1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
|
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2015, The Linux Foundation. All rights reserved.
* Copyright (c) 2018, Linaro Limited
*/
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/nvmem-consumer.h>
#include <linux/regmap.h>
#include "tsens.h"
/* ----- SROT ------ */
#define SROT_HW_VER_OFF 0x0000
#define SROT_CTRL_OFF 0x0004
#define SROT_MEASURE_PERIOD 0x0008
#define SROT_Sn_CONVERSION 0x0060
#define V2_SHIFT_DEFAULT 0x0003
#define V2_SLOPE_DEFAULT 0x0cd0
#define V2_CZERO_DEFAULT 0x016a
#define ONE_PT_SLOPE 0x0cd0
#define TWO_PT_SHIFTED_GAIN 921600
#define ONE_PT_CZERO_CONST 94
#define SW_RST_DEASSERT 0x0
#define SW_RST_ASSERT 0x1
#define MEASURE_PERIOD_2mSEC 0x1
#define RESULT_FORMAT_TEMP 0x1
#define TSENS_ENABLE 0x1
#define SENSOR_CONVERSION(n) (((n) * 4) + SROT_Sn_CONVERSION)
#define CONVERSION_SHIFT_MASK GENMASK(24, 23)
#define CONVERSION_SLOPE_MASK GENMASK(22, 10)
#define CONVERSION_CZERO_MASK GENMASK(9, 0)
/* ----- TM ------ */
#define TM_INT_EN_OFF 0x0004
#define TM_UPPER_LOWER_INT_STATUS_OFF 0x0008
#define TM_UPPER_LOWER_INT_CLEAR_OFF 0x000c
#define TM_UPPER_LOWER_INT_MASK_OFF 0x0010
#define TM_CRITICAL_INT_STATUS_OFF 0x0014
#define TM_CRITICAL_INT_CLEAR_OFF 0x0018
#define TM_CRITICAL_INT_MASK_OFF 0x001c
#define TM_Sn_UPPER_LOWER_THRESHOLD_OFF 0x0020
#define TM_Sn_CRITICAL_THRESHOLD_OFF 0x0060
#define TM_Sn_STATUS_OFF 0x00a0
#define TM_TRDY_OFF 0x00e4
#define TM_WDOG_LOG_OFF 0x013c
/* v2.x: 8996, 8998, sdm845 */
static struct tsens_features tsens_v2_feat = {
.ver_major = VER_2_X,
.crit_int = 1,
.combo_int = 0,
.adc = 0,
.srot_split = 1,
.max_sensors = 16,
.trip_min_temp = -40000,
.trip_max_temp = 120000,
};
static struct tsens_features ipq8074_feat = {
.ver_major = VER_2_X,
.crit_int = 1,
.combo_int = 1,
.adc = 0,
.srot_split = 1,
.max_sensors = 16,
.trip_min_temp = 0,
.trip_max_temp = 204000,
};
static struct tsens_features ipq5332_feat = {
.ver_major = VER_2_X_NO_RPM,
.crit_int = 1,
.combo_int = 1,
.adc = 0,
.srot_split = 1,
.max_sensors = 16,
.trip_min_temp = 0,
.trip_max_temp = 204000,
};
static const struct reg_field tsens_v2_regfields[MAX_REGFIELDS] = {
/* ----- SROT ------ */
/* VERSION */
[VER_MAJOR] = REG_FIELD(SROT_HW_VER_OFF, 28, 31),
[VER_MINOR] = REG_FIELD(SROT_HW_VER_OFF, 16, 27),
[VER_STEP] = REG_FIELD(SROT_HW_VER_OFF, 0, 15),
/* CTRL_OFF */
[TSENS_EN] = REG_FIELD(SROT_CTRL_OFF, 0, 0),
[TSENS_SW_RST] = REG_FIELD(SROT_CTRL_OFF, 1, 1),
[SENSOR_EN] = REG_FIELD(SROT_CTRL_OFF, 3, 18),
[CODE_OR_TEMP] = REG_FIELD(SROT_CTRL_OFF, 21, 21),
[MAIN_MEASURE_PERIOD] = REG_FIELD(SROT_MEASURE_PERIOD, 0, 7),
/* ----- TM ------ */
/* INTERRUPT ENABLE */
/* v2 has separate enables for UPPER/LOWER/CRITICAL interrupts */
[INT_EN] = REG_FIELD(TM_INT_EN_OFF, 0, 2),
/* TEMPERATURE THRESHOLDS */
REG_FIELD_FOR_EACH_SENSOR16(LOW_THRESH, TM_Sn_UPPER_LOWER_THRESHOLD_OFF, 0, 11),
REG_FIELD_FOR_EACH_SENSOR16(UP_THRESH, TM_Sn_UPPER_LOWER_THRESHOLD_OFF, 12, 23),
