erasing, row_start differs from the default value. */
		op->row_start = chip->page_shift;
		op->cmd_reg = LS1X_NAND_CMD_ERASE;
		break;
	case NAND_CMD_SEQIN:
		op->is_write = true;
		break;
	case NAND_CMD_PAGEPROG:
		if (!op->is_write)
			return -EOPNOTSUPP;
		op->cmd_reg = LS1X_NAND_CMD_WRITE;
		break;
	case NAND_CMD_READ0:
		op->is_read = true;
		break;
	case NAND_CMD_READSTART:
		if (!op->is_read)
			return -EOPNOTSUPP;
		op->cmd_reg = LS1X_NAND_CMD_READ;
		break;
	case NAND_CMD_RNDOUT:
		op->is_change_column = true;
		break;
	case NAND_CMD_RNDOUTSTART:
		if (!op->is_change_column)
			return -EOPNOTSUPP;
		op->cmd_reg = LS1X_NAND_CMD_READ;
		break;
	default:
		dev_dbg(host->dev, "unsupported opcode: %u\n", opcode);
		return -EOPNOTSUPP;
	}

	return 0;
}

static int ls1x_nand_parse_instructions(struct nand_chip *chip,
					const struct nand_subop *subop, struct ls1x_nand_op *op)
{
	unsigned int op_id;
	int ret;

	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
		const struct nand_op_instr *instr = &subop->instrs[op_id];
		unsigned int offset, naddrs;
		const u8 *addrs;

		switch (instr->type) {
		case NAND_OP_CMD_INSTR:
			ret = ls1x_nand_op_cmd_mapping(chip, op, instr->ctx.cmd.opcode);
			if (ret < 0)
				return ret;

			break;
		case NAND_OP_ADDR_INSTR:
			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
			if (naddrs > LS1X_NAND_MAX_ADDR_CYC)
				return -EOPNOTSUPP;
			op->naddrs = naddrs;
			offset = nand_subop_get_addr_start_off(subop, op_id);
			addrs = &instr->ctx.addr.addrs[offset];
			memcpy(op->addrs + op->addrs_offset, addrs, naddrs);
			break;
		case NAND_OP_DATA_IN_INSTR:
		case NAND_OP_DATA_OUT_INSTR:
			offset = nand_subop_get_data_start_off(subop, op_id);
			op->orig_len = nand_subop_get_data_len(subop, op_id);
			if (instr->type == NAND_OP_DATA_IN_INSTR)
				op->buf = instr->ctx.data.buf.in + offset;
			else if (instr->type == NAND_OP_DATA_OUT_INSTR)
				op->buf = (void *)instr->ctx.data.buf.out + offset;

			break;
		case NAND_OP_WAITRDY_INSTR:
			op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
			break;
		default:
			break;
		}
	}

	return 0;
}

static void ls1b_nand_set_addr(struct ls1x_nand_host *host, struct ls1x_nand_op *op)
{
	struct nand_chip *chip = &host->chip;
	int i;

	for (i = 0; i < LS1X_NAND_MAX_ADDR_CYC; i++) {
		int shift, mask, val;

		if (i < LS1X_NAND_COL_ADDR_CYC) {
			shift = i * BITS_PER_BYTE;
			mask = (u32)0xff << shift;
			mask &= GENMASK(chip->page_shift, 0);
			val = (u32)op->addrs[i] << shift;
			regmap_update_bits(host->regmap, LS1X_NAND_ADDR1, mask, val);
		} else if (!op->is_change_column) {
			shift = op->row_start + (i - LS1X_NAND_COL_ADDR_CYC) * BITS_PER_BYTE;
			mask = (u32)0xff << shift;
			val = (u32)op->addrs[i] << shift;
			regmap_update_bits(host->regmap, LS1X_NAND_ADDR1, mask, val);

			if (i == 4) {
				mask = (u32)0xff >> (BITS_PER_WORD - shift);
				val = (u32)op->addrs[i] >> (BITS_PER_WORD - shift);
				regmap_update_bits(host->regmap, LS1X_NAND_ADDR2, mask, val);
			}
		}
	}
}

