summaryrefslogtreecommitdiff
path: root/rust/kernel/cpufreq.rs
blob: 09b856bb297b89a81e7677778d9fb32e459d84ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
// SPDX-License-Identifier: GPL-2.0

//! CPU frequency scaling.
//!
//! This module provides rust abstractions for interacting with the cpufreq subsystem.
//!
//! C header: [`include/linux/cpufreq.h`](srctree/include/linux/cpufreq.h)
//!
//! Reference: <https://docs.kernel.org/admin-guide/pm/cpufreq.html>

use crate::{
    clk::Hertz,
    cpumask,
    device::{Bound, Device},
    devres::Devres,
    error::{code::*, from_err_ptr, from_result, to_result, Result, VTABLE_DEFAULT_ERROR},
    ffi::{c_char, c_ulong},
    prelude::*,
    types::ForeignOwnable,
    types::Opaque,
};

#[cfg(CONFIG_COMMON_CLK)]
use crate::clk::Clk;

use core::{
    cell::UnsafeCell,
    marker::PhantomData,
    mem::MaybeUninit,
    ops::{Deref, DerefMut},
    pin::Pin,
    ptr,
};

use macros::vtable;

/// Maximum length of CPU frequency driver's name.
const CPUFREQ_NAME_LEN: usize = bindings::CPUFREQ_NAME_LEN as usize;

/// Default transition latency value in nanoseconds.
pub const ETERNAL_LATENCY_NS: u32 = bindings::CPUFREQ_ETERNAL as u32;

/// CPU frequency driver flags.
pub mod flags {
    /// Driver needs to update internal limits even if frequency remains unchanged.
    pub const NEED_UPDATE_LIMITS: u16 = 1 << 0;

    /// Platform where constants like `loops_per_jiffy` are unaffected by frequency changes.
    pub const CONST_LOOPS: u16 = 1 << 1;

    /// Register driver as a thermal cooling device automatically.
    pub const IS_COOLING_DEV: u16 = 1 << 2;

    /// Supports multiple clock domains with per-policy governors in `cpu/cpuN/cpufreq/`.
    pub const HAVE_GOVERNOR_PER_POLICY: u16 = 1 << 3;

    /// Allows post-change notifications outside of the `target()` routine.
    pub const ASYNC_NOTIFICATION: u16 = 1 << 4;

    /// Ensure CPU starts at a valid frequency from the driver's freq-table.
    pub const NEED_INITIAL_FREQ_CHECK: u16 = 1 << 5;

    /// Disallow governors with `dynamic_switching` capability.
    pub const NO_AUTO_DYNAMIC_SWITCHING: u16 = 1 << 6;
}

/// Relations from the C code.
const CPUFREQ_RELATION_L: u32 = 0;
const CPUFREQ_RELATION_H: u32 = 1;
const CPUFREQ_RELATION_C: u32 = 2;

/// Can be used with any of the above values.
const CPUFREQ_RELATION_E: u32 = 1 << 2;

/// CPU frequency selection relations.
///
/// CPU frequency selection relations, each optionally marked as "efficient".
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum Relation {
    /// Select the lowest frequency at or above target.
    Low(bool),
    /// Select the highest frequency below or at target.
    High(bool),
    /// Select the closest frequency to the target.
    Close(bool),
}

impl Relation {
    // Construct from a C-compatible `u32` value.
    fn new(val: u32) -> Result<Self> {
        let efficient = val & CPUFREQ_RELATION_E != 0;

        Ok(match val & !CPUFREQ_RELATION_E {
            CPUFREQ_RELATION_L => Self::Low(efficient),
            CPUFREQ_RELATION_H => Self::High(efficient),
            CPUFREQ_RELATION_C => Self::Close(efficient),
            _ => return Err(EINVAL),
        })
    }
}

impl From<Relation> for u32 {
    // Convert to a C-compatible `u32` value.
    fn from(rel: Relation) -> Self {
        let (mut val, efficient) = match rel {
            Relation::Low(e) => (CPUFREQ_RELATION_L, e),
            Relation::High(e) => (CPUFREQ_RELATION_H, e),
            Relation::Close(e) => (CPUFREQ_RELATION_C, e),
        };

        if efficient {
            val |= CPUFREQ_RELATION_E;
        }

        val
    }
}

/// Policy data.
///
/// Rust abstraction for the C `struct cpufreq_policy_data`.
///
/// # Invariants
///
/// A [`PolicyData`] instance always corresponds to a valid C `struct cpufreq_policy_data`.
///
/// The callers must ensure that the `struct cpufreq_policy_data` is valid for access and remains
/// valid for the lifetime of the returned reference.
#[repr(transparent)]
pub struct PolicyData(Opaque<bindings::cpufreq_policy_data>);

impl PolicyData {
    /// Creates a mutable reference to an existing `struct cpufreq_policy_data` pointer.
    ///
    /// # Safety
    ///
    /// The caller must ensure that `ptr` is valid for writing and remains valid for the lifetime
    /// of the returned reference.
    #[inline]
    pub unsafe fn from_raw_mut<'a>(ptr: *mut bindings::cpufreq_policy_data) -> &'a mut Self {
        // SAFETY: Guaranteed by the safety requirements of the function.
        //
        // INVARIANT: The caller ensures that `ptr` is valid for writing and remains valid for the
        // lifetime of the returned reference.
        unsafe { &mut *ptr.cast() }
    }

    /// Returns a raw pointer to the underlying C `cpufreq_policy_data`.
    #[inline]
    pub fn as_raw(&self) -> *mut bindings::cpufreq_policy_data {
        let this: *const Self = self;
        this.cast_mut().cast()
    }