REG_FIELD_FOR_EACH_SENSOR16(CRIT_THRESH, TM_Sn_CRITICAL_THRESHOLD_OFF, 0, 11),
/* INTERRUPTS [CLEAR/STATUS/MASK] */
REG_FIELD_SPLIT_BITS_0_15(LOW_INT_STATUS, TM_UPPER_LOWER_INT_STATUS_OFF),
REG_FIELD_SPLIT_BITS_0_15(LOW_INT_CLEAR, TM_UPPER_LOWER_INT_CLEAR_OFF),
REG_FIELD_SPLIT_BITS_0_15(LOW_INT_MASK, TM_UPPER_LOWER_INT_MASK_OFF),
REG_FIELD_SPLIT_BITS_16_31(UP_INT_STATUS, TM_UPPER_LOWER_INT_STATUS_OFF),
REG_FIELD_SPLIT_BITS_16_31(UP_INT_CLEAR, TM_UPPER_LOWER_INT_CLEAR_OFF),
REG_FIELD_SPLIT_BITS_16_31(UP_INT_MASK, TM_UPPER_LOWER_INT_MASK_OFF),
REG_FIELD_SPLIT_BITS_0_15(CRIT_INT_STATUS, TM_CRITICAL_INT_STATUS_OFF),
REG_FIELD_SPLIT_BITS_0_15(CRIT_INT_CLEAR, TM_CRITICAL_INT_CLEAR_OFF),
REG_FIELD_SPLIT_BITS_0_15(CRIT_INT_MASK, TM_CRITICAL_INT_MASK_OFF),
/* WATCHDOG on v2.3 or later */
[WDOG_BARK_STATUS] = REG_FIELD(TM_CRITICAL_INT_STATUS_OFF, 31, 31),
[WDOG_BARK_CLEAR] = REG_FIELD(TM_CRITICAL_INT_CLEAR_OFF, 31, 31),
[WDOG_BARK_MASK] = REG_FIELD(TM_CRITICAL_INT_MASK_OFF, 31, 31),
[CC_MON_STATUS] = REG_FIELD(TM_CRITICAL_INT_STATUS_OFF, 30, 30),
[CC_MON_CLEAR] = REG_FIELD(TM_CRITICAL_INT_CLEAR_OFF, 30, 30),
[CC_MON_MASK] = REG_FIELD(TM_CRITICAL_INT_MASK_OFF, 30, 30),
[WDOG_BARK_COUNT] = REG_FIELD(TM_WDOG_LOG_OFF, 0, 7),
/* Sn_STATUS */
REG_FIELD_FOR_EACH_SENSOR16(LAST_TEMP, TM_Sn_STATUS_OFF, 0, 11),
REG_FIELD_FOR_EACH_SENSOR16(VALID, TM_Sn_STATUS_OFF, 21, 21),
/* xxx_STATUS bits: 1 == threshold violated */
REG_FIELD_FOR_EACH_SENSOR16(MIN_STATUS, TM_Sn_STATUS_OFF, 16, 16),
REG_FIELD_FOR_EACH_SENSOR16(LOWER_STATUS, TM_Sn_STATUS_OFF, 17, 17),
REG_FIELD_FOR_EACH_SENSOR16(UPPER_STATUS, TM_Sn_STATUS_OFF, 18, 18),
REG_FIELD_FOR_EACH_SENSOR16(CRITICAL_STATUS, TM_Sn_STATUS_OFF, 19, 19),
REG_FIELD_FOR_EACH_SENSOR16(MAX_STATUS, TM_Sn_STATUS_OFF, 20, 20),
/* TRDY: 1=ready, 0=in progress */
[TRDY] = REG_FIELD(TM_TRDY_OFF, 0, 0),
};
static int tsens_v2_calibrate_sensor(struct device *dev, struct tsens_sensor *sensor,
struct regmap *map, u32 mode, u32 base0, u32 base1)
{
u32 shift = V2_SHIFT_DEFAULT;
u32 slope = V2_SLOPE_DEFAULT;
u32 czero = V2_CZERO_DEFAULT;
char name[20];
u32 val;
int ret;
/* Read offset value */
ret = snprintf(name, sizeof(name), "tsens_sens%d_off", sensor->hw_id);
if (ret < 0)
return ret;
ret = nvmem_cell_read_variable_le_u32(dev, name, &sensor->offset);
if (ret)
return ret;
/* Based on calib mode, program SHIFT, SLOPE and CZERO */
switch (mode) {
case TWO_PT_CALIB:
slope = (TWO_PT_SHIFTED_GAIN / (base1 - base0));
czero = (base0 + sensor->offset - ((base1 - base0) / 3));
break;
case ONE_PT_CALIB2:
czero = base0 + sensor->offset - ONE_PT_CZERO_CONST;
slope = ONE_PT_SLOPE;
break;
default:
dev_dbg(dev, "calibrationless mode\n");
}
val = FIELD_PREP(CONVERSION_SHIFT_MASK, shift) |
FIELD_PREP(CONVERSION_SLOPE_MASK, slope) |
FIELD_PREP(CONVERSION_CZERO_MASK, czero);
regmap_write(map, SENSOR_CONVERSION(sensor->hw_id), val);
return 0;
}
static int tsens_v2_calibration(struct tsens_priv *priv)
