1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* SHA-3, as specified in
* https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
*
* SHA-3 code by Jeff Garzik <jeff@garzik.org>
* Ard Biesheuvel <ard.biesheuvel@linaro.org>
* David Howells <dhowells@redhat.com>
*
* See also Documentation/crypto/sha3.rst
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <crypto/sha3.h>
#include <crypto/utils.h>
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/unaligned.h>
#include "fips.h"
/*
* On some 32-bit architectures, such as h8300, GCC ends up using over 1 KB of
* stack if the round calculation gets inlined into the loop in
* sha3_keccakf_generic(). On the other hand, on 64-bit architectures with
* plenty of [64-bit wide] general purpose registers, not inlining it severely
* hurts performance. So let's use 64-bitness as a heuristic to decide whether
* to inline or not.
*/
#ifdef CONFIG_64BIT
#define SHA3_INLINE inline
#else
#define SHA3_INLINE noinline
#endif
#define SHA3_KECCAK_ROUNDS 24
static const u64 sha3_keccakf_rndc[SHA3_KECCAK_ROUNDS] = {
0x0000000000000001ULL, 0x0000000000008082ULL, 0x800000000000808aULL,
0x8000000080008000ULL, 0x000000000000808bULL, 0x0000000080000001ULL,
0x8000000080008081ULL, 0x8000000000008009ULL, 0x000000000000008aULL,
0x0000000000000088ULL, 0x0000000080008009ULL, 0x000000008000000aULL,
0x000000008000808bULL, 0x800000000000008bULL, 0x8000000000008089ULL,
0x8000000000008003ULL, 0x8000000000008002ULL, 0x8000000000000080ULL,
0x000000000000800aULL, 0x800000008000000aULL, 0x8000000080008081ULL,
0x8000000000008080ULL, 0x0000000080000001ULL, 0x8000000080008008ULL
};
/*
* Perform a single round of Keccak mixing.
*/
static SHA3_INLINE void sha3_keccakf_one_round_generic(u64 st[25], int round)
{
u64 t[5], tt, bc[5];
/* Theta */
bc[0] = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20];
bc[1] = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21];
bc[2] = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22];
bc[3] = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23];
bc[4] = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24];
t[0] = bc[4] ^ rol64(bc[1], 1);
t[1] = bc[0] ^ rol64(bc[2], 1);
t[2] = bc[1] ^ rol64(bc[3], 1);
t[3] = bc[2] ^ rol64(bc[4], 1);
t[4] = bc[3] ^ rol64(bc[0], 1);
st[0] ^= t[0];
/* Rho Pi */
tt = st[1];
st[ 1] = rol64(st[ 6] ^ t[1], 44);
st[ 6] = rol64(st[ 9] ^ t[4], 20);
st[ 9] = rol64(st[22] ^ t[2], 61);
st[22] = rol64(st[14] ^ t[4], 39);
st[14] = rol64(st[20] ^ t[0], 18);
st[20] = rol64(st[ 2] ^ t[2], 62);
st[ 2] = rol64(st[12] ^ t[2], 43);
st[12] = rol64(st[13] ^ t[3], 25);
st[13] = rol64(st[19] ^ t[4], 8);
st[19] = rol64(st[23] ^ t[3], 56);
st[23] = rol64(st[15] ^ t[0], 41);
st[15] = rol64(st[ 4] ^ t[4], 27);
st[ 4] = rol64(st[24] ^ t[4], 14);
st[24] = rol64(st[21] ^ t[1], 2);
st[21] = rol64(st[ 8] ^ t[3], 55);
st[ 8] = rol64(st[16] ^ t[1], 45);
st[16] = rol64(st[ 5] ^ t[0], 36);
st[ 5] = rol64(st[ 3] ^ t[3], 28);
st[ 3] = rol64(st[18] ^ t[3], 21);
st[18] = rol64(st[17] ^ t[2], 15);
st[17] = rol64(st[11] ^ t[1], 10);
st[11] = rol64(st[ 7] ^ t[2], 6);
st[ 7] = rol64(st[10] ^ t[0], 3);
st[10] = rol64( tt ^ t[1], 1);
/* Chi */
bc[ 0] = ~st[ 1] & st[ 2];
bc[ 1] = ~st[ 2] & st[ 3];
bc[ 2] = ~st[ 3] & st[ 4];
bc[ 3] = ~st[ 4] & st[ 0];
bc[ 4] = ~st[ 0] & st[ 1];
st[ 0] ^= bc[ 0];
st[ 1] ^= bc[ 1];
st[ 2] ^= bc[ 2];
st[ 3] ^= bc[ 3];
st[ 4] ^= bc[ 4];
bc[ 0] = ~st[ 6] & st[ 7];
bc[ 1] = ~st[ 7] & st[ 8];
bc[ 2] = ~st[ 8] & st[ 9];
bc[ 3] = ~st[ 9] & st[ 5];
bc[ 4] = ~st[ 5] & st[ 6];
st[ 5] ^= bc[ 0];
st[ 6] ^= bc[ 1];
st[ 7] ^= bc[ 2];
st[ 8] ^= bc[ 3];
st[ 9] ^= bc[ 4];
bc[ 0] = ~st[11] & st[12];
bc[ 1] = ~st[12] & st[13];
bc[ 2] = ~st[13] & st[14];
bc[ 3] = ~st[14] & st[10];
