summaryrefslogtreecommitdiff
path: root/drivers/soc/qcom/ice.c
blob: c467b55b41744ebec0680f5112cc4bb1ba00c513 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
// SPDX-License-Identifier: GPL-2.0
/*
 * Qualcomm ICE (Inline Crypto Engine) support.
 *
 * Copyright (c) 2013-2019, The Linux Foundation. All rights reserved.
 * Copyright (c) 2019, Google LLC
 * Copyright (c) 2023, Linaro Limited
 */

#include <linux/bitfield.h>
#include <linux/cleanup.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/iopoll.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>

#include <linux/firmware/qcom/qcom_scm.h>

#include <soc/qcom/ice.h>

#define AES_256_XTS_KEY_SIZE			64   /* for raw keys only */
#define QCOM_ICE_HWKM_WRAPPED_KEY_SIZE		100  /* assuming HWKM v2 */

/* QCOM ICE registers */

#define QCOM_ICE_REG_CONTROL			0x0000
#define QCOM_ICE_LEGACY_MODE_ENABLED		BIT(0)

#define QCOM_ICE_REG_VERSION			0x0008

#define QCOM_ICE_REG_FUSE_SETTING		0x0010
#define QCOM_ICE_FUSE_SETTING_MASK		BIT(0)
#define QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK	BIT(1)
#define QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK	BIT(2)

#define QCOM_ICE_REG_BIST_STATUS		0x0070
#define QCOM_ICE_BIST_STATUS_MASK		GENMASK(31, 28)

#define QCOM_ICE_REG_ADVANCED_CONTROL		0x1000

#define QCOM_ICE_REG_CRYPTOCFG_BASE		0x4040
#define QCOM_ICE_REG_CRYPTOCFG_SIZE		0x80
#define QCOM_ICE_REG_CRYPTOCFG(slot) (QCOM_ICE_REG_CRYPTOCFG_BASE + \
				      QCOM_ICE_REG_CRYPTOCFG_SIZE * (slot))
union crypto_cfg {
	__le32 regval;
	struct {
		u8 dusize;
		u8 capidx;
		u8 reserved;
#define QCOM_ICE_HWKM_CFG_ENABLE_VAL		BIT(7)
		u8 cfge;
	};
};

/* QCOM ICE HWKM (Hardware Key Manager) registers */

#define HWKM_OFFSET				0x8000

#define QCOM_ICE_REG_HWKM_TZ_KM_CTL		(HWKM_OFFSET + 0x1000)
#define QCOM_ICE_HWKM_DISABLE_CRC_CHECKS_VAL	(BIT(1) | BIT(2))

#define QCOM_ICE_REG_HWKM_TZ_KM_STATUS		(HWKM_OFFSET + 0x1004)
#define QCOM_ICE_HWKM_KT_CLEAR_DONE		BIT(0)
#define QCOM_ICE_HWKM_BOOT_CMD_LIST0_DONE	BIT(1)
#define QCOM_ICE_HWKM_BOOT_CMD_LIST1_DONE	BIT(2)
#define QCOM_ICE_HWKM_CRYPTO_BIST_DONE_V2	BIT(7)
#define QCOM_ICE_HWKM_BIST_DONE_V2		BIT(9)

#define QCOM_ICE_REG_HWKM_BANK0_BANKN_IRQ_STATUS (HWKM_OFFSET + 0x2008)
#define QCOM_ICE_HWKM_RSP_FIFO_CLEAR_VAL	BIT(3)

#define QCOM_ICE_REG_HWKM_BANK0_BBAC_0		(HWKM_OFFSET + 0x5000)
#define QCOM_ICE_REG_HWKM_BANK0_BBAC_1		(HWKM_OFFSET + 0x5004)
#define QCOM_ICE_REG_HWKM_BANK0_BBAC_2		(HWKM_OFFSET + 0x5008)
#define QCOM_ICE_REG_HWKM_BANK0_BBAC_3		(HWKM_OFFSET + 0x500C)
#define QCOM_ICE_REG_HWKM_BANK0_BBAC_4		(HWKM_OFFSET + 0x5010)