{
struct device *dev = priv->dev;
u32 mode, base0, base1;
int i, ret;
if (priv->num_sensors > MAX_SENSORS)
return -EINVAL;
ret = nvmem_cell_read_variable_le_u32(priv->dev, "mode", &mode);
if (ret == -ENOENT)
dev_warn(priv->dev, "Calibration data not present in DT\n");
if (ret < 0)
return ret;
dev_dbg(priv->dev, "calibration mode is %d\n", mode);
ret = nvmem_cell_read_variable_le_u32(priv->dev, "base0", &base0);
if (ret < 0)
return ret;
ret = nvmem_cell_read_variable_le_u32(priv->dev, "base1", &base1);
if (ret < 0)
return ret;
/* Calibrate each sensor */
for (i = 0; i < priv->num_sensors; i++) {
ret = tsens_v2_calibrate_sensor(dev, &priv->sensor[i], priv->srot_map,
mode, base0, base1);
if (ret < 0)
return ret;
}
return 0;
}
static int __init init_tsens_v2_no_rpm(struct tsens_priv *priv)
{
struct device *dev = priv->dev;
int i, ret;
u32 val = 0;
ret = init_common(priv);
if (ret < 0)
return ret;
priv->rf[CODE_OR_TEMP] = devm_regmap_field_alloc(dev, priv->srot_map,
priv->fields[CODE_OR_TEMP]);
if (IS_ERR(priv->rf[CODE_OR_TEMP]))
return PTR_ERR(priv->rf[CODE_OR_TEMP]);
priv->rf[MAIN_MEASURE_PERIOD] = devm_regmap_field_alloc(dev, priv->srot_map,
priv->fields[MAIN_MEASURE_PERIOD]);
if (IS_ERR(priv->rf[MAIN_MEASURE_PERIOD]))
return PTR_ERR(priv->rf[MAIN_MEASURE_PERIOD]);
regmap_field_write(priv->rf[TSENS_SW_RST], SW_RST_ASSERT);
regmap_field_write(priv->rf[MAIN_MEASURE_PERIOD], MEASURE_PERIOD_2mSEC);
/* Enable available sensors */
for (i = 0; i < priv->num_sensors; i++)
val |= 1 << priv->sensor[i].hw_id;
regmap_field_write(priv->rf[SENSOR_EN], val);
/* Select temperature format, unit is deci-Celsius */
regmap_field_write(priv->rf[CODE_OR_TEMP], RESULT_FORMAT_TEMP);
regmap_field_write(priv->rf[TSENS_SW_RST], SW_RST_DEASSERT);
regmap_field_write(priv->rf[TSENS_EN], TSENS_ENABLE);
return 0;
}
static const struct tsens_ops ops_generic_v2 = {
.init = init_common,
.get_temp = get_temp_tsens_valid,
.resume = tsens_resume_common,
};
struct tsens_plat_data data_tsens_v2 = {
.ops = &ops_generic_v2,
.feat = &tsens_v2_feat,
.fields = tsens_v2_regfields,
};
struct tsens_plat_data data_ipq8074 = {
.ops = &ops_generic_v2,
.feat = &ipq8074_feat,
.fields = tsens_v2_regfields,
};
static const struct tsens_ops ops_ipq5332 = {
.init = init_tsens_v2_no_rpm,
.get_temp = get_temp_tsens_valid,
.calibrate = tsens_v2_calibration,
};
const struct tsens_plat_data data_ipq5332 = {
.num_sensors = 5,
.ops = &ops_ipq5332,
.hw_ids = (unsigned int []){11, 12, 13, 14, 15},
.feat = &ipq5332_feat,
.fields = tsens_v2_regfields,
};
const struct tsens_plat_data data_ipq5424 = {
.num_sensors = 7,
.ops = &ops_ipq5332,
.hw_ids = (unsigned int []){9, 10, 11, 12, 13, 14, 15},
.feat = &ipq5332_feat,
.fields = tsens_v2_regfields,
};
/* Kept around for backward compatibility with old msm8996.dtsi */
struct tsens_plat_data data_8996 = {
.num_sensors = 13,
.ops = &ops_generic_v2,
.feat = &tsens_v2_feat,
.fields = tsens_v2_regfields,
};
|