bc[ 4] = ~st[10] & st[11];
st[10] ^= bc[ 0];
st[11] ^= bc[ 1];
st[12] ^= bc[ 2];
st[13] ^= bc[ 3];
st[14] ^= bc[ 4];
bc[ 0] = ~st[16] & st[17];
bc[ 1] = ~st[17] & st[18];
bc[ 2] = ~st[18] & st[19];
bc[ 3] = ~st[19] & st[15];
bc[ 4] = ~st[15] & st[16];
st[15] ^= bc[ 0];
st[16] ^= bc[ 1];
st[17] ^= bc[ 2];
st[18] ^= bc[ 3];
st[19] ^= bc[ 4];
bc[ 0] = ~st[21] & st[22];
bc[ 1] = ~st[22] & st[23];
bc[ 2] = ~st[23] & st[24];
bc[ 3] = ~st[24] & st[20];
bc[ 4] = ~st[20] & st[21];
st[20] ^= bc[ 0];
st[21] ^= bc[ 1];
st[22] ^= bc[ 2];
st[23] ^= bc[ 3];
st[24] ^= bc[ 4];
/* Iota */
st[0] ^= sha3_keccakf_rndc[round];
}
/* Generic implementation of the Keccak-f[1600] permutation */
static void sha3_keccakf_generic(struct sha3_state *state)
{
/*
* Temporarily convert the state words from little-endian to native-
* endian so that they can be operated on. Note that on little-endian
* machines this conversion is a no-op and is optimized out.
*/
for (int i = 0; i < ARRAY_SIZE(state->words); i++)
state->native_words[i] = le64_to_cpu(state->words[i]);
for (int round = 0; round < SHA3_KECCAK_ROUNDS; round++)
sha3_keccakf_one_round_generic(state->native_words, round);
for (int i = 0; i < ARRAY_SIZE(state->words); i++)
state->words[i] = cpu_to_le64(state->native_words[i]);
}
/*
* Generic implementation of absorbing the given nonzero number of full blocks
* into the sponge function Keccak[r=8*block_size, c=1600-8*block_size].
*/
static void __maybe_unused
sha3_absorb_blocks_generic(struct sha3_state *state, const u8 *data,
size_t nblocks, size_t block_size)
{
do {
for (size_t i = 0; i < block_size; i += 8)
state->words[i / 8] ^= get_unaligned((__le64 *)&data[i]);
sha3_keccakf_generic(state);
data += block_size;
} while (--nblocks);
}
#ifdef CONFIG_CRYPTO_LIB_SHA3_ARCH
#include "sha3.h" /* $(SRCARCH)/sha3.h */
#else
#define sha3_keccakf sha3_keccakf_generic
#define sha3_absorb_blocks sha3_absorb_blocks_generic
#endif
void __sha3_update(struct __sha3_ctx *ctx, const u8 *in, size_t in_len)
{
const size_t block_size = ctx->block_size;
size_t absorb_offset = ctx->absorb_offset;
/* Warn if squeezing has already begun. */
WARN_ON_ONCE(absorb_offset >= block_size);
if (absorb_offset && absorb_offset + in_len >= block_size) {
crypto_xor(&ctx->state.bytes[absorb_offset], in,
block_size - absorb_offset);
in += block_size - absorb_offset;
in_len -= block_size - absorb_offset;
sha3_keccakf(&ctx->state);
absorb_offset = 0;
}
if (in_len >= block_size) {
size_t nblocks = in_len / block_size;
sha3_absorb_blocks(&ctx->state, in, nblocks, block_size);
in += nblocks * block_size;
in_len -= nblocks * block_size;
}
if (in_len) {
crypto_xor(&ctx->state.bytes[absorb_offset], in, in_len);
absorb_offset += in_len;
}
ctx->absorb_offset = absorb_offset;
}
EXPORT_SYMBOL_GPL(__sha3_update);
void sha3_final(struct sha3_ctx *sha3_ctx, u8 *out)
{
struct __sha3_ctx *ctx = &sha3_ctx->ctx;
ctx->state.bytes[ctx->absorb_offset] ^= 0x06;
ctx->state.bytes[ctx->block_size - 1] ^= 0x80;
sha3_keccakf(&ctx->state);
memcpy(out, ctx->state.bytes, ctx->digest_size);
sha3_zeroize_ctx(sha3_ctx);
}
EXPORT_SYMBOL_GPL(sha3_final);
void shake_squeeze(struct shake_ctx *shake_ctx, u8 *out, size_t out_len)
{
struct __sha3_ctx *ctx = &shake_ctx->ctx;
const size_t block_size = ctx->block_size;
size_t squeeze_offset = ctx->squeeze_offset;
if (ctx->absorb_offset < block_size) {
/* First squeeze: */
/* Add the domain separation suffix and padding. */
ctx->state.bytes[ctx->absorb_offset] ^= 0x1f;
ctx->state.bytes[block_size - 1] ^= 0x80;
/* Indicate that squeezing has begun. */
ctx->absorb_offset = block_size;
/*
* Indicate that no output is pending yet, i.e. sha3_keccakf()
* will need to be called before the first copy.