#define qcom_ice_writel(engine, val, reg)	\
	writel((val), (engine)->base + (reg))

#define qcom_ice_readl(engine, reg)	\
	readl((engine)->base + (reg))

static bool qcom_ice_use_wrapped_keys;
module_param_named(use_wrapped_keys, qcom_ice_use_wrapped_keys, bool, 0660);
MODULE_PARM_DESC(use_wrapped_keys,
		 "Support wrapped keys instead of raw keys, if available on the platform");

struct qcom_ice {
	struct device *dev;
	void __iomem *base;

	struct clk *core_clk;
	bool use_hwkm;
	bool hwkm_init_complete;
};

static bool qcom_ice_check_supported(struct qcom_ice *ice)
{
	u32 regval = qcom_ice_readl(ice, QCOM_ICE_REG_VERSION);
	struct device *dev = ice->dev;
	int major = FIELD_GET(GENMASK(31, 24), regval);
	int minor = FIELD_GET(GENMASK(23, 16), regval);
	int step = FIELD_GET(GENMASK(15, 0), regval);

	/* For now this driver only supports ICE version 3 and 4. */
	if (major != 3 && major != 4) {
		dev_warn(dev, "Unsupported ICE version: v%d.%d.%d\n",
			 major, minor, step);
		return false;
	}

	dev_info(dev, "Found QC Inline Crypto Engine (ICE) v%d.%d.%d\n",
		 major, minor, step);

	/* If fuses are blown, ICE might not work in the standard way. */
	regval = qcom_ice_readl(ice, QCOM_ICE_REG_FUSE_SETTING);
	if (regval & (QCOM_ICE_FUSE_SETTING_MASK |
		      QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK |
		      QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK)) {
		dev_warn(dev, "Fuses are blown; ICE is unusable!\n");
		return false;
	}

	/*
	 * Check for HWKM support and decide whether to use it or not.  ICE
	 * v3.2.1 and later have HWKM v2.  ICE v3.2.0 has HWKM v1.  Earlier ICE
	 * versions don't have HWKM at all.  However, for HWKM to be fully
	 * usable by Linux, the TrustZone software also needs to support certain
	 * SCM calls including the ones to generate and prepare keys.  That
	 * effectively makes the earliest supported SoC be SM8650, which has
	 * HWKM v2.  Therefore, this driver doesn't include support for HWKM v1,
	 * and it checks for the SCM call support before it decides to use HWKM.
	 *
	 * Also, since HWKM and legacy mode are mutually exclusive, and
	 * ICE-capable storage driver(s) need to know early on whether to
	 * advertise support for raw keys or wrapped keys, HWKM cannot be used
	 * unconditionally.  A module parameter is used to opt into using it.
	 */
	if ((major >= 4 ||
	     (major == 3 && (minor >= 3 || (minor == 2 && step >= 1)))) &&
	    qcom_scm_has_wrapped_key_support()) {
		if (qcom_ice_use_wrapped_keys) {
			dev_info(dev, "Using HWKM. Supporting wrapped keys only.\n");
			ice->use_hwkm = true;
		} else {
			dev_info(dev, "Not using HWKM. Supporting raw keys only.\n");
		}
	} else if (qcom_ice_use_wrapped_keys) {
		dev_warn(dev, "A supported HWKM is not present. Ignoring qcom_ice.use_wrapped_keys=1.\n");
	} else {
		dev_info(dev, "A supported HWKM is not present. Supporting raw keys only.\n");
	}
	return true;
}

static void qcom_ice_low_power_mode_enable(struct qcom_ice *ice)
{
	u32 regval;

	regval = qcom_ice_readl(ice, QCOM_ICE_REG_ADVANCED_CONTROL);

	/* Enable low power mode sequence */
	regval |= 0x7000;
	qcom_ice_writel(ice, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
}

static void qcom_ice_optimization_enable(struct qcom_ice *ice)
{
	u32 regval;

	/* ICE Optimizations Enable Sequence */
	regval = qcom_ice_readl(ice, QCOM_ICE_REG_ADVANCED_CONTROL);
	regval |= 0xd807100;
	/* ICE HPG requires delay before writing */
	udelay(5);
	qcom_ice_writel(ice, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
	udelay(5);
}