    /// Wrapper for `cpufreq_generic_frequency_table_verify`.
    #[inline]
    pub fn generic_verify(&self) -> Result {
        // SAFETY: By the type invariant, the pointer stored in `self` is valid.
        to_result(unsafe { bindings::cpufreq_generic_frequency_table_verify(self.as_raw()) })
    }
}

/// The frequency table index.
///
/// Represents index with a frequency table.
///
/// # Invariants
///
/// The index must correspond to a valid entry in the [`Table`] it is used for.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct TableIndex(usize);

impl TableIndex {
    /// Creates an instance of [`TableIndex`].
    ///
    /// # Safety
    ///
    /// The caller must ensure that `index` correspond to a valid entry in the [`Table`] it is used
    /// for.
    pub unsafe fn new(index: usize) -> Self {
        // INVARIANT: The caller ensures that `index` correspond to a valid entry in the [`Table`].
        Self(index)
    }
}

impl From<TableIndex> for usize {
    #[inline]
    fn from(index: TableIndex) -> Self {
        index.0
    }
}

/// CPU frequency table.
///
/// Rust abstraction for the C `struct cpufreq_frequency_table`.
///
/// # Invariants
///
/// A [`Table`] instance always corresponds to a valid C `struct cpufreq_frequency_table`.
///
/// The callers must ensure that the `struct cpufreq_frequency_table` is valid for access and
/// remains valid for the lifetime of the returned reference.
///
/// ## Examples
///
/// The following example demonstrates how to read a frequency value from [`Table`].
///
/// ```
/// use kernel::cpufreq::{Policy, TableIndex};
///
/// fn show_freq(policy: &Policy) -> Result {
///     let table = policy.freq_table()?;
///
///     // SAFETY: Index is a valid entry in the table.
///     let index = unsafe { TableIndex::new(0) };
///
///     pr_info!("The frequency at index 0 is: {:?}\n", table.freq(index)?);
///     pr_info!("The flags at index 0 is: {}\n", table.flags(index));
///     pr_info!("The data at index 0 is: {}\n", table.data(index));
///     Ok(())
/// }
/// ```
#[repr(transparent)]
pub struct Table(Opaque<bindings::cpufreq_frequency_table>);

impl Table {
    /// Creates a reference to an existing C `struct cpufreq_frequency_table` pointer.
    ///
    /// # Safety
    ///
    /// The caller must ensure that `ptr` is valid for reading and remains valid for the lifetime
    /// of the returned reference.
    #[inline]
    pub unsafe fn from_raw<'a>(ptr: *const bindings::cpufreq_frequency_table) -> &'a Self {
        // SAFETY: Guaranteed by the safety requirements of the function.
        //
        // INVARIANT: The caller ensures that `ptr` is valid for reading and remains valid for the
        // lifetime of the returned reference.
        unsafe { &*ptr.cast() }
    }

    /// Returns the raw mutable pointer to the C `struct cpufreq_frequency_table`.
    #[inline]
    pub fn as_raw(&self) -> *mut bindings::cpufreq_frequency_table {
        let this: *const Self = self;
        this.cast_mut().cast()
    }

    /// Returns frequency at `index` in the [`Table`].
    #[inline]
    pub fn freq(&self, index: TableIndex) -> Result<Hertz> {
        // SAFETY: By the type invariant, the pointer stored in `self` is valid and `index` is
        // guaranteed to be valid by its safety requirements.
        Ok(Hertz::from_khz(unsafe {
            (*self.as_raw().add(index.into())).frequency.try_into()?
        }))
    }

    /// Returns flags at `index` in the [`Table`].
    #[inline]
    pub fn flags(&self, index: TableIndex) -> u32 {
        // SAFETY: By the type invariant, the pointer stored in `self` is valid and `index` is
        // guaranteed to be valid by its safety requirements.
        unsafe { (*self.as_raw().add(index.into())).flags }
    }

    /// Returns data at `index` in the [`Table`].
    #[inline]
    pub fn data(&self, index: TableIndex) -> u32 {
        // SAFETY: By the type invariant, the pointer stored in `self` is valid and `index` is
        // guaranteed to be valid by its safety requirements.
        unsafe { (*self.as_raw().add(index.into())).driver_data }
    }
}

/// CPU frequency table owned and pinned in memory, created from a [`TableBuilder`].
pub struct TableBox {
    entries: Pin<KVec<bindings::cpufreq_frequency_table>>,
}

impl TableBox {
    /// Constructs a new [`TableBox`] from a [`KVec`] of entries.
    ///
    /// # Errors
    ///
    /// Returns `EINVAL` if the entries list is empty.
    #[inline]
    fn new(entries: KVec<bindings::cpufreq_frequency_table>) -> Result<Self> {
        if entries.is_empty() {
            return Err(EINVAL);
        }

        Ok(Self {
            // Pin the entries to memory, since we are passing its pointer to the C code.
            entries: Pin::new(entries),
        })
    }

    /// Returns a raw pointer to the underlying C `cpufreq_frequency_table`.
    #[inline]
    fn as_raw(&self) -> *const bindings::cpufreq_frequency_table {
        // The pointer is valid until the table gets dropped.
        self.entries.as_ptr()
    }
}

impl Deref for TableBox {
    type Target = Table;

    fn deref(&self) -> &Self::Target {
        // SAFETY: The caller owns TableBox, it is safe to deref.
        unsafe { Self::Target::from_raw(self.as_raw()) }
    }
}

