1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
|
// SPDX-License-Identifier: GPL-2.0
//! Devres abstraction
//!
//! [`Devres`] represents an abstraction for the kernel devres (device resource management)
//! implementation.
use crate::{
alloc::Flags,
bindings,
device::{Bound, Device},
error::{Error, Result},
ffi::c_void,
prelude::*,
revocable::{Revocable, RevocableGuard},
sync::{rcu, Arc, Completion},
types::ARef,
};
#[pin_data]
struct DevresInner<T> {
dev: ARef<Device>,
callback: unsafe extern "C" fn(*mut c_void),
#[pin]
data: Revocable<T>,
#[pin]
revoke: Completion,
}
/// This abstraction is meant to be used by subsystems to containerize [`Device`] bound resources to
/// manage their lifetime.
///
/// [`Device`] bound resources should be freed when either the resource goes out of scope or the
/// [`Device`] is unbound respectively, depending on what happens first. In any case, it is always
/// guaranteed that revoking the device resource is completed before the corresponding [`Device`]
/// is unbound.
///
/// To achieve that [`Devres`] registers a devres callback on creation, which is called once the
/// [`Device`] is unbound, revoking access to the encapsulated resource (see also [`Revocable`]).
///
/// After the [`Devres`] has been unbound it is not possible to access the encapsulated resource
/// anymore.
///
/// [`Devres`] users should make sure to simply free the corresponding backing resource in `T`'s
/// [`Drop`] implementation.
///
/// # Example
///
/// ```no_run
/// # use kernel::{bindings, c_str, device::{Bound, Device}, devres::Devres, io::{Io, IoRaw}};
/// # use core::ops::Deref;
///
/// // See also [`pci::Bar`] for a real example.
/// struct IoMem<const SIZE: usize>(IoRaw<SIZE>);
///
/// impl<const SIZE: usize> IoMem<SIZE> {
/// /// # Safety
/// ///
/// /// [`paddr`, `paddr` + `SIZE`) must be a