/*
 * Wait until the ICE BIST (built-in self-test) has completed.
 *
 * This may be necessary before ICE can be used.
 * Note that we don't really care whether the BIST passed or failed;
 * we really just want to make sure that it isn't still running. This is
 * because (a) the BIST is a FIPS compliance thing that never fails in
 * practice, (b) ICE is documented to reject crypto requests if the BIST
 * fails, so we needn't do it in software too, and (c) properly testing
 * storage encryption requires testing the full storage stack anyway,
 * and not relying on hardware-level self-tests.
 */
static int qcom_ice_wait_bist_status(struct qcom_ice *ice)
{
	u32 regval;
	int err;

	err = readl_poll_timeout(ice->base + QCOM_ICE_REG_BIST_STATUS,
				 regval, !(regval & QCOM_ICE_BIST_STATUS_MASK),
				 50, 5000);
	if (err) {
		dev_err(ice->dev, "Timed out waiting for ICE self-test to complete\n");
		return err;
	}

	if (ice->use_hwkm &&
	    qcom_ice_readl(ice, QCOM_ICE_REG_HWKM_TZ_KM_STATUS) !=
	    (QCOM_ICE_HWKM_KT_CLEAR_DONE |
	     QCOM_ICE_HWKM_BOOT_CMD_LIST0_DONE |
	     QCOM_ICE_HWKM_BOOT_CMD_LIST1_DONE |
	     QCOM_ICE_HWKM_CRYPTO_BIST_DONE_V2 |
	     QCOM_ICE_HWKM_BIST_DONE_V2)) {
		dev_err(ice->dev, "HWKM self-test error!\n");
		/*
		 * Too late to revoke use_hwkm here, as it was already
		 * propagated up the stack into the crypto capabilities.
		 */
	}
	return 0;
}

static void qcom_ice_hwkm_init(struct qcom_ice *ice)
{
	u32 regval;

	if (!ice->use_hwkm)
		return;

	BUILD_BUG_ON(QCOM_ICE_HWKM_WRAPPED_KEY_SIZE >
		     BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE);
	/*
	 * When ICE is in HWKM mode, it only supports wrapped keys.
	 * When ICE is in legacy mode, it only supports raw keys.
	 *
	 * Put ICE in HWKM mode.  ICE defaults to legacy mode.
	 */
	regval = qcom_ice_readl(ice, QCOM_ICE_REG_CONTROL);
	regval &= ~QCOM_ICE_LEGACY_MODE_ENABLED;
	qcom_ice_writel(ice, regval, QCOM_ICE_REG_CONTROL);

	/* Disable CRC checks.  This HWKM feature is not used. */
	qcom_ice_writel(ice, QCOM_ICE_HWKM_DISABLE_CRC_CHECKS_VAL,
			QCOM_ICE_REG_HWKM_TZ_KM_CTL);

	/*
	 * Allow the HWKM slave to read and write the keyslots in the ICE HWKM
	 * slave.  Without this, TrustZone cannot program keys into ICE.
	 */
	qcom_ice_writel(ice, GENMASK(31, 0), QCOM_ICE_REG_HWKM_BANK0_BBAC_0);
	qcom_ice_writel(ice, GENMASK(31, 0), QCOM_ICE_REG_HWKM_BANK0_BBAC_1);
	qcom_ice_writel(ice, GENMASK(31, 0), QCOM_ICE_REG_HWKM_BANK0_BBAC_2);
	qcom_ice_writel(ice, GENMASK(31, 0), QCOM_ICE_REG_HWKM_BANK0_BBAC_3);
	qcom_ice_writel(ice, GENMASK(31, 0), QCOM_ICE_REG_HWKM_BANK0_BBAC_4);