static void ls1c_nand_set_addr(struct ls1x_nand_host *host, struct ls1x_nand_op *op)
{
	int i;

	for (i = 0; i < LS1X_NAND_MAX_ADDR_CYC; i++) {
		int shift, mask, val;

		if (i < LS1X_NAND_COL_ADDR_CYC) {
			shift = i * BITS_PER_BYTE;
			mask = (u32)0xff << shift;
			val = (u32)op->addrs[i] << shift;
			regmap_update_bits(host->regmap, LS1X_NAND_ADDR1, mask, val);
		} else if (!op->is_change_column) {
			shift = (i - LS1X_NAND_COL_ADDR_CYC) * BITS_PER_BYTE;
			mask = (u32)0xff << shift;
			val = (u32)op->addrs[i] << shift;
			regmap_update_bits(host->regmap, LS1X_NAND_ADDR2, mask, val);
		}
	}
}

static void ls1x_nand_trigger_op(struct ls1x_nand_host *host, struct ls1x_nand_op *op)
{
	struct nand_chip *chip = &host->chip;
	struct mtd_info *mtd = nand_to_mtd(chip);
	int col0 = op->addrs[0];
	short col;

	if (!IS_ALIGNED(col0, chip->buf_align)) {
		col0 = ALIGN_DOWN(op->addrs[0], chip->buf_align);
		op->aligned_offset = op->addrs[0] - col0;
		op->addrs[0] = col0;
	}

	if (host->data->set_addr)
		host->data->set_addr(host, op);

	/* set operation length */
	if (op->is_write || op->is_read || op->is_change_column)
		op->len = ALIGN(op->orig_len + op->aligned_offset, chip->buf_align);
	else if (op->is_erase)
		op->len = 1;
	else
		op->len = op->orig_len;

	writel(op->len, host->reg_base + LS1X_NAND_OP_NUM);

	/* set operation area and scope */
	col = op->addrs[1] << BITS_PER_BYTE | op->addrs[0];
	if (op->orig_len && !op->is_readid) {
		unsigned int op_scope = 0;

		if (col < mtd->writesize) {
			op->cmd_reg |= LS1X_NAND_CMD_OP_MAIN;
			op_scope = mtd->writesize;
		}

		op->cmd_reg |= LS1X_NAND_CMD_OP_SPARE;
		op_scope += mtd->oobsize;

		op_scope <<= __ffs(host->data->op_scope_field);
		regmap_update_bits(host->regmap, LS1X_NAND_PARAM,
				   host->data->op_scope_field, op_scope);
	}

	/* set command */
	writel(op->cmd_reg, host->reg_base + LS1X_NAND_CMD);

	/* trigger operation */
	regmap_write_bits(host->regmap, LS1X_NAND_CMD, LS1X_NAND_CMD_VALID, LS1X_NAND_CMD_VALID);
}

static int ls1x_nand_wait_for_op_done(struct ls1x_nand_host *host, struct ls1x_nand_op *op)
{
	unsigned int val;
	int ret = 0;

	if (op->rdy_timeout_ms) {
		ret = regmap_read_poll_timeout(host->regmap, LS1X_NAND_CMD,
					       val, val & LS1X_NAND_CMD_OP_DONE,
					       0, op->rdy_timeout_ms * MSEC_PER_SEC);
		if (ret)
			dev_err(host->dev, "operation failed\n");
	}

	return ret;
}

static void ls1x_nand_dma_callback(void *data)
{
	struct ls1x_nand_host *host = (struct ls1x_nand_host *)data;
	struct dma_chan *chan = host->dma_chan;
	struct device *dev = chan->device->dev;
	enum dma_status status;

	status = dmaengine_tx_status(chan, host->dma_cookie, NULL);
	if (likely(status == DMA_COMPLETE)) {
		dev_dbg(dev, "DMA complete with cookie=%d\n", host->dma_cookie);
		complete(&host->dma_complete);
	} else {
		dev_err(dev, "DMA error with cookie=%d\n", host->dma_cookie);
	}
}

