1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright 2025 NXP
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/iopoll.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/rtc.h>
#define RTCC_OFFSET 0x4ul
#define RTCS_OFFSET 0x8ul
#define APIVAL_OFFSET 0x10ul
/* RTCC fields */
#define RTCC_CNTEN BIT(31)
#define RTCC_APIEN BIT(15)
#define RTCC_APIIE BIT(14)
#define RTCC_CLKSEL_MASK GENMASK(13, 12)
#define RTCC_DIV512EN BIT(11)
#define RTCC_DIV32EN BIT(10)
/* RTCS fields */
#define RTCS_INV_API BIT(17)
#define RTCS_APIF BIT(13)
#define APIVAL_MAX_VAL GENMASK(31, 0)
#define RTC_SYNCH_TIMEOUT (100 * USEC_PER_MSEC)
/*
* S32G2 and S32G3 SoCs have RTC clock source1 reserved and
* should not be used.
*/
#define RTC_CLK_SRC1_RESERVED BIT(1)
/*
* S32G RTC module has a 512 value and a 32 value hardware frequency
* divisors (DIV512 and DIV32) which could be used to achieve higher
* counter ranges by lowering the RTC frequency.
*/
enum {
DIV1 = 1,
DIV32 = 32,
DIV512 = 512,
DIV512_32 = 16384
};
static const char *const rtc_clk_src[] = {
"source0",
"source1",
"source2",
"source3"
};
struct rtc_priv {
struct rtc_device *rdev;
void __iomem *rtc_base;
struct clk *ipg;
struct clk *clk_src;
const struct rtc_soc_data *rtc_data;
u64 rtc_hz;
time64_t sleep_sec;
int irq;
u32 clk_src_idx;
};
struct rtc_soc_data {
u32 clk_div;
u32 reserved_clk_mask;
};
static const struct rtc_soc_data rtc_s32g2_data = {
.clk_div = DIV512_32,
.reserved_clk_mask = RTC_CLK_SRC1_RESERVED,
};
static irqreturn_t s32g_rtc_handler(int irq, void *dev)
{
struct rtc_priv *priv = platform_get_drvdata(dev);
u32 status;
status = readl(priv->rtc_base + RTCS_OFFSET);
if (status & RTCS_APIF) {
writel(0x0, priv->rtc_base + APIVAL_OFFSET);
writel(status | RTCS_APIF, priv->rtc_base + RTCS_OFFSET);
}
rtc_update_irq(priv->rdev, 1, RTC_IRQF | RTC_AF);
return IRQ_HANDLED;
}
/*
* The function is not really getting time from the RTC since the S32G RTC
* has several limitations. Thus, to setup alarm use system time.
*/
static int s32g_rtc_read_time(struct device *dev,
struct rtc_time *tm)
{
struct rtc_priv *priv = dev_get_drvdata(dev);
time64_t sec;
if (check_add_overflow(ktime_get_real_seconds(),
priv->sleep_sec, &sec))
return -ERANGE;
rtc_time64_to_tm(sec, tm);
return 0;
}
static int s32g_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct rtc_priv *priv = dev_get_drvdata(dev);
u32 rtcc, rtcs;
rtcc = readl(priv->rtc_base + RTCC_OFFSET);
rtcs = readl(priv->rtc_base + RTCS_OFFSET);
alrm->enabled = rtcc & RTCC_APIIE;
if (alrm->enabled)
alrm->pending = !(rtcs & RTCS_APIF);
return 0;
}
static int s32g_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
struct rtc_priv *priv = dev_get_drvdata(dev);
u32 rtcc;
/* RTC API functionality is used both for triggering interrupts
* and as a wakeup event. Hence it should always be enabled.
*/
rtcc = readl(priv->rtc_base + RTCC_OFFSET);
rtcc |= RTCC_APIEN | RTCC_APIIE;
writel(rtcc, priv->rtc_base + RTCC_OFFSET);
return 0;
}
static int s32g_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct rtc_priv *priv = dev_get_drvdata(dev);
unsigned long long cycles;
long long t_offset;
time64_t alrm_time;
u32 rtcs;
int ret;
alrm_time = rtc_tm_to_time64(&alrm->time);
t_offset = alrm_time - ktime_get_real_seconds() - priv->sleep_sec;
if (t_offset < 0)
return -ERANGE;
cycles = t_offset * priv->rtc_hz;
if (cycles > APIVAL_MAX_VAL)
return -ERANGE;
/* APIVAL could have been reset from the IRQ handler.
* Hence, we wait in case there is a synchronization process.
*/
ret = read_poll_timeout(readl, rtcs, !(rtcs & RTCS_INV_API),
0, RTC_SYNCH_TIMEOUT, false, priv->rtc_base + RTCS_OFFSET);
if (ret)
return ret;
writel(cycles, priv->rtc_base + APIVAL_OFFSET);
return read_poll_timeout(readl, rtcs, !(rtcs & RTCS_INV_API),
0, RTC_SYNCH_TIMEOUT, false, priv->rtc_base + RTCS_OFFSET);
}
/*
* Disable the 32-bit free running counter.
* This allows Clock Source and Divisors selection
* to be performed without causing synchronization issues.