/// CPU frequency table builder.
///
/// This is used by the CPU frequency drivers to build a frequency table dynamically.
///
/// ## Examples
///
/// The following example demonstrates how to create a CPU frequency table.
///
/// ```
/// use kernel::cpufreq::{TableBuilder, TableIndex};
/// use kernel::clk::Hertz;
///
/// let mut builder = TableBuilder::new();
///
/// // Adds few entries to the table.
/// builder.add(Hertz::from_mhz(700), 0, 1).unwrap();
/// builder.add(Hertz::from_mhz(800), 2, 3).unwrap();
/// builder.add(Hertz::from_mhz(900), 4, 5).unwrap();
/// builder.add(Hertz::from_ghz(1), 6, 7).unwrap();
///
/// let table = builder.to_table().unwrap();
///
/// // SAFETY: Index values correspond to valid entries in the table.
/// let (index0, index2) = unsafe { (TableIndex::new(0), TableIndex::new(2)) };
///
/// assert_eq!(table.freq(index0), Ok(Hertz::from_mhz(700)));
/// assert_eq!(table.flags(index0), 0);
/// assert_eq!(table.data(index0), 1);
///
/// assert_eq!(table.freq(index2), Ok(Hertz::from_mhz(900)));
/// assert_eq!(table.flags(index2), 4);
/// assert_eq!(table.data(index2), 5);
/// ```
#[derive(Default)]
#[repr(transparent)]
pub struct TableBuilder {
    entries: KVec<bindings::cpufreq_frequency_table>,
}

impl TableBuilder {
    /// Creates a new instance of [`TableBuilder`].
    #[inline]
    pub fn new() -> Self {
        Self {
            entries: KVec::new(),
        }
    }

    /// Adds a new entry to the table.
    pub fn add(&mut self, freq: Hertz, flags: u32, driver_data: u32) -> Result {
        // Adds the new entry at the end of the vector.
        Ok(self.entries.push(
            bindings::cpufreq_frequency_table {
                flags,
                driver_data,
                frequency: freq.as_khz() as u32,
            },
            GFP_KERNEL,
        )?)
    }

    /// Consumes the [`TableBuilder`] and returns [`TableBox`].
    pub fn to_table(mut self) -> Result<TableBox> {
        // Add last entry to the table.
        self.add(Hertz(c_ulong::MAX), 0, 0)?;

        TableBox::new(self.entries)
    }
}

/// CPU frequency policy.
///
/// Rust abstraction for the C `struct cpufreq_policy`.
///
/// # Invariants
///
/// A [`Policy`] instance always corresponds to a valid C `struct cpufreq_policy`.
///
/// The callers must ensure that the `struct cpufreq_policy` is valid for access and remains valid
/// for the lifetime of the returned reference.
///
/// ## Examples
///
/// The following example demonstrates how to create a CPU frequency table.
///
/// ```
/// use kernel::cpufreq::{ETERNAL_LATENCY_NS, Policy};
///
/// fn update_policy(policy: &mut Policy) {
///     policy
///         .set_dvfs_possible_from_any_cpu(true)
///         .set_fast_switch_possible(true)
///         .set_transition_latency_ns(ETERNAL_LATENCY_NS);
///
///     pr_info!("The policy details are: {:?}\n", (policy.cpu(), policy.cur()));
/// }
/// ```
#[repr(transparent)]
pub struct Policy(Opaque<bindings::cpufreq_policy>);

impl Policy {
    /// Creates a reference to an existing `struct cpufreq_policy` pointer.
    ///
    /// # Safety
    ///
    /// The caller must ensure that `ptr` is valid for reading and remains valid for the lifetime
    /// of the returned reference.
    #[inline]
    pub unsafe fn from_raw<'a>(ptr: *const bindings::cpufreq_policy) -> &'a Self {
        // SAFETY: Guaranteed by the safety requirements of the function.
        //
        // INVARIANT: The caller ensures that `ptr` is valid for reading and remains valid for the
        // lifetime of the returned reference.
        unsafe { &*ptr.cast() }
    }

    /// Creates a mutable reference to an existing `struct cpufreq_policy` pointer.
    ///
    /// # Safety
    ///
    /// The caller must ensure that `ptr` is valid for writing and remains valid for the lifetime
    /// of the returned reference.
    #[inline]
    pub unsafe fn from_raw_mut<'a>(ptr: *mut bindings::cpufreq_policy) -> &'a mut Self {
        // SAFETY: Guaranteed by the safety requirements of the function.
        //
        // INVARIANT: The caller ensures that `ptr` is valid for writing and remains valid for the
        // lifetime of the returned reference.
        unsafe { &mut *ptr.cast() }
    }

    /// Returns a raw mutable pointer to the C `struct cpufreq_policy`.
    #[inline]
    fn as_raw(&self) -> *mut bindings::cpufreq_policy {
        let this: *const Self = self;
        this.cast_mut().cast()
    }

    #[inline]
    fn as_ref(&self) -> &bindings::cpufreq_policy {
        // SAFETY: By the type invariant, the pointer stored in `self` is valid.
        unsafe { &*self.as_raw() }
    }

    #[inline]
    fn as_mut_ref(&mut self) -> &mut bindings::cpufreq_policy {
        // SAFETY: By the type invariant, the pointer stored in `self` is valid.
        unsafe { &mut *self.as_raw() }
    }

    /// Returns the primary CPU for the [`Policy`].
    #[inline]
    pub fn cpu(&self) -> u32 {
        self.as_ref().cpu
    }

    /// Returns the minimum frequency for the [`Policy`].
    #[inline]
    pub fn min(&self) -> Hertz {
        Hertz::from_khz(self.as_ref().min as usize)
    }

    /// Set the minimum frequency for the [`Policy`].
    #[inline]
    pub fn set_min(&mut self, min: Hertz) -> &mut Self {
        self.as_mut_ref().min = min.as_khz() as u32;
        self
    }

    /// Returns the maximum frequency for the [`Policy`].
    #[inline]
    pub fn max(&self) -> Hertz {
        Hertz::from_khz(self.as_ref().max as usize)
    }

    /// Set the maximum frequency for the [`Policy`].
    #[inline]
    pub fn set_max(&mut self, max: Hertz) -> &mut Self {
        self.as_mut_ref().max = max.as_khz() as u32;
        self
    }

