summaryrefslogtreecommitdiff
path: root/kernel/liveupdate/luo_core.c
blob: a0f7788cd003cadcb47bb8c4436021a77b84060f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
// SPDX-License-Identifier: GPL-2.0

/*
 * Copyright (c) 2025, Google LLC.
 * Pasha Tatashin <pasha.tatashin@soleen.com>
 */

/**
 * DOC: Live Update Orchestrator (LUO)
 *
 * Live Update is a specialized, kexec-based reboot process that allows a
 * running kernel to be updated from one version to another while preserving
 * the state of selected resources and keeping designated hardware devices
 * operational. For these devices, DMA activity may continue throughout the
 * kernel transition.
 *
 * While the primary use case driving this work is supporting live updates of
 * the Linux kernel when it is used as a hypervisor in cloud environments, the
 * LUO framework itself is designed to be workload-agnostic. Live Update
 * facilitates a full kernel version upgrade for any type of system.
 *
 * For example, a non-hypervisor system running an in-memory cache like
 * memcached with many gigabytes of data can use LUO. The userspace service
 * can place its cache into a memfd, have its state preserved by LUO, and
 * restore it immediately after the kernel kexec.
 *
 * Whether the system is running virtual machines, containers, a
 * high-performance database, or networking services, LUO's primary goal is to
 * enable a full kernel update by preserving critical userspace state and
 * keeping essential devices operational.
 *
 * The core of LUO is a mechanism that tracks the progress of a live update,
 * along with a callback API that allows other kernel subsystems to participate
 * in the process. Example subsystems that can hook into LUO include: kvm,
 * iommu, interrupts, vfio, participating filesystems, and memory management.
 *
 * LUO uses Kexec Handover to transfer memory state from the current kernel to
 * the next kernel. For more details see
 * Documentation/core-api/kho/concepts.rst.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/io.h>
#include <linux/kexec_handover.h>
#include <linux/kho/abi/luo.h>
#include <linux/kobject.h>
#include <linux/libfdt.h>
#include <linux/liveupdate.h>
#include <linux/miscdevice.h>
#include <linux/mm.h>
#include <linux/sizes.h>
#include <linux/string.h>
#include <linux/unaligned.h>

#include "kexec_handover_internal.h"
#include "luo_internal.h"

static struct {
	bool enabled;
	void *fdt_out;
	void *fdt_in;
	u64 liveupdate_num;
} luo_global;

static int __init early_liveupdate_param(char *buf)
{
	return kstrtobool(buf, &luo_global.enabled);
}
early_param("liveupdate", early_liveupdate_param);

static int __init luo_early_startup(void)
{
	phys_addr_t fdt_phys;
	int err, ln_size;
	const void *ptr;

	if (!kho_is_enabled()) {
		if (liveupdate_enabled())
			pr_warn("Disabling liveupdate because KHO is disabled\n");
		luo_global.enabled = false;
		return 0;
	}

	/* Retrieve LUO subtree, and verify its format. */
	err = kho_retrieve_subtree(LUO_FDT_KHO_ENTRY_NAME, &fdt_phys);
	if (err) {
		if (err != -ENOENT) {
			pr_err("failed to retrieve FDT '%s' from KHO: %pe\n",
			       LUO_FDT_KHO_ENTRY_NAME, ERR_PTR(err));
			return err;
		}

		return 0;
	}

	luo_global.fdt_in = phys_to_virt(fdt_phys);
	err = fdt_node_check_compatible(luo_global.fdt_in, 0,
					LUO_FDT_COMPATIBLE);
	if (err) {
		pr_err("FDT '%s' is incompatible with '%s' [%d]\n",
		       LUO_FDT_KHO_ENTRY_NAME, LUO_FDT_COMPATIBLE, err);

		return -EINVAL;
	}

	ln_size = 0;
	ptr = fdt_getprop(luo_global.fdt_in, 0, LUO_FDT_LIVEUPDATE_NUM,
			  &ln_size);
	if (!ptr || ln_size != sizeof(luo_global.liveupdate_num)) {
		pr_err("Unable to get live update number '%s' [%d]\n",
		       LUO_FDT_LIVEUPDATE_NUM, ln_size);