static int ls1x_nand_dma_transfer(struct ls1x_nand_host *host, struct ls1x_nand_op *op)
{
	struct nand_chip *chip = &host->chip;
	struct dma_chan *chan = host->dma_chan;
	struct device *dev = chan->device->dev;
	struct dma_async_tx_descriptor *desc;
	enum dma_data_direction data_dir = op->is_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
	enum dma_transfer_direction xfer_dir = op->is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM;
	void *buf = op->buf;
	char *dma_buf = NULL;
	dma_addr_t dma_addr;
	int ret;

	if (IS_ALIGNED((uintptr_t)buf, chip->buf_align) &&
	    IS_ALIGNED(op->orig_len, chip->buf_align)) {
		dma_addr = dma_map_single(dev, buf, op->orig_len, data_dir);
		if (dma_mapping_error(dev, dma_addr)) {
			dev_err(dev, "failed to map DMA buffer\n");
			return -ENXIO;
		}
	} else if (!op->is_write) {
		dma_buf = dma_alloc_coherent(dev, op->len, &dma_addr, GFP_KERNEL);
		if (!dma_buf)
			return -ENOMEM;
	} else {
		dev_err(dev, "subpage writing not supported\n");
		return -EOPNOTSUPP;
	}

	desc = dmaengine_prep_slave_single(chan, dma_addr, op->len, xfer_dir, DMA_PREP_INTERRUPT);
	if (!desc) {
		dev_err(dev, "failed to prepare DMA descriptor\n");
		ret = -ENOMEM;
		goto err;
	}
	desc->callback = ls1x_nand_dma_callback;
	desc->callback_param = host;

	host->dma_cookie = dmaengine_submit(desc);
	ret = dma_submit_error(host->dma_cookie);
	if (ret) {
		dev_err(dev, "failed to submit DMA descriptor\n");
		goto err;
	}

	dev_dbg(dev, "issue DMA with cookie=%d\n", host->dma_cookie);
	dma_async_issue_pending(chan);

	if (!wait_for_completion_timeout(&host->dma_complete, msecs_to_jiffies(1000))) {
		dmaengine_terminate_sync(chan);
		reinit_completion(&host->dma_complete);
		ret = -ETIMEDOUT;
		goto err;
	}

	if (dma_buf)
		memcpy(buf, dma_buf + op->aligned_offset, op->orig_len);
err:
	if (dma_buf)
		dma_free_coherent(dev, op->len, dma_buf, dma_addr);
	else
		dma_unmap_single(dev, dma_addr, op->orig_len, data_dir);

	return ret;
}

static int ls1x_nand_data_type_exec(struct nand_chip *chip, const struct nand_subop *subop)
{
	struct ls1x_nand_host *host = nand_get_controller_data(chip);
	struct ls1x_nand_op op = {};
	int ret;

	ret = ls1x_nand_parse_instructions(chip, subop, &op);
	if (ret)
		return ret;

	ls1x_nand_trigger_op(host, &op);

	ret = ls1x_nand_dma_transfer(host, &op);
	if (ret)
		return ret;

	return ls1x_nand_wait_for_op_done(host, &op);
}

static int ls1x_nand_misc_type_exec(struct nand_chip *chip,
				    const struct nand_subop *subop, struct ls1x_nand_op *op)
{
	struct ls1x_nand_host *host = nand_get_controller_data(chip);
	int ret;

	ret = ls1x_nand_parse_instructions(chip, subop, op);
	if (ret)
		return ret;

	ls1x_nand_trigger_op(host, op);

	return ls1x_nand_wait_for_op_done(host, op);
}

static int ls1x_nand_zerolen_type_exec(struct nand_chip *chip, const struct nand_subop *subop)
{
	struct ls1x_nand_op op = {};

	return ls1x_nand_misc_type_exec(chip, subop, &op);
}

static int ls1x_nand_read_id_type_exec(struct nand_chip *chip, const struct nand_subop *subop)
{
	struct ls1x_nand_host *host = nand_get_controller_data(chip);
	struct ls1x_nand_op op = {};
	int i, ret;
	union {
		char ids[5];
		struct {
			int idl;
			char idh;
		};
	} nand_id;