    /// Returns the current frequency for the [`Policy`].
    #[inline]
    pub fn cur(&self) -> Hertz {
        Hertz::from_khz(self.as_ref().cur as usize)
    }

    /// Returns the suspend frequency for the [`Policy`].
    #[inline]
    pub fn suspend_freq(&self) -> Hertz {
        Hertz::from_khz(self.as_ref().suspend_freq as usize)
    }

    /// Sets the suspend frequency for the [`Policy`].
    #[inline]
    pub fn set_suspend_freq(&mut self, freq: Hertz) -> &mut Self {
        self.as_mut_ref().suspend_freq = freq.as_khz() as u32;
        self
    }

    /// Provides a wrapper to the generic suspend routine.
    #[inline]
    pub fn generic_suspend(&mut self) -> Result {
        // SAFETY: By the type invariant, the pointer stored in `self` is valid.
        to_result(unsafe { bindings::cpufreq_generic_suspend(self.as_mut_ref()) })
    }

    /// Provides a wrapper to the generic get routine.
    #[inline]
    pub fn generic_get(&self) -> Result<u32> {
        // SAFETY: By the type invariant, the pointer stored in `self` is valid.
        Ok(unsafe { bindings::cpufreq_generic_get(self.cpu()) })
    }

    /// Provides a wrapper to the register with energy model using the OPP core.
    #[cfg(CONFIG_PM_OPP)]
    #[inline]
    pub fn register_em_opp(&mut self) {
        // SAFETY: By the type invariant, the pointer stored in `self` is valid.
        unsafe { bindings::cpufreq_register_em_with_opp(self.as_mut_ref()) };
    }

    /// Gets [`cpumask::Cpumask`] for a cpufreq [`Policy`].
    #[inline]
    pub fn cpus(&mut self) -> &mut cpumask::Cpumask {
        // SAFETY: The pointer to `cpus` is valid for writing and remains valid for the lifetime of
        // the returned reference.
        unsafe { cpumask::CpumaskVar::as_mut_ref(&mut self.as_mut_ref().cpus) }
    }

    /// Sets clock for the [`Policy`].
    ///
    /// # Safety
    ///
    /// The caller must guarantee that the returned [`Clk`] is not dropped while it is getting used
    /// by the C code.
    #[cfg(CONFIG_COMMON_CLK)]
    pub unsafe fn set_clk(&mut self, dev: &Device, name: Option<&CStr>) -> Result<Clk> {
        let clk = Clk::get(dev, name)?;
        self.as_mut_ref().clk = clk.as_raw();
        Ok(clk)
    }

    /// Allows / disallows frequency switching code to run on any CPU.
    #[inline]
    pub fn set_dvfs_possible_from_any_cpu(&mut self, val: bool) -> &mut Self {
        self.as_mut_ref().dvfs_possible_from_any_cpu = val;
        self
    }

    /// Returns if fast switching of frequencies is possible or not.
    #[inline]
    pub fn fast_switch_possible(&self) -> bool {
        self.as_ref().fast_switch_possible
    }

    /// Enables / disables fast frequency switching.
    #[inline]
    pub fn set_fast_switch_possible(&mut self, val: bool) -> &mut Self {
        self.as_mut_ref().fast_switch_possible = val;
        self
    }

    /// Sets transition latency (in nanoseconds) for the [`Policy`].
    #[inline]
    pub fn set_transition_latency_ns(&mut self, latency_ns: u32) -> &mut Self {
        self.as_mut_ref().cpuinfo.transition_latency = latency_ns;
        self
    }

    /// Sets cpuinfo `min_freq`.
    #[inline]
    pub fn set_cpuinfo_min_freq(&mut self, min_freq: Hertz) -> &mut Self {
        self.as_mut_ref().cpuinfo.min_freq = min_freq.as_khz() as u32;
        self
    }

    /// Sets cpuinfo `max_freq`.
    #[inline]
    pub fn set_cpuinfo_max_freq(&mut self, max_freq: Hertz) -> &mut Self {
        self.as_mut_ref().cpuinfo.max_freq = max_freq.as_khz() as u32;
        self
    }

    /// Set `transition_delay_us`, i.e. the minimum time between successive frequency change
    /// requests.
    #[inline]
    pub fn set_transition_delay_us(&mut self, transition_delay_us: u32) -> &mut Self {
        self.as_mut_ref().transition_delay_us = transition_delay_us;
        self
    }

    /// Returns reference to the CPU frequency [`Table`] for the [`Policy`].
    pub fn freq_table(&self) -> Result<&Table> {
        if self.as_ref().freq_table.is_null() {
            return Err(EINVAL);
        }

        // SAFETY: The `freq_table` is guaranteed to be valid for reading and remains valid for the
        // lifetime of the returned reference.
        Ok(unsafe { Table::from_raw(self.as_ref().freq_table) })
    }

    /// Sets the CPU frequency [`Table`] for the [`Policy`].
    ///
    /// # Safety
    ///
    /// The caller must guarantee that the [`Table`] is not dropped while it is getting used by the
    /// C code.
    #[inline]
    pub unsafe fn set_freq_table(&mut self, table: &Table) -> &mut Self {
        self.as_mut_ref().freq_table = table.as_raw();
        self
    }

    /// Returns the [`Policy`]'s private data.
    pub fn data<T: ForeignOwnable>(&mut self) -> Option<<T>::Borrowed<'_>> {
        if self.as_ref().driver_data.is_null() {
            None
        } else {
            // SAFETY: The data is earlier set from [`set_data`].
            Some(unsafe { T::borrow(self.as_ref().driver_data) })
        }
    }