*/
squeeze_offset = block_size;
}
while (out_len) {
if (squeeze_offset == block_size) {
sha3_keccakf(&ctx->state);
squeeze_offset = 0;
}
size_t copy = min(out_len, block_size - squeeze_offset);
memcpy(out, &ctx->state.bytes[squeeze_offset], copy);
out += copy;
out_len -= copy;
squeeze_offset += copy;
}
ctx->squeeze_offset = squeeze_offset;
}
EXPORT_SYMBOL_GPL(shake_squeeze);
#ifndef sha3_224_arch
static inline bool sha3_224_arch(const u8 *in, size_t in_len,
u8 out[SHA3_224_DIGEST_SIZE])
{
return false;
}
#endif
#ifndef sha3_256_arch
static inline bool sha3_256_arch(const u8 *in, size_t in_len,
u8 out[SHA3_256_DIGEST_SIZE])
{
return false;
}
#endif
#ifndef sha3_384_arch
static inline bool sha3_384_arch(const u8 *in, size_t in_len,
u8 out[SHA3_384_DIGEST_SIZE])
{
return false;
}
#endif
#ifndef sha3_512_arch
static inline bool sha3_512_arch(const u8 *in, size_t in_len,
u8 out[SHA3_512_DIGEST_SIZE])
{
return false;
}
#endif
void sha3_224(const u8 *in, size_t in_len, u8 out[SHA3_224_DIGEST_SIZE])
{
struct sha3_ctx ctx;
if (sha3_224_arch(in, in_len, out))
return;
sha3_224_init(&ctx);
sha3_update(&ctx, in, in_len);
sha3_final(&ctx, out);
}
EXPORT_SYMBOL_GPL(sha3_224);
void sha3_256(const u8 *in, size_t in_len, u8 out[SHA3_256_DIGEST_SIZE])
{
struct sha3_ctx ctx;
if (sha3_256_arch(in, in_len, out))
return;
sha3_256_init(&ctx);
sha3_update(&ctx, in, in_len);
sha3_final(&ctx, out);
}
EXPORT_SYMBOL_GPL(sha3_256);
void sha3_384(const u8 *in, size_t in_len, u8 out[SHA3_384_DIGEST_SIZE])
{
struct sha3_ctx ctx;
if (sha3_384_arch(in, in_len, out))
return;
sha3_384_init(&ctx);
sha3_update(&ctx, in, in_len);
sha3_final(&ctx, out);
}
EXPORT_SYMBOL_GPL(sha3_384);
void sha3_512(const u8 *in, size_t in_len, u8 out[SHA3_512_DIGEST_SIZE])
{
struct sha3_ctx ctx;
if (sha3_512_arch(in, in_len, out))
return;
sha3_512_init(&ctx);
sha3_update(&ctx, in, in_len);
sha3_final(&ctx, out);
}
EXPORT_SYMBOL_GPL(sha3_512);
void shake128(const u8 *in, size_t in_len, u8 *out, size_t out_len)
{
struct shake_ctx ctx;
shake128_init(&ctx);
shake_update(&ctx, in, in_len);
shake_squeeze(&ctx, out, out_len);
shake_zeroize_ctx(&ctx);
}
EXPORT_SYMBOL_GPL(shake128);
void shake256(const u8 *in, size_t in_len, u8 *out, size_t out_len)
{
struct shake_ctx ctx;
shake256_init(&ctx);
shake_update(&ctx, in, in_len);
shake_squeeze(&ctx, out, out_len);
shake_zeroize_ctx(&ctx);
}
EXPORT_SYMBOL_GPL(shake256);
#if defined(sha3_mod_init_arch) || defined(CONFIG_CRYPTO_FIPS)
static int __init sha3_mod_init(void)
{
#ifdef sha3_mod_init_arch
sha3_mod_init_arch();
#endif
if (fips_enabled) {
/*
* FIPS cryptographic algorithm self-test. As per the FIPS
* Implementation Guidance, testing any SHA-3 algorithm
* satisfies the test requirement for all of them.
*/
u8 hash[SHA3_256_DIGEST_SIZE];
sha3_256(fips_test_data, sizeof(fips_test_data), hash);
if (memcmp(fips_test_sha3_256_value, hash, sizeof(hash)) != 0)
panic("sha3: FIPS self-test failed\n");
}
return 0;
}
subsys_initcall(sha3_mod_init);
static void __exit sha3_mod_exit(void)
{
}
module_exit(sha3_mod_exit);
#endif
MODULE_DESCRIPTION("SHA-3 library functions");
MODULE_LICENSE("GPL");
|