	ret = ls1x_nand_misc_type_exec(chip, subop, &op);
	if (ret)
		return ret;

	nand_id.idl = readl(host->reg_base + LS1X_NAND_IDL);
	nand_id.idh = readb(host->reg_base + LS1X_NAND_IDH_STATUS);

	for (i = 0; i < min(sizeof(nand_id.ids), op.orig_len); i++)
		op.buf[i] = nand_id.ids[sizeof(nand_id.ids) - 1 - i];

	return ret;
}

static int ls1x_nand_read_status_type_exec(struct nand_chip *chip, const struct nand_subop *subop)
{
	struct ls1x_nand_host *host = nand_get_controller_data(chip);
	struct ls1x_nand_op op = {};
	int val, ret;

	ret = ls1x_nand_misc_type_exec(chip, subop, &op);
	if (ret)
		return ret;

	val = readl(host->reg_base + LS1X_NAND_IDH_STATUS);
	val &= ~host->data->status_field;
	op.buf[0] = val << ffs(host->data->status_field);

	return ret;
}

static const struct nand_op_parser ls1x_nand_op_parser = NAND_OP_PARSER(
	NAND_OP_PARSER_PATTERN(
		ls1x_nand_read_id_type_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_ADDR_ELEM(false, LS1X_NAND_MAX_ADDR_CYC),
		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
	NAND_OP_PARSER_PATTERN(
		ls1x_nand_read_status_type_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
	NAND_OP_PARSER_PATTERN(
		ls1x_nand_zerolen_type_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
	NAND_OP_PARSER_PATTERN(
		ls1x_nand_zerolen_type_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_ADDR_ELEM(false, LS1X_NAND_MAX_ADDR_CYC),
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
	NAND_OP_PARSER_PATTERN(
		ls1x_nand_data_type_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_ADDR_ELEM(false, LS1X_NAND_MAX_ADDR_CYC),
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 0)),
	NAND_OP_PARSER_PATTERN(
		ls1x_nand_data_type_exec,
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_ADDR_ELEM(false, LS1X_NAND_MAX_ADDR_CYC),
		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 0),
		NAND_OP_PARSER_PAT_CMD_ELEM(false),
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)),
	);

static int ls1x_nand_is_valid_cmd(u8 opcode)
{
	if (opcode == NAND_CMD_STATUS || opcode == NAND_CMD_RESET || opcode == NAND_CMD_READID)
		return 0;

	return -EOPNOTSUPP;
}

static int ls1x_nand_is_valid_cmd_seq(u8 opcode1, u8 opcode2)
{
	if (opcode1 == NAND_CMD_RNDOUT && opcode2 == NAND_CMD_RNDOUTSTART)
		return 0;

	if (opcode1 == NAND_CMD_READ0 && opcode2 == NAND_CMD_READSTART)
		return 0;

	if (opcode1 == NAND_CMD_ERASE1 && opcode2 == NAND_CMD_ERASE2)
		return 0;

	if (opcode1 == NAND_CMD_SEQIN && opcode2 == NAND_CMD_PAGEPROG)
		return 0;

	return -EOPNOTSUPP;
}

static int ls1x_nand_check_op(struct nand_chip *chip, const struct nand_operation *op)
{
	const struct nand_op_instr *instr1 = NULL, *instr2 = NULL;
	int op_id;

	for (op_id = 0; op_id < op->ninstrs; op_id++) {
		const struct nand_op_instr *instr = &op->instrs[op_id];

		if (instr->type == NAND_OP_CMD_INSTR) {
			if (!instr1)
				instr1 = instr;
			else if (!instr2)
				instr2 = instr;
			else
				break;
		}
	}

	if (!instr1)
		return -EOPNOTSUPP;

	if (!instr2)
		return ls1x_nand_is_valid_cmd(instr1->ctx.cmd.opcode);

	return ls1x_nand_is_valid_cmd_seq(instr1->ctx.cmd.opcode, instr2->ctx.cmd.opcode);
}