	/* Clear the HWKM response FIFO. */
	qcom_ice_writel(ice, QCOM_ICE_HWKM_RSP_FIFO_CLEAR_VAL,
			QCOM_ICE_REG_HWKM_BANK0_BANKN_IRQ_STATUS);
	ice->hwkm_init_complete = true;
}

int qcom_ice_enable(struct qcom_ice *ice)
{
	qcom_ice_low_power_mode_enable(ice);
	qcom_ice_optimization_enable(ice);
	qcom_ice_hwkm_init(ice);
	return qcom_ice_wait_bist_status(ice);
}
EXPORT_SYMBOL_GPL(qcom_ice_enable);

int qcom_ice_resume(struct qcom_ice *ice)
{
	struct device *dev = ice->dev;
	int err;

	err = clk_prepare_enable(ice->core_clk);
	if (err) {
		dev_err(dev, "failed to enable core clock (%d)\n",
			err);
		return err;
	}
	qcom_ice_hwkm_init(ice);
	return qcom_ice_wait_bist_status(ice);
}
EXPORT_SYMBOL_GPL(qcom_ice_resume);

int qcom_ice_suspend(struct qcom_ice *ice)
{
	clk_disable_unprepare(ice->core_clk);
	ice->hwkm_init_complete = false;

	return 0;
}
EXPORT_SYMBOL_GPL(qcom_ice_suspend);

static unsigned int translate_hwkm_slot(struct qcom_ice *ice, unsigned int slot)
{
	return slot * 2;
}

static int qcom_ice_program_wrapped_key(struct qcom_ice *ice, unsigned int slot,
					const struct blk_crypto_key *bkey)
{
	struct device *dev = ice->dev;
	union crypto_cfg cfg = {
		.dusize = bkey->crypto_cfg.data_unit_size / 512,
		.capidx = QCOM_SCM_ICE_CIPHER_AES_256_XTS,
		.cfge = QCOM_ICE_HWKM_CFG_ENABLE_VAL,
	};
	int err;

	if (!ice->use_hwkm) {
		dev_err_ratelimited(dev, "Got wrapped key when not using HWKM\n");
		return -EINVAL;
	}
	if (!ice->hwkm_init_complete) {
		dev_err_ratelimited(dev, "HWKM not yet initialized\n");
		return -EINVAL;
	}

	/* Clear CFGE before programming the key. */
	qcom_ice_writel(ice, 0x0, QCOM_ICE_REG_CRYPTOCFG(slot));

	/* Call into TrustZone to program the wrapped key using HWKM. */
	err = qcom_scm_ice_set_key(translate_hwkm_slot(ice, slot), bkey->bytes,
				   bkey->size, cfg.capidx, cfg.dusize);
	if (err) {
		dev_err_ratelimited(dev,
				    "qcom_scm_ice_set_key failed; err=%d, slot=%u\n",
				    err, slot);
		return err;
	}

	/* Set CFGE after programming the key. */
	qcom_ice_writel(ice, le32_to_cpu(cfg.regval),
			QCOM_ICE_REG_CRYPTOCFG(slot));
	return 0;
}

int qcom_ice_program_key(struct qcom_ice *ice, unsigned int slot,
			 const struct blk_crypto_key *blk_key)
{
	struct device *dev = ice->dev;
	union {
		u8 bytes[AES_256_XTS_KEY_SIZE];
		u32 words[AES_256_XTS_KEY_SIZE / sizeof(u32)];
	} key;
	int i;
	int err;

	/* Only AES-256-XTS has been tested so far. */
	if (blk_key->crypto_cfg.crypto_mode !=
	    BLK_ENCRYPTION_MODE_AES_256_XTS) {
		dev_err_ratelimited(dev, "Unsupported crypto mode: %d\n",
				    blk_key->crypto_cfg.crypto_mode);
		return -EINVAL;
	}

	if (blk_key->crypto_cfg.key_type == BLK_CRYPTO_KEY_TYPE_HW_WRAPPED)
		return qcom_ice_program_wrapped_key(ice, slot, blk_key);

	if (ice->use_hwkm) {
		dev_err_ratelimited(dev, "Got raw key when using HWKM\n");
		return -EINVAL;
	}

	if (blk_key->size != AES_256_XTS_KEY_SIZE) {
		dev_err_ratelimited(dev, "Incorrect key size\n");
		return -EINVAL;
	}
	memcpy(key.bytes, blk_key->bytes, AES_256_XTS_KEY_SIZE);