    /// Sets the private data of the [`Policy`] using a foreign-ownable wrapper.
    ///
    /// # Errors
    ///
    /// Returns `EBUSY` if private data is already set.
    fn set_data<T: ForeignOwnable>(&mut self, data: T) -> Result {
        if self.as_ref().driver_data.is_null() {
            // Transfer the ownership of the data to the foreign interface.
            self.as_mut_ref().driver_data = <T as ForeignOwnable>::into_foreign(data) as _;
            Ok(())
        } else {
            Err(EBUSY)
        }
    }

    /// Clears and returns ownership of the private data.
    fn clear_data<T: ForeignOwnable>(&mut self) -> Option<T> {
        if self.as_ref().driver_data.is_null() {
            None
        } else {
            let data = Some(
                // SAFETY: The data is earlier set by us from [`set_data`]. It is safe to take
                // back the ownership of the data from the foreign interface.
                unsafe { <T as ForeignOwnable>::from_foreign(self.as_ref().driver_data) },
            );
            self.as_mut_ref().driver_data = ptr::null_mut();
            data
        }
    }
}

/// CPU frequency policy created from a CPU number.
///
/// This struct represents the CPU frequency policy obtained for a specific CPU, providing safe
/// access to the underlying `cpufreq_policy` and ensuring proper cleanup when the `PolicyCpu` is
/// dropped.
struct PolicyCpu<'a>(&'a mut Policy);

impl<'a> PolicyCpu<'a> {
    fn from_cpu(cpu: u32) -> Result<Self> {
        // SAFETY: It is safe to call `cpufreq_cpu_get` for any valid CPU.
        let ptr = from_err_ptr(unsafe { bindings::cpufreq_cpu_get(cpu) })?;

        Ok(Self(
            // SAFETY: The `ptr` is guaranteed to be valid and remains valid for the lifetime of
            // the returned reference.
            unsafe { Policy::from_raw_mut(ptr) },
        ))
    }
}

impl<'a> Deref for PolicyCpu<'a> {
    type Target = Policy;

    fn deref(&self) -> &Self::Target {
        self.0
    }
}

impl<'a> DerefMut for PolicyCpu<'a> {
    fn deref_mut(&mut self) -> &mut Policy {
        self.0
    }
}

impl<'a> Drop for PolicyCpu<'a> {
    fn drop(&mut self) {
        // SAFETY: The underlying pointer is guaranteed to be valid for the lifetime of `self`.
        unsafe { bindings::cpufreq_cpu_put(self.0.as_raw()) };
    }
}

/// CPU frequency driver.
///
/// Implement this trait to provide a CPU frequency driver and its callbacks.
///
/// Reference: <https://docs.kernel.org/cpu-freq/cpu-drivers.html>
#[vtable]
pub trait Driver {
    /// Driver's name.
    const NAME: &'static CStr;

    /// Driver's flags.
    const FLAGS: u16;

    /// Boost support.
    const BOOST_ENABLED: bool;

    /// Policy specific data.
    ///
    /// Require that `PData` implements `ForeignOwnable`. We guarantee to never move the underlying
    /// wrapped data structure.
    type PData: ForeignOwnable;

    /// Driver's `init` callback.
    fn init(policy: &mut Policy) -> Result<Self::PData>;

    /// Driver's `exit` callback.
    fn exit(_policy: &mut Policy, _data: Option<Self::PData>) -> Result {
        build_error!(VTABLE_DEFAULT_ERROR)
    }

    /// Driver's `online` callback.
    fn online(_policy: &mut Policy) -> Result {
        build_error!(VTABLE_DEFAULT_ERROR)
    }

    /// Driver's `offline` callback.
    fn offline(_policy: &mut Policy) -> Result {
        build_error!(VTABLE_DEFAULT_ERROR)
    }

    /// Driver's `suspend` callback.
    fn suspend(_policy: &mut Policy) -> Result {
        build_error!(VTABLE_DEFAULT_ERROR)
    }

    /// Driver's `resume` callback.
    fn resume(_policy: &mut Policy) -> Result {
        build_error!(VTABLE_DEFAULT_ERROR)
    }

    /// Driver's `ready` callback.
    fn ready(_policy: &mut Policy) {
        build_error!(VTABLE_DEFAULT_ERROR)
    }

    /// Driver's `verify` callback.
    fn verify(data: &mut PolicyData) -> Result;

    /// Driver's `setpolicy` callback.
    fn setpolicy(_policy: &mut Policy) -> Result {
        build_error!(VTABLE_DEFAULT_ERROR)
    }

    /// Driver's `target` callback.
    fn target(_policy: &mut Policy, _target_freq: u32, _relation: Relation) -> Result {
        build_error!(VTABLE_DEFAULT_ERROR)
    }

    /// Driver's `target_index` callback.
    fn target_index(_policy: &mut Policy, _index: TableIndex) -> Result {
        build_error!(VTABLE_DEFAULT_ERROR)
    }

    /// Driver's `fast_switch` callback.
    fn fast_switch(_policy: &mut Policy, _target_freq: u32) -> u32 {
        build_error!(VTABLE_DEFAULT_ERROR)
    }

    /// Driver's `adjust_perf` callback.
    fn adjust_perf(_policy: &mut Policy, _min_perf: usize, _target_perf: usize, _capacity: usize) {
        build_error!(VTABLE_DEFAULT_ERROR)
    }

    /// Driver's `get_intermediate` callback.
    fn get_intermediate(_policy: &mut Policy, _index: TableIndex) -> u32 {
        build_error!(VTABLE_DEFAULT_ERROR)
    }

    /// Driver's `target_intermediate` callback.
    fn target_intermediate(_policy: &mut Policy, _index: TableIndex) -> Result {
        build_error!(VTABLE_DEFAULT_ERROR)
    }

    /// Driver's `get` callback.
    fn get(_policy: &mut Policy) -> Result<u32> {
        build_error!(VTABLE_DEFAULT_ERROR)
    }