*/
static void s32g_rtc_disable(struct rtc_priv *priv)
{
u32 rtcc = readl(priv->rtc_base + RTCC_OFFSET);
rtcc &= ~RTCC_CNTEN;
writel(rtcc, priv->rtc_base + RTCC_OFFSET);
}
static void s32g_rtc_enable(struct rtc_priv *priv)
{
u32 rtcc = readl(priv->rtc_base + RTCC_OFFSET);
rtcc |= RTCC_CNTEN;
writel(rtcc, priv->rtc_base + RTCC_OFFSET);
}
static int rtc_clk_src_setup(struct rtc_priv *priv)
{
u32 rtcc;
rtcc = FIELD_PREP(RTCC_CLKSEL_MASK, priv->clk_src_idx);
switch (priv->rtc_data->clk_div) {
case DIV512_32:
rtcc |= RTCC_DIV512EN;
rtcc |= RTCC_DIV32EN;
break;
case DIV512:
rtcc |= RTCC_DIV512EN;
break;
case DIV32:
rtcc |= RTCC_DIV32EN;
break;
case DIV1:
break;
default:
return -EINVAL;
}
rtcc |= RTCC_APIEN | RTCC_APIIE;
/*
* Make sure the CNTEN is 0 before we configure
* the clock source and dividers.
*/
s32g_rtc_disable(priv);
writel(rtcc, priv->rtc_base + RTCC_OFFSET);
s32g_rtc_enable(priv);
return 0;
}
static const struct rtc_class_ops rtc_ops = {
.read_time = s32g_rtc_read_time,
.read_alarm = s32g_rtc_read_alarm,
.set_alarm = s32g_rtc_set_alarm,
.alarm_irq_enable = s32g_rtc_alarm_irq_enable,
};
static int rtc_clk_dts_setup(struct rtc_priv *priv,
struct device *dev)
{
u32 i;
priv->ipg = devm_clk_get_enabled(dev, "ipg");
if (IS_ERR(priv->ipg))
return dev_err_probe(dev, PTR_ERR(priv->ipg),
"Failed to get 'ipg' clock\n");
for (i = 0; i < ARRAY_SIZE(rtc_clk_src); i++) {
if (priv->rtc_data->reserved_clk_mask & BIT(i))
return -EOPNOTSUPP;
priv->clk_src = devm_clk_get_enabled(dev, rtc_clk_src[i]);
if (!IS_ERR(priv->clk_src)) {
priv->clk_src_idx = i;
break;
}
}
if (IS_ERR(priv->clk_src))
return dev_err_probe(dev, PTR_ERR(priv->clk_src),
"Failed to get rtc module clock source\n");
return 0;
}
static int s32g_rtc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct rtc_priv *priv;
unsigned long rtc_hz;
int ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->rtc_data = of_device_get_match_data(dev);
if (!priv->rtc_data)
return -ENODEV;
priv->rtc_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->rtc_base))
return PTR_ERR(priv->rtc_base);
device_init_wakeup(dev, true);
ret = rtc_clk_dts_setup(priv, dev);
if (ret)
return ret;
priv->rdev = devm_rtc_allocate_device(dev);
if (IS_ERR(priv->rdev))
return PTR_ERR(priv->rdev);
ret = rtc_clk_src_setup(priv);
if (ret)
return ret;
priv->irq = platform_get_irq(pdev, 0);
if (priv->irq < 0) {
ret = priv->irq;
goto disable_rtc;
}
rtc_hz = clk_get_rate(priv->clk_src);
if (!rtc_hz) {
dev_err(dev, "Failed to get RTC frequency\n");
ret = -EINVAL;
goto disable_rtc;
}
priv->rtc_hz = DIV_ROUND_UP(rtc_hz, priv->rtc_data->clk_div);
platform_set_drvdata(pdev, priv);
priv->rdev->ops = &rtc_ops;
ret = devm_request_irq(dev, priv->irq,
s32g_rtc_handler, 0, dev_name(dev), pdev);
if (ret) {
dev_err(dev, "Request interrupt %d failed, error: %d\n",
priv->irq, ret);
goto disable_rtc;
}
ret = devm_rtc_register_device(priv->rdev);
if (ret)
goto disable_rtc;
return 0;
disable_rtc:
s32g_rtc_disable(priv);
return ret;
}
static int s32g_rtc_suspend(struct device *dev)
{
struct rtc_priv *priv = dev_get_drvdata(dev);
u32 apival = readl(priv->rtc_base + APIVAL_OFFSET);
if (check_add_overflow(priv->sleep_sec, div64_u64(apival, priv->rtc_hz),
&priv->sleep_sec)) {
dev_warn(dev, "Overflow on sleep cycles occurred. Resetting to 0.\n");
priv->sleep_sec = 0;
}
return 0;
}
static int s32g_rtc_resume(struct device *dev)
{
struct rtc_priv *priv = dev_get_drvdata(dev);
/* The transition from resume to run is a reset event.
* This leads to the RTC registers being reset after resume from
* suspend. It is uncommon, but this behaviour has been observed
* on S32G RTC after issuing a Suspend to RAM operation.
* Thus, reconfigure RTC registers on the resume path.
*/
return rtc_clk_src_setup(priv);
}
static const struct of_device_id rtc_dt_ids[] = {
{ .compatible = "nxp,s32g2-rtc", .data = &rtc_s32g2_data },
{ /* sentinel */ },
};
static DEFINE_SIMPLE_DEV_PM_OPS(s32g_rtc_pm_ops,
s32g_rtc_suspend, s32g_rtc_resume);
static struct platform_driver s32g_rtc_driver = {
.driver = {
.name = "s32g-rtc",
.pm = pm_sleep_ptr(&s32g_rtc_pm_ops),
.of_match_table = rtc_dt_ids,
},
.probe = s32g_rtc_probe,
};
module_platform_driver(s32g_rtc_driver);
MODULE_AUTHOR("NXP");
MODULE_DESCRIPTION("NXP RTC driver for S32G2/S32G3");
MODULE_LICENSE("GPL");
|