	/* The SCM call requires that the key words are encoded in big endian */
	for (i = 0; i < ARRAY_SIZE(key.words); i++)
		__cpu_to_be32s(&key.words[i]);

	err = qcom_scm_ice_set_key(slot, key.bytes, AES_256_XTS_KEY_SIZE,
				   QCOM_SCM_ICE_CIPHER_AES_256_XTS,
				   blk_key->crypto_cfg.data_unit_size / 512);

	memzero_explicit(&key, sizeof(key));

	return err;
}
EXPORT_SYMBOL_GPL(qcom_ice_program_key);

int qcom_ice_evict_key(struct qcom_ice *ice, int slot)
{
	if (ice->hwkm_init_complete)
		slot = translate_hwkm_slot(ice, slot);
	return qcom_scm_ice_invalidate_key(slot);
}
EXPORT_SYMBOL_GPL(qcom_ice_evict_key);

/**
 * qcom_ice_get_supported_key_type() - Get the supported key type
 * @ice: ICE driver data
 *
 * Return: the blk-crypto key type that the ICE driver is configured to use.
 * This is the key type that ICE-capable storage drivers should advertise as
 * supported in the crypto capabilities of any disks they register.
 */
enum blk_crypto_key_type qcom_ice_get_supported_key_type(struct qcom_ice *ice)
{
	if (ice->use_hwkm)
		return BLK_CRYPTO_KEY_TYPE_HW_WRAPPED;
	return BLK_CRYPTO_KEY_TYPE_RAW;
}
EXPORT_SYMBOL_GPL(qcom_ice_get_supported_key_type);

/**
 * qcom_ice_derive_sw_secret() - Derive software secret from wrapped key
 * @ice: ICE driver data
 * @eph_key: an ephemerally-wrapped key
 * @eph_key_size: size of @eph_key in bytes
 * @sw_secret: output buffer for the software secret
 *
 * Use HWKM to derive the "software secret" from a hardware-wrapped key that is
 * given in ephemerally-wrapped form.
 *
 * Return: 0 on success; -EBADMSG if the given ephemerally-wrapped key is
 *	   invalid; or another -errno value.
 */
int qcom_ice_derive_sw_secret(struct qcom_ice *ice,
			      const u8 *eph_key, size_t eph_key_size,
			      u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE])
{
	int err = qcom_scm_derive_sw_secret(eph_key, eph_key_size,
					    sw_secret,
					    BLK_CRYPTO_SW_SECRET_SIZE);
	if (err == -EIO || err == -EINVAL)
		err = -EBADMSG; /* probably invalid key */
	return err;
}
EXPORT_SYMBOL_GPL(qcom_ice_derive_sw_secret);

/**
 * qcom_ice_generate_key() - Generate a wrapped key for inline encryption
 * @ice: ICE driver data
 * @lt_key: output buffer for the long-term wrapped key
 *
 * Use HWKM to generate a new key and return it as a long-term wrapped key.
 *
 * Return: the size of the resulting wrapped key on success; -errno on failure.
 */
int qcom_ice_generate_key(struct qcom_ice *ice,
			  u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE])
{
	int err;

	err = qcom_scm_generate_ice_key(lt_key, QCOM_ICE_HWKM_WRAPPED_KEY_SIZE);
	if (err)
		return err;

	return QCOM_ICE_HWKM_WRAPPED_KEY_SIZE;
}
EXPORT_SYMBOL_GPL(qcom_ice_generate_key);