    /// Driver's `update_limits` callback.
    fn update_limits(_policy: &mut Policy) {
        build_error!(VTABLE_DEFAULT_ERROR)
    }

    /// Driver's `bios_limit` callback.
    fn bios_limit(_policy: &mut Policy, _limit: &mut u32) -> Result {
        build_error!(VTABLE_DEFAULT_ERROR)
    }

    /// Driver's `set_boost` callback.
    fn set_boost(_policy: &mut Policy, _state: i32) -> Result {
        build_error!(VTABLE_DEFAULT_ERROR)
    }

    /// Driver's `register_em` callback.
    fn register_em(_policy: &mut Policy) {
        build_error!(VTABLE_DEFAULT_ERROR)
    }
}

/// CPU frequency driver Registration.
///
/// ## Examples
///
/// The following example demonstrates how to register a cpufreq driver.
///
/// ```
/// use kernel::{
///     cpufreq,
///     c_str,
///     device::{Core, Device},
///     macros::vtable,
///     of, platform,
///     sync::Arc,
/// };
/// struct SampleDevice;
///
/// #[derive(Default)]
/// struct SampleDriver;
///
/// #[vtable]
/// impl cpufreq::Driver for SampleDriver {
///     const NAME: &'static CStr = c_str!("cpufreq-sample");
///     const FLAGS: u16 = cpufreq::flags::NEED_INITIAL_FREQ_CHECK | cpufreq::flags::IS_COOLING_DEV;
///     const BOOST_ENABLED: bool = true;
///
///     type PData = Arc<SampleDevice>;
///
///     fn init(policy: &mut cpufreq::Policy) -> Result<Self::PData> {
///         // Initialize here
///         Ok(Arc::new(SampleDevice, GFP_KERNEL)?)
///     }
///
///     fn exit(_policy: &mut cpufreq::Policy, _data: Option<Self::PData>) -> Result {
///         Ok(())
///     }
///
///     fn suspend(policy: &mut cpufreq::Policy) -> Result {
///         policy.generic_suspend()
///     }
///
///     fn verify(data: &mut cpufreq::PolicyData) -> Result {
///         data.generic_verify()
///     }
///
///     fn target_index(policy: &mut cpufreq::Policy, index: cpufreq::TableIndex) -> Result {
///         // Update CPU frequency
///         Ok(())
///     }
///
///     fn get(policy: &mut cpufreq::Policy) -> Result<u32> {
///         policy.generic_get()
///     }
/// }
///
/// impl platform::Driver for SampleDriver {
///     type IdInfo = ();
///     const OF_ID_TABLE: Option<of::IdTable<Self::IdInfo>> = None;
///
///     fn probe(
///         pdev: &platform::Device<Core>,
///         _id_info: Option<&Self::IdInfo>,
///     ) -> Result<Pin<KBox<Self>>> {
///         cpufreq::Registration::<SampleDriver>::new_foreign_owned(pdev.as_ref())?;
///         Ok(KBox::new(Self {}, GFP_KERNEL)?.into())
///     }
/// }
/// ```
#[repr(transparent)]
pub struct Registration<T: Driver>(KBox<UnsafeCell<bindings::cpufreq_driver>>, PhantomData<T>);

/// SAFETY: `Registration` doesn't offer any methods or access to fields when shared between threads
/// or CPUs, so it is safe to share it.
unsafe impl<T: Driver> Sync for Registration<T> {}

#[allow(clippy::non_send_fields_in_send_ty)]
/// SAFETY: Registration with and unregistration from the cpufreq subsystem can happen from any
/// thread.
unsafe impl<T: Driver> Send for Registration<T> {}

impl<T: Driver> Registration<T> {
    const VTABLE: bindings::cpufreq_driver = bindings::cpufreq_driver {
        name: Self::copy_name(T::NAME),
        boost_enabled: T::BOOST_ENABLED,
        flags: T::FLAGS,

        // Initialize mandatory callbacks.
        init: Some(Self::init_callback),
        verify: Some(Self::verify_callback),

        // Initialize optional callbacks based on the traits of `T`.
        setpolicy: if T::HAS_SETPOLICY {
            Some(Self::setpolicy_callback)
        } else {
            None
        },
        target: if T::HAS_TARGET {
            Some(Self::target_callback)
        } else {
            None
        },
        target_index: if T::HAS_TARGET_INDEX {
            Some(Self::target_index_callback)
        } else {
            None
        },
        fast_switch: if T::HAS_FAST_SWITCH {
            Some(Self::fast_switch_callback)
        } else {
            None
        },
        adjust_perf: if T::HAS_ADJUST_PERF {
            Some(Self::adjust_perf_callback)
        } else {
            None
        },
        get_intermediate: if T::HAS_GET_INTERMEDIATE {
            Some(Self::get_intermediate_callback)
        } else {
            None
        },
        target_intermediate: if T::HAS_TARGET_INTERMEDIATE {
            Some(Self::target_intermediate_callback)
        } else {
            None
        },
        get: if T::HAS_GET {
            Some(Self::get_callback)
        } else {
            None
        },
        update_limits: if T::HAS_UPDATE_LIMITS {
            Some(Self::update_limits_callback)
        } else {
            None
        },
        bios_limit: if T::HAS_BIOS_LIMIT {
            Some(Self::bios_limit_callback)
        } else {
            None
        },
        online: if T::HAS_ONLINE {
            Some(Self::online_callback)
        } else {
            None
        },
        offline: if T::HAS_OFFLINE {
            Some(Self::offline_callback)
        } else {
            None
        },
        exit: if T::HAS_EXIT {
            Some(Self::exit_callback)
        } else {
            None
        },
        suspend: if T::HAS_SUSPEND {
            Some(Self::suspend_callback)
        } else {
            None
        },
        resume: if T::HAS_RESUME {
            Some(Self::resume_callback)
        } else {
            None
        },
        ready: if T::HAS_READY {
            Some(Self::ready_callback)
        } else {
            None
        },
        set_boost: if T::HAS_SET_BOOST {
            Some(Self::set_boost_callback)
        } else {
            None
        },
        register_em: if T::HAS_REGISTER_EM {
            Some(Self::register_em_callback)
        } else {
            None
        },
        // SAFETY: All zeros is a valid value for `bindings::cpufreq_driver`.
        ..unsafe { MaybeUninit::zeroed().assume_init() }
    };