static int ls1x_nand_exec_op(struct nand_chip *chip,
			     const struct nand_operation *op, bool check_only)
{
	if (check_only)
		return ls1x_nand_check_op(chip, op);

	return nand_op_parser_exec_op(chip, &ls1x_nand_op_parser, op, check_only);
}

static int ls1x_nand_attach_chip(struct nand_chip *chip)
{
	struct ls1x_nand_host *host = nand_get_controller_data(chip);
	u64 chipsize = nanddev_target_size(&chip->base);
	int cell_size = 0;

	switch (chipsize) {
	case SZ_128M:
		cell_size = 0x0;
		break;
	case SZ_256M:
		cell_size = 0x1;
		break;
	case SZ_512M:
		cell_size = 0x2;
		break;
	case SZ_1G:
		cell_size = 0x3;
		break;
	case SZ_2G:
		cell_size = 0x4;
		break;
	case SZ_4G:
		cell_size = 0x5;
		break;
	case SZ_8G:
		cell_size = 0x6;
		break;
	case SZ_16G:
		cell_size = 0x7;
		break;
	default:
		dev_err(host->dev, "unsupported chip size: %llu MB\n", chipsize);
		return -EINVAL;
	}

	switch (chip->ecc.engine_type) {
	case NAND_ECC_ENGINE_TYPE_NONE:
		break;
	case NAND_ECC_ENGINE_TYPE_SOFT:
		break;
	default:
		return -EINVAL;
	}

	/* set cell size */
	regmap_update_bits(host->regmap, LS1X_NAND_PARAM, LS1X_NAND_CELL_SIZE_MASK,
			   FIELD_PREP(LS1X_NAND_CELL_SIZE_MASK, cell_size));

	regmap_update_bits(host->regmap, LS1X_NAND_TIMING, LS1X_NAND_HOLD_CYCLE_MASK,
			   FIELD_PREP(LS1X_NAND_HOLD_CYCLE_MASK, host->data->hold_cycle));

	regmap_update_bits(host->regmap, LS1X_NAND_TIMING, LS1X_NAND_WAIT_CYCLE_MASK,
			   FIELD_PREP(LS1X_NAND_WAIT_CYCLE_MASK, host->data->wait_cycle));

	chip->ecc.read_page_raw = nand_monolithic_read_page_raw;
	chip->ecc.write_page_raw = nand_monolithic_write_page_raw;

	return 0;
}

static const struct nand_controller_ops ls1x_nand_controller_ops = {
	.exec_op = ls1x_nand_exec_op,
	.attach_chip = ls1x_nand_attach_chip,
};

static void ls1x_nand_controller_cleanup(struct ls1x_nand_host *host)
{
	if (host->dma_chan)
		dma_release_channel(host->dma_chan);
}

static int ls1x_nand_controller_init(struct ls1x_nand_host *host)
{
	struct device *dev = host->dev;
	struct dma_chan *chan;
	struct dma_slave_config cfg = {};
	int ret;

	host->regmap = devm_regmap_init_mmio(dev, host->reg_base, &ls1x_nand_regmap_config);
	if (IS_ERR(host->regmap))
		return dev_err_probe(dev, PTR_ERR(host->regmap), "failed to init regmap\n");

	chan = dma_request_chan(dev, "rxtx");
	if (IS_ERR(chan))
		return dev_err_probe(dev, PTR_ERR(chan), "failed to request DMA channel\n");
	host->dma_chan = chan;

	cfg.src_addr = host->dma_base;
	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	cfg.dst_addr = host->dma_base;
	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	ret = dmaengine_slave_config(host->dma_chan, &cfg);
	if (ret)
		return dev_err_probe(dev, ret, "failed to config DMA channel\n");

	init_completion(&host->dma_complete);

	return 0;
}

static int ls1x_nand_chip_init(struct ls1x_nand_host *host)
{
	struct device *dev = host->dev;
	int nchips = of_get_child_count(dev->of_node);
	struct device_node *chip_np;
	struct nand_chip *chip = &host->chip;
	struct mtd_info *mtd = nand_to_mtd(chip);
	int ret;

	if (nchips != 1)
		return dev_err_probe(dev, -EINVAL, "Currently one NAND chip supported\n");

	chip_np = of_get_next_child(dev->of_node, NULL);
	if (!chip_np)
		return dev_err_probe(dev, -ENODEV, "failed to get child node for NAND chip\n");

	nand_set_flash_node(chip, chip_np);
	of_node_put(chip_np);
	if (!mtd->name)
		return dev_err_probe(dev, -EINVAL, "Missing MTD label\n");

	nand_set_controller_data(chip, host);
	chip->controller = &host->controller;
	chip->options = NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA | NAND_BROKEN_XD;
	chip->buf_align = 16;
	mtd->dev.parent = dev;
	mtd->owner = THIS_MODULE;

	ret = nand_scan(chip, 1);
	if (ret)
		return dev_err_probe(dev, ret, "failed to scan NAND chip\n");

	ret = mtd_device_register(mtd, NULL, 0);
	if (ret) {
		nand_cleanup(chip);
		return dev_err_probe(dev, ret, "failed to register MTD device\n");
	}

	return 0;
}

static int ls1x_nand_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	const struct ls1x_nand_data *data;
	struct ls1x_nand_host *host;
	struct resource *res;
	int ret;

	data = of_device_get_match_data(dev);
	if (!data)
		return -ENODEV;

	host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
	if (!host)
		return -ENOMEM;

	host->reg_base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(host->reg_base))
		return PTR_ERR(host->reg_base);

	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-dma");
	if (!res)
		return dev_err_probe(dev, -EINVAL, "Missing 'nand-dma' in reg-names property\n");

	host->dma_base = dma_map_resource(dev, res->start, resource_size(res),
					  DMA_BIDIRECTIONAL, 0);
	if (dma_mapping_error(dev, host->dma_base))
		return -ENXIO;

	host->dev = dev;
	host->data = data;
	host->controller.ops = &ls1x_nand_controller_ops;

	nand_controller_init(&host->controller);

	ret = ls1x_nand_controller_init(host);
	if (ret)
		goto err;

	ret = ls1x_nand_chip_init(host);
	if (ret)
		goto err;

	platform_set_drvdata(pdev, host);

	return 0;
err:
	ls1x_nand_controller_cleanup(host);

	return ret;
}

static void ls1x_nand_remove(struct platform_device *pdev)
{
	struct ls1x_nand_host *host = platform_get_drvdata(pdev);
	struct nand_chip *chip = &host->chip;
	int ret;

	ret = mtd_device_unregister(nand_to_mtd(chip));
	WARN_ON(ret);
	nand_cleanup(chip);
	ls1x_nand_controller_cleanup(host);
}

static const struct ls1x_nand_data ls1b_nand_data = {
	.status_field = GENMASK(15, 8),
	.hold_cycle = 0x2,
	.wait_cycle = 0xc,
	.set_addr = ls1b_nand_set_addr,
};

static const struct ls1x_nand_data ls1c_nand_data = {
	.status_field = GENMASK(23, 16),
	.op_scope_field = GENMASK(29, 16),
	.hold_cycle = 0x2,
	.wait_cycle = 0xc,
	.set_addr = ls1c_nand_set_addr,
};

static const struct of_device_id ls1x_nand_match[] = {
	{
		.compatible = "loongson,ls1b-nand-controller",
		.data = &ls1b_nand_data,
	},
	{
		.compatible = "loongson,ls1c-nand-controller",
		.data = &ls1c_nand_data,
	},
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, ls1x_nand_match);

static struct platform_driver ls1x_nand_driver = {
	.probe = ls1x_nand_probe,
	.remove = ls1x_nand_remove,
	.driver = {
		.name = KBUILD_MODNAME,
		.of_match_table = ls1x_nand_match,
	},
};

module_platform_driver(ls1x_nand_driver);

MODULE_AUTHOR("Keguang Zhang <keguang.zhang@gmail.com>");
MODULE_DESCRIPTION("Loongson-1 NAND Controller Driver");
MODULE_LICENSE("GPL");