/**
 * qcom_ice_prepare_key() - Prepare a wrapped key for inline encryption
 * @ice: ICE driver data
 * @lt_key: a long-term wrapped key
 * @lt_key_size: size of @lt_key in bytes
 * @eph_key: output buffer for the ephemerally-wrapped key
 *
 * Use HWKM to re-wrap a long-term wrapped key with the per-boot ephemeral key.
 *
 * Return: the size of the resulting wrapped key on success; -EBADMSG if the
 *	   given long-term wrapped key is invalid; or another -errno value.
 */
int qcom_ice_prepare_key(struct qcom_ice *ice,
			 const u8 *lt_key, size_t lt_key_size,
			 u8 eph_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE])
{
	int err;

	err = qcom_scm_prepare_ice_key(lt_key, lt_key_size,
				       eph_key, QCOM_ICE_HWKM_WRAPPED_KEY_SIZE);
	if (err == -EIO || err == -EINVAL)
		err = -EBADMSG; /* probably invalid key */
	if (err)
		return err;

	return QCOM_ICE_HWKM_WRAPPED_KEY_SIZE;
}
EXPORT_SYMBOL_GPL(qcom_ice_prepare_key);

/**
 * qcom_ice_import_key() - Import a raw key for inline encryption
 * @ice: ICE driver data
 * @raw_key: the raw key to import
 * @raw_key_size: size of @raw_key in bytes
 * @lt_key: output buffer for the long-term wrapped key
 *
 * Use HWKM to import a raw key and return it as a long-term wrapped key.
 *
 * Return: the size of the resulting wrapped key on success; -errno on failure.
 */
int qcom_ice_import_key(struct qcom_ice *ice,
			const u8 *raw_key, size_t raw_key_size,
			u8 lt_key[BLK_CRYPTO_MAX_HW_WRAPPED_KEY_SIZE])
{
	int err;

	err = qcom_scm_import_ice_key(raw_key, raw_key_size,
				      lt_key, QCOM_ICE_HWKM_WRAPPED_KEY_SIZE);
	if (err)
		return err;

	return QCOM_ICE_HWKM_WRAPPED_KEY_SIZE;
}
EXPORT_SYMBOL_GPL(qcom_ice_import_key);

static struct qcom_ice *qcom_ice_create(struct device *dev,
					void __iomem *base)
{
	struct qcom_ice *engine;

	if (!qcom_scm_is_available())
		return ERR_PTR(-EPROBE_DEFER);

	if (!qcom_scm_ice_available()) {
		dev_warn(dev, "ICE SCM interface not found\n");
		return NULL;
	}

	engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return ERR_PTR(-ENOMEM);

	engine->dev = dev;
	engine->base = base;

	/*
	 * Legacy DT binding uses different clk names for each consumer,
	 * so lets try those first. If none of those are a match, it means
	 * the we only have one clock and it is part of the dedicated DT node.
	 * Also, enable the clock before we check what HW version the driver
	 * supports.
	 */
	engine->core_clk = devm_clk_get_optional_enabled(dev, "ice_core_clk");
	if (!engine->core_clk)
		engine->core_clk = devm_clk_get_optional_enabled(dev, "ice");
	if (!engine->core_clk)
		engine->core_clk = devm_clk_get_enabled(dev, NULL);
	if (IS_ERR(engine->core_clk))
		return ERR_CAST(engine->core_clk);

	if (!qcom_ice_check_supported(engine))
		return ERR_PTR(-EOPNOTSUPP);

	dev_dbg(dev, "Registered Qualcomm Inline Crypto Engine\n");

	return engine;
}

/**
 * of_qcom_ice_get() - get an ICE instance from a DT node
 * @dev: device pointer for the consumer device
 *
 * This function will provide an ICE instance either by creating one for the
 * consumer device if its DT node provides the 'ice' reg range and the 'ice'
 * clock (for legacy DT style). On the other hand, if consumer provides a
 * phandle via 'qcom,ice' property to an ICE DT, the ICE instance will already
 * be created and so this function will return that instead.
 *
 * Return: ICE pointer on success, NULL if there is no ICE data provided by the
 * consumer or ERR_PTR() on error.
 */
static struct qcom_ice *of_qcom_ice_get(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct qcom_ice *ice;
	struct resource *res;
	void __iomem *base;
	struct device_link *link;

	if (!dev || !dev->of_node)
		return ERR_PTR(-ENODEV);

	/*
	 * In order to support legacy style devicetree bindings, we need
	 * to create the ICE instance using the consumer device and the reg
	 * range called 'ice' it provides.
	 */
	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "ice");
	if (res) {
		base = devm_ioremap_resource(&pdev->dev, res);
		if (IS_ERR(base))
			return ERR_CAST(base);