    const fn copy_name(name: &'static CStr) -> [c_char; CPUFREQ_NAME_LEN] {
        let src = name.as_bytes_with_nul();
        let mut dst = [0; CPUFREQ_NAME_LEN];

        build_assert!(src.len() <= CPUFREQ_NAME_LEN);

        let mut i = 0;
        while i < src.len() {
            dst[i] = src[i];
            i += 1;
        }

        dst
    }

    /// Registers a CPU frequency driver with the cpufreq core.
    pub fn new() -> Result<Self> {
        // We can't use `&Self::VTABLE` directly because the cpufreq core modifies some fields in
        // the C `struct cpufreq_driver`, which requires a mutable reference.
        let mut drv = KBox::new(UnsafeCell::new(Self::VTABLE), GFP_KERNEL)?;

        // SAFETY: `drv` is guaranteed to be valid for the lifetime of `Registration`.
        to_result(unsafe { bindings::cpufreq_register_driver(drv.get_mut()) })?;

        Ok(Self(drv, PhantomData))
    }

    /// Same as [`Registration::new`], but does not return a [`Registration`] instance.
    ///
    /// Instead the [`Registration`] is owned by [`Devres`] and will be revoked / dropped, once the
    /// device is detached.
    pub fn new_foreign_owned(dev: &Device<Bound>) -> Result {
        Devres::new_foreign_owned(dev, Self::new()?, GFP_KERNEL)
    }
}

/// CPU frequency driver callbacks.
impl<T: Driver> Registration<T> {
    /// Driver's `init` callback.
    ///
    /// SAFETY: Called from C. Inputs must be valid pointers.
    extern "C" fn init_callback(ptr: *mut bindings::cpufreq_policy) -> kernel::ffi::c_int {
        from_result(|| {
            // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
            // lifetime of `policy`.
            let policy = unsafe { Policy::from_raw_mut(ptr) };

            let data = T::init(policy)?;
            policy.set_data(data)?;
            Ok(0)
        })
    }

    /// Driver's `exit` callback.
    ///
    /// SAFETY: Called from C. Inputs must be valid pointers.
    extern "C" fn exit_callback(ptr: *mut bindings::cpufreq_policy) {
        // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
        // lifetime of `policy`.
        let policy = unsafe { Policy::from_raw_mut(ptr) };

        let data = policy.clear_data();
        let _ = T::exit(policy, data);
    }

    /// Driver's `online` callback.
    ///
    /// SAFETY: Called from C. Inputs must be valid pointers.
    extern "C" fn online_callback(ptr: *mut bindings::cpufreq_policy) -> kernel::ffi::c_int {
        from_result(|| {
            // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
            // lifetime of `policy`.
            let policy = unsafe { Policy::from_raw_mut(ptr) };
            T::online(policy).map(|()| 0)
        })
    }

    /// Driver's `offline` callback.
    ///
    /// SAFETY: Called from C. Inputs must be valid pointers.
    extern "C" fn offline_callback(ptr: *mut bindings::cpufreq_policy) -> kernel::ffi::c_int {
        from_result(|| {
            // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
            // lifetime of `policy`.
            let policy = unsafe { Policy::from_raw_mut(ptr) };
            T::offline(policy).map(|()| 0)
        })
    }

    /// Driver's `suspend` callback.
    ///
    /// SAFETY: Called from C. Inputs must be valid pointers.
    extern "C" fn suspend_callback(ptr: *mut bindings::cpufreq_policy) -> kernel::ffi::c_int {
        from_result(|| {
            // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
            // lifetime of `policy`.
            let policy = unsafe { Policy::from_raw_mut(ptr) };
            T::suspend(policy).map(|()| 0)
        })
    }

    /// Driver's `resume` callback.
    ///
    /// SAFETY: Called from C. Inputs must be valid pointers.
    extern "C" fn resume_callback(ptr: *mut bindings::cpufreq_policy) -> kernel::ffi::c_int {
        from_result(|| {
            // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
            // lifetime of `policy`.
            let policy = unsafe { Policy::from_raw_mut(ptr) };
            T::resume(policy).map(|()| 0)
        })
    }

    /// Driver's `ready` callback.
    ///
    /// SAFETY: Called from C. Inputs must be valid pointers.
    extern "C" fn ready_callback(ptr: *mut bindings::cpufreq_policy) {
        // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
        // lifetime of `policy`.
        let policy = unsafe { Policy::from_raw_mut(ptr) };
        T::ready(policy);
    }

    /// Driver's `verify` callback.
    ///
    /// SAFETY: Called from C. Inputs must be valid pointers.
    extern "C" fn verify_callback(ptr: *mut bindings::cpufreq_policy_data) -> kernel::ffi::c_int {
        from_result(|| {
            // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
            // lifetime of `policy`.
            let data = unsafe { PolicyData::from_raw_mut(ptr) };
            T::verify(data).map(|()| 0)
        })
    }

    /// Driver's `setpolicy` callback.
    ///
    /// SAFETY: Called from C. Inputs must be valid pointers.
    extern "C" fn setpolicy_callback(ptr: *mut bindings::cpufreq_policy) -> kernel::ffi::c_int {
        from_result(|| {
            // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
            // lifetime of `policy`.
            let policy = unsafe { Policy::from_raw_mut(ptr) };
            T::setpolicy(policy).map(|()| 0)
        })
    }

