summaryrefslogtreecommitdiff
path: root/drivers/pwm/pwm_th1520.rs
blob: 955c359b07fb4fc9d33c595a3c139d094976a4a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2025 Samsung Electronics Co., Ltd.
// Author: Michal Wilczynski <m.wilczynski@samsung.com>

//! Rust T-HEAD TH1520 PWM driver
//!
//! Limitations:
//! - The period and duty cycle are controlled by 32-bit hardware registers,
//!   limiting the maximum resolution.
//! - The driver supports continuous output mode only; one-shot mode is not
//!   implemented.
//! - The controller hardware provides up to 6 PWM channels.
//! - Reconfiguration is glitch free - new period and duty cycle values are
//!   latched and take effect at the start of the next period.
//! - Polarity is handled via a simple hardware inversion bit; arbitrary
//!   duty cycle offsets are not supported.
//! - Disabling a channel is achieved by configuring its duty cycle to zero to
//!   produce a static low output. Clearing the `start` does not reliably
//!   force the static inactive level defined by the `INACTOUT` bit. Hence
//!   this method is not used in this driver.
//!

use core::ops::Deref;
use kernel::{
    c_str,
    clk::Clk,
    device::{Bound, Core, Device},
    devres,
    io::mem::IoMem,
    of, platform,
    prelude::*,
    pwm, time,
};

const TH1520_MAX_PWM_NUM: u32 = 6;

// Register offsets
const fn th1520_pwm_chn_base(n: u32) -> usize {
    (n * 0x20) as usize
}

const fn th1520_pwm_ctrl(n: u32) -> usize {
    th1520_pwm_chn_base(n)
}

const fn th1520_pwm_per(n: u32) -> usize {
    th1520_pwm_chn_base(n) + 0x08
}

const fn th1520_pwm_fp(n: u32) -> usize {
    th1520_pwm_chn_base(n) + 0x0c
}

// Control register bits
const TH1520_PWM_START: u32 = 1 << 0;
const TH1520_PWM_CFG_UPDATE: u32 = 1 << 2;
const TH1520_PWM_CONTINUOUS_MODE: u32 = 1 << 5;
const TH1520_PWM_FPOUT: u32 = 1 << 8;

const TH1520_PWM_REG_SIZE: usize = 0xB0;

fn ns_to_cycles(ns: u64, rate_hz: u64) -> u64 {
    const NSEC_PER_SEC_U64: u64 = time::NSEC_PER_SEC as u64;

    (match ns.checked_mul(rate_hz) {
        Some(product) => product,
        None => u64::MAX,
    }) / NSEC_PER_SEC_U64
}

fn cycles_to_ns(cycles: u64, rate_hz: u64) -> u64 {
    const NSEC_PER_SEC_U64: u64 = time::NSEC_PER_SEC as u64;

    // TODO: Replace with a kernel helper like `mul_u64_u64_div_u64_roundup`
    // once available in Rust.
    let numerator = cycles
        .saturating_mul(NSEC_PER_SEC_U64)
        .saturating_add(rate_hz - 1);

    numerator / rate_hz
}

/// Hardware-specific waveform representation for TH1520.
#[derive(Copy, Clone, Debug, Default)]
struct Th1520WfHw {
    period_cycles: u32,
    duty_cycles: u32,
    ctrl_val: u32,
    enabled: bool,
}

/// The driver's private data struct. It holds all necessary devres managed resources.
#[pin_data(PinnedDrop)]
struct Th1520PwmDriverData {
    #[pin]
    iomem: devres::Devres<IoMem<TH1520_PWM_REG_SIZE>>,
    clk: Clk,
}

// This `unsafe` implementation is a temporary necessity because the underlying `kernel::clk::Clk`
// type does not yet expose `Send` and `Sync` implementations. This block should be removed
// as soon as the clock abstraction provides these guarantees directly.
// TODO: Remove those unsafe impl's when Clk will support them itself.

// SAFETY: The `devres` framework requires the driver's private data to be `Send` and `Sync`.
// We can guarantee this because the PWM core synchronizes all callbacks, preventing concurrent
// access to the contained `iomem` and `clk` resources.
unsafe impl Send for Th1520PwmDriverData {}