		/* create ICE instance using consumer dev */
		return qcom_ice_create(&pdev->dev, base);
	}

	/*
	 * If the consumer node does not provider an 'ice' reg range
	 * (legacy DT binding), then it must at least provide a phandle
	 * to the ICE devicetree node, otherwise ICE is not supported.
	 */
	struct device_node *node __free(device_node) = of_parse_phandle(dev->of_node,
									"qcom,ice", 0);
	if (!node)
		return NULL;

	pdev = of_find_device_by_node(node);
	if (!pdev) {
		dev_err(dev, "Cannot find device node %s\n", node->name);
		return ERR_PTR(-EPROBE_DEFER);
	}

	ice = platform_get_drvdata(pdev);
	if (!ice) {
		dev_err(dev, "Cannot get ice instance from %s\n",
			dev_name(&pdev->dev));
		platform_device_put(pdev);
		return ERR_PTR(-EPROBE_DEFER);
	}

	link = device_link_add(dev, &pdev->dev, DL_FLAG_AUTOREMOVE_SUPPLIER);
	if (!link) {
		dev_err(&pdev->dev,
			"Failed to create device link to consumer %s\n",
			dev_name(dev));
		platform_device_put(pdev);
		ice = ERR_PTR(-EINVAL);
	}

	return ice;
}

static void qcom_ice_put(const struct qcom_ice *ice)
{
	struct platform_device *pdev = to_platform_device(ice->dev);

	if (!platform_get_resource_byname(pdev, IORESOURCE_MEM, "ice"))
		platform_device_put(pdev);
}

static void devm_of_qcom_ice_put(struct device *dev, void *res)
{
	qcom_ice_put(*(struct qcom_ice **)res);
}

/**
 * devm_of_qcom_ice_get() - Devres managed helper to get an ICE instance from
 * a DT node.
 * @dev: device pointer for the consumer device.
 *
 * This function will provide an ICE instance either by creating one for the
 * consumer device if its DT node provides the 'ice' reg range and the 'ice'
 * clock (for legacy DT style). On the other hand, if consumer provides a
 * phandle via 'qcom,ice' property to an ICE DT, the ICE instance will already
 * be created and so this function will return that instead.
 *
 * Return: ICE pointer on success, NULL if there is no ICE data provided by the
 * consumer or ERR_PTR() on error.
 */
struct qcom_ice *devm_of_qcom_ice_get(struct device *dev)
{
	struct qcom_ice *ice, **dr;

	dr = devres_alloc(devm_of_qcom_ice_put, sizeof(*dr), GFP_KERNEL);
	if (!dr)
		return ERR_PTR(-ENOMEM);

	ice = of_qcom_ice_get(dev);
	if (!IS_ERR_OR_NULL(ice)) {
		*dr = ice;
		devres_add(dev, dr);
	} else {
		devres_free(dr);
	}

	return ice;
}
EXPORT_SYMBOL_GPL(devm_of_qcom_ice_get);

static int qcom_ice_probe(struct platform_device *pdev)
{
	struct qcom_ice *engine;
	void __iomem *base;

	base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(base)) {
		dev_warn(&pdev->dev, "ICE registers not found\n");
		return PTR_ERR(base);
	}

	engine = qcom_ice_create(&pdev->dev, base);
	if (IS_ERR(engine))
		return PTR_ERR(engine);

	platform_set_drvdata(pdev, engine);

	return 0;
}

static const struct of_device_id qcom_ice_of_match_table[] = {
	{ .compatible = "qcom,inline-crypto-engine" },
	{ },
};
MODULE_DEVICE_TABLE(of, qcom_ice_of_match_table);

static struct platform_driver qcom_ice_driver = {
	.probe	= qcom_ice_probe,
	.driver = {
		.name = "qcom-ice",
		.of_match_table = qcom_ice_of_match_table,
	},
};

module_platform_driver(qcom_ice_driver);

MODULE_DESCRIPTION("Qualcomm Inline Crypto Engine driver");
MODULE_LICENSE("GPL");