    /// Driver's `target` callback.
    ///
    /// SAFETY: Called from C. Inputs must be valid pointers.
    extern "C" fn target_callback(
        ptr: *mut bindings::cpufreq_policy,
        target_freq: u32,
        relation: u32,
    ) -> kernel::ffi::c_int {
        from_result(|| {
            // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
            // lifetime of `policy`.
            let policy = unsafe { Policy::from_raw_mut(ptr) };
            T::target(policy, target_freq, Relation::new(relation)?).map(|()| 0)
        })
    }

    /// Driver's `target_index` callback.
    ///
    /// SAFETY: Called from C. Inputs must be valid pointers.
    extern "C" fn target_index_callback(
        ptr: *mut bindings::cpufreq_policy,
        index: u32,
    ) -> kernel::ffi::c_int {
        from_result(|| {
            // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
            // lifetime of `policy`.
            let policy = unsafe { Policy::from_raw_mut(ptr) };

            // SAFETY: The C code guarantees that `index` corresponds to a valid entry in the
            // frequency table.
            let index = unsafe { TableIndex::new(index as usize) };

            T::target_index(policy, index).map(|()| 0)
        })
    }

    /// Driver's `fast_switch` callback.
    ///
    /// SAFETY: Called from C. Inputs must be valid pointers.
    extern "C" fn fast_switch_callback(
        ptr: *mut bindings::cpufreq_policy,
        target_freq: u32,
    ) -> kernel::ffi::c_uint {
        // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
        // lifetime of `policy`.
        let policy = unsafe { Policy::from_raw_mut(ptr) };
        T::fast_switch(policy, target_freq)
    }

    /// Driver's `adjust_perf` callback.
    extern "C" fn adjust_perf_callback(
        cpu: u32,
        min_perf: usize,
        target_perf: usize,
        capacity: usize,
    ) {
        if let Ok(mut policy) = PolicyCpu::from_cpu(cpu) {
            T::adjust_perf(&mut policy, min_perf, target_perf, capacity);
        }
    }

    /// Driver's `get_intermediate` callback.
    ///
    /// SAFETY: Called from C. Inputs must be valid pointers.
    extern "C" fn get_intermediate_callback(
        ptr: *mut bindings::cpufreq_policy,
        index: u32,
    ) -> kernel::ffi::c_uint {
        // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
        // lifetime of `policy`.
        let policy = unsafe { Policy::from_raw_mut(ptr) };

        // SAFETY: The C code guarantees that `index` corresponds to a valid entry in the
        // frequency table.
        let index = unsafe { TableIndex::new(index as usize) };

        T::get_intermediate(policy, index)
    }

    /// Driver's `target_intermediate` callback.
    ///
    /// SAFETY: Called from C. Inputs must be valid pointers.
    extern "C" fn target_intermediate_callback(
        ptr: *mut bindings::cpufreq_policy,
        index: u32,
    ) -> kernel::ffi::c_int {
        from_result(|| {
            // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
            // lifetime of `policy`.
            let policy = unsafe { Policy::from_raw_mut(ptr) };

            // SAFETY: The C code guarantees that `index` corresponds to a valid entry in the
            // frequency table.
            let index = unsafe { TableIndex::new(index as usize) };

            T::target_intermediate(policy, index).map(|()| 0)
        })
    }

    /// Driver's `get` callback.
    extern "C" fn get_callback(cpu: u32) -> kernel::ffi::c_uint {
        PolicyCpu::from_cpu(cpu).map_or(0, |mut policy| T::get(&mut policy).map_or(0, |f| f))
    }

    /// Driver's `update_limit` callback.
    extern "C" fn update_limits_callback(ptr: *mut bindings::cpufreq_policy) {
        // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
        // lifetime of `policy`.
        let policy = unsafe { Policy::from_raw_mut(ptr) };
        T::update_limits(policy);
    }

    /// Driver's `bios_limit` callback.
    ///
    /// SAFETY: Called from C. Inputs must be valid pointers.
    extern "C" fn bios_limit_callback(cpu: i32, limit: *mut u32) -> kernel::ffi::c_int {
        from_result(|| {
            let mut policy = PolicyCpu::from_cpu(cpu as u32)?;

            // SAFETY: `limit` is guaranteed by the C code to be valid.
            T::bios_limit(&mut policy, &mut (unsafe { *limit })).map(|()| 0)
        })
    }

    /// Driver's `set_boost` callback.
    ///
    /// SAFETY: Called from C. Inputs must be valid pointers.
    extern "C" fn set_boost_callback(
        ptr: *mut bindings::cpufreq_policy,
        state: i32,
    ) -> kernel::ffi::c_int {
        from_result(|| {
            // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
            // lifetime of `policy`.
            let policy = unsafe { Policy::from_raw_mut(ptr) };
            T::set_boost(policy, state).map(|()| 0)
        })
    }

    /// Driver's `register_em` callback.
    ///
    /// SAFETY: Called from C. Inputs must be valid pointers.
    extern "C" fn register_em_callback(ptr: *mut bindings::cpufreq_policy) {
        // SAFETY: The `ptr` is guaranteed to be valid by the contract with the C code for the
        // lifetime of `policy`.
        let policy = unsafe { Policy::from_raw_mut(ptr) };
        T::register_em(policy);
    }
}

impl<T: Driver> Drop for Registration<T> {
    /// Unregisters with the cpufreq core.
    fn drop(&mut self) {
        // SAFETY: `self.0` is guaranteed to be valid for the lifetime of `Registration`.
        unsafe { bindings::cpufreq_unregister_driver(self.0.get_mut()) };
    }
}