		return -EINVAL;
	}

	luo_global.liveupdate_num = get_unaligned((u64 *)ptr);
	pr_info("Retrieved live update data, liveupdate number: %lld\n",
		luo_global.liveupdate_num);

	err = luo_session_setup_incoming(luo_global.fdt_in);
	if (err)
		return err;

	return 0;
}

static int __init liveupdate_early_init(void)
{
	int err;

	err = luo_early_startup();
	if (err) {
		luo_global.enabled = false;
		luo_restore_fail("The incoming tree failed to initialize properly [%pe], disabling live update\n",
				 ERR_PTR(err));
	}

	return err;
}
early_initcall(liveupdate_early_init);

/* Called during boot to create outgoing LUO fdt tree */
static int __init luo_fdt_setup(void)
{
	const u64 ln = luo_global.liveupdate_num + 1;
	void *fdt_out;
	int err;

	fdt_out = kho_alloc_preserve(LUO_FDT_SIZE);
	if (IS_ERR(fdt_out)) {
		pr_err("failed to allocate/preserve FDT memory\n");
		return PTR_ERR(fdt_out);
	}

	err = fdt_create(fdt_out, LUO_FDT_SIZE);
	err |= fdt_finish_reservemap(fdt_out);
	err |= fdt_begin_node(fdt_out, "");
	err |= fdt_property_string(fdt_out, "compatible", LUO_FDT_COMPATIBLE);
	err |= fdt_property(fdt_out, LUO_FDT_LIVEUPDATE_NUM, &ln, sizeof(ln));
	err |= luo_session_setup_outgoing(fdt_out);
	err |= fdt_end_node(fdt_out);
	err |= fdt_finish(fdt_out);
	if (err)
		goto exit_free;

	err = kho_add_subtree(LUO_FDT_KHO_ENTRY_NAME, fdt_out);
	if (err)
		goto exit_free;
	luo_global.fdt_out = fdt_out;

	return 0;

exit_free:
	kho_unpreserve_free(fdt_out);
	pr_err("failed to prepare LUO FDT: %d\n", err);

	return err;
}

/*
 * late initcall because it initializes the outgoing tree that is needed only
 * once userspace starts using /dev/liveupdate.
 */
static int __init luo_late_startup(void)
{
	int err;

	if (!liveupdate_enabled())
		return 0;

	err = luo_fdt_setup();
	if (err)
		luo_global.enabled = false;

	return err;
}
late_initcall(luo_late_startup);

/* Public Functions */

/**
 * liveupdate_reboot() - Kernel reboot notifier for live update final
 * serialization.
 *
 * This function is invoked directly from the reboot() syscall pathway
 * if kexec is in progress.
 *
 * If any callback fails, this function aborts KHO, undoes the freeze()
 * callbacks, and returns an error.
 */
int liveupdate_reboot(void)
{
	int err;

	if (!liveupdate_enabled())
		return 0;

	err = luo_session_serialize();
	if (err)
		return err;

	err = kho_finalize();
	if (err) {
		pr_err("kho_finalize failed %d\n", err);
		/*
		 * kho_finalize() may return libfdt errors, to aboid passing to
		 * userspace unknown errors, change this to EAGAIN.
		 */
		err = -EAGAIN;
	}

	return err;
}

/**
 * liveupdate_enabled - Check if the live update feature is enabled.
 *
 * This function returns the state of the live update feature flag, which
 * can be controlled via the ``liveupdate`` kernel command-line parameter.
 *
 * @return true if live update is enabled, false otherwise.
 */
bool liveupdate_enabled(void)
{
	return luo_global.enabled;
}

struct luo_device_state {
	struct miscdevice miscdev;
};

static const struct file_operations luo_fops = {
	.owner		= THIS_MODULE,
};

static struct luo_device_state luo_dev = {
	.miscdev = {
		.minor = MISC_DYNAMIC_MINOR,
		.name  = "liveupdate",
		.fops  = &luo_fops,
	},
};

static int __init liveupdate_ioctl_init(void)
{
	if (!liveupdate_enabled())
		return 0;

	return misc_register(&luo_dev.miscdev);
}
late_initcall(liveupdate_ioctl_init);