// SAFETY: The same reasoning applies as for `Send`. The PWM core's synchronization
// guarantees that it is safe for multiple threads to have shared access (`&self`)
// to the driver data during callbacks.
unsafe impl Sync for Th1520PwmDriverData {}

impl pwm::PwmOps for Th1520PwmDriverData {
    type WfHw = Th1520WfHw;

    fn round_waveform_tohw(
        chip: &pwm::Chip<Self>,
        _pwm: &pwm::Device,
        wf: &pwm::Waveform,
    ) -> Result<pwm::RoundedWaveform<Self::WfHw>> {
        let data = chip.drvdata();
        let mut status = 0;

        if wf.period_length_ns == 0 {
            dev_dbg!(chip.device(), "Requested period is 0, disabling PWM.\n");

            return Ok(pwm::RoundedWaveform {
                status: 0,
                hardware_waveform: Th1520WfHw {
                    enabled: false,
                    ..Default::default()
                },
            });
        }

        let rate_hz = data.clk.rate().as_hz() as u64;

        let mut period_cycles = ns_to_cycles(wf.period_length_ns, rate_hz).min(u64::from(u32::MAX));

        if period_cycles == 0 {
            dev_dbg!(
                chip.device(),
                "Requested period {} ns is too small for clock rate {} Hz, rounding up.\n",
                wf.period_length_ns,
                rate_hz
            );

            period_cycles = 1;
            status = 1;
        }

        let mut duty_cycles = ns_to_cycles(wf.duty_length_ns, rate_hz).min(u64::from(u32::MAX));

        let mut ctrl_val = TH1520_PWM_CONTINUOUS_MODE;

        let is_inversed = wf.duty_length_ns > 0
            && wf.duty_offset_ns > 0
            && wf.duty_offset_ns >= wf.period_length_ns.saturating_sub(wf.duty_length_ns);
        if is_inversed {
            duty_cycles = period_cycles - duty_cycles;
        } else {
            ctrl_val |= TH1520_PWM_FPOUT;
        }

        let wfhw = Th1520WfHw {
            // The cast is safe because the value was clamped with `.min(u64::from(u32::MAX))`.
            period_cycles: period_cycles as u32,
            duty_cycles: duty_cycles as u32,
            ctrl_val,
            enabled: true,
        };

        dev_dbg!(
            chip.device(),
            "Requested: {}/{} ns [+{} ns] -> HW: {}/{} cycles, ctrl 0x{:x}, rate {} Hz\n",
            wf.duty_length_ns,
            wf.period_length_ns,
            wf.duty_offset_ns,
            wfhw.duty_cycles,
            wfhw.period_cycles,
            wfhw.ctrl_val,
            rate_hz
        );

        Ok(pwm::RoundedWaveform {
            status,
            hardware_waveform: wfhw,
        })
    }

    fn round_waveform_fromhw(
        chip: &pwm::Chip<Self>,
        _pwm: &pwm::Device,
        wfhw: &Self::WfHw,
        wf: &mut pwm::Waveform,
    ) -> Result {
        let data = chip.drvdata();
        let rate_hz = data.clk.rate().as_hz() as u64;

        if wfhw.period_cycles == 0 {
            dev_dbg!(
                chip.device(),
                "HW state has zero period, reporting as disabled.\n"
            );
            *wf = pwm::Waveform::default();
            return Ok(());
        }

        wf.period_length_ns = cycles_to_ns(u64::from(wfhw.period_cycles), rate_hz);

        let duty_cycles = u64::from(wfhw.duty_cycles);

        if (wfhw.ctrl_val & TH1520_PWM_FPOUT) != 0 {
            wf.duty_length_ns = cycles_to_ns(duty_cycles, rate_hz);
            wf.duty_offset_ns = 0;
        } else {
            let period_cycles = u64::from(wfhw.period_cycles);
            let original_duty_cycles = period_cycles.saturating_sub(duty_cycles);

            // For an inverted signal, `duty_length_ns` is the high time (period - low_time).
            wf.duty_length_ns = cycles_to_ns(original_duty_cycles, rate_hz);
            // The offset is the initial low time, which is what the hardware register provides.
            wf.duty_offset_ns = cycles_to_ns(duty_cycles, rate_hz);
        }

        Ok(())
    }

    fn read_waveform(
        chip: &pwm::Chip<Self>,
        pwm: &pwm::Device,
        parent_dev: &Device<Bound>,
    ) -> Result<Self::WfHw> {
        let data = chip.drvdata();
        let hwpwm = pwm.hwpwm();
        let iomem_accessor = data.iomem.access(parent_dev)?;
        let iomap = iomem_accessor.deref();

        let ctrl = iomap.try_read32(th1520_pwm_ctrl(hwpwm))?;
        let period_cycles = iomap.try_read32(th1520_pwm_per(hwpwm))?;
        let duty_cycles = iomap.try_read32(th1520_pwm_fp(hwpwm))?;

        let wfhw = Th1520WfHw {
            period_cycles,
            duty_cycles,
            ctrl_val: ctrl,
            enabled: duty_cycles != 0,
        };

        dev_dbg!(
            chip.device(),
            "PWM-{}: read_waveform: Read hw state - period: {}, duty: {}, ctrl: 0x{:x}, enabled: {}",
            hwpwm,
            wfhw.period_cycles,
            wfhw.duty_cycles,
            wfhw.ctrl_val,
            wfhw.enabled
        );

        Ok(wfhw)
    }

    fn write_waveform(
        chip: &pwm::Chip<Self>,
        pwm: &pwm::Device,
        wfhw: &Self::WfHw,
        parent_dev: &Device<Bound>,
    ) -> Result {
        let data = chip.drvdata();
        let hwpwm = pwm.hwpwm();
        let iomem_accessor = data.iomem.access(parent_dev)?;
        let iomap = iomem_accessor.deref();
        let duty_cycles = iomap.try_read32(th1520_pwm_fp(hwpwm))?;
        let was_enabled = duty_cycles != 0;

        if !wfhw.enabled {
            dev_dbg!(chip.device(), "PWM-{}: Disabling channel.\n", hwpwm);
            if was_enabled {
                iomap.try_write32(wfhw.ctrl_val, th1520_pwm_ctrl(hwpwm))?;
                iomap.try_write32(0, th1520_pwm_fp(hwpwm))?;
                iomap.try_write32(
                    wfhw.ctrl_val | TH1520_PWM_CFG_UPDATE,
                    th1520_pwm_ctrl(hwpwm),
                )?;
            }
            return Ok(());
        }

        iomap.try_write32(wfhw.ctrl_val, th1520_pwm_ctrl(hwpwm))?;
        iomap.try_write32(wfhw.period_cycles, th1520_pwm_per(hwpwm))?;
        iomap.try_write32(wfhw.duty_cycles, th1520_pwm_fp(hwpwm))?;
        iomap.try_write32(
            wfhw.ctrl_val | TH1520_PWM_CFG_UPDATE,
            th1520_pwm_ctrl(hwpwm),
        )?;

        // The `TH1520_PWM_START` bit must be written in a separate, final transaction, and
        // only when enabling the channel from a disabled state.
        if !was_enabled {
            iomap.try_write32(wfhw.ctrl_val | TH1520_PWM_START, th1520_pwm_ctrl(hwpwm))?;
        }

        dev_dbg!(
            chip.device(),
            "PWM-{}: Wrote {}/{} cycles",
            hwpwm,
            wfhw.duty_cycles,
            wfhw.period_cycles,
        );

        Ok(())
    }
}

#[pinned_drop]
impl PinnedDrop for Th1520PwmDriverData {
    fn drop(self: Pin<&mut Self>) {
        self.clk.disable_unprepare();
    }
}

struct Th1520PwmPlatformDriver;

kernel::of_device_table!(
    OF_TABLE,
    MODULE_OF_TABLE,
    <Th1520PwmPlatformDriver as platform::Driver>::IdInfo,
    [(of::DeviceId::new(c_str!("thead,th1520-pwm")), ())]
);

impl platform::Driver for Th1520PwmPlatformDriver {
    type IdInfo = ();
    const OF_ID_TABLE: Option<of::IdTable<Self::IdInfo>> = Some(&OF_TABLE);

    fn probe(
        pdev: &platform::Device<Core>,
        _id_info: Option<&Self::IdInfo>,
    ) -> Result<Pin<KBox<Self>>> {
        let dev = pdev.as_ref();
        let request = pdev.io_request_by_index(0).ok_or(ENODEV)?;

        let clk = Clk::get(dev, None)?;

        clk.prepare_enable()?;

        // TODO: Get exclusive ownership of the clock to prevent rate changes.
        // The Rust equivalent of `clk_rate_exclusive_get()` is not yet available.
        // This should be updated once it is implemented.
        let rate_hz = clk.rate().as_hz();
        if rate_hz == 0 {
            dev_err!(dev, "Clock rate is zero\n");
            return Err(EINVAL);
        }

        if rate_hz > time::NSEC_PER_SEC as usize {
            dev_err!(
                dev,
                "Clock rate {} Hz is too high, not supported.\n",
                rate_hz
            );
            return Err(EINVAL);
        }

        let chip = pwm::Chip::new(
            dev,
            TH1520_MAX_PWM_NUM,
            try_pin_init!(Th1520PwmDriverData {
                iomem <- request.iomap_sized::<TH1520_PWM_REG_SIZE>(),
                clk <- clk,
            }),
        )?;

        pwm::Registration::register(dev, chip)?;

        Ok(KBox::new(Th1520PwmPlatformDriver, GFP_KERNEL)?.into())
    }
}

kernel::module_pwm_platform_driver! {
    type: Th1520PwmPlatformDriver,
    name: "pwm-th1520",
    authors: ["Michal Wilczynski <m.wilczynski@samsung.com>"],
    description: "T-HEAD TH1520 PWM driver",
    license: "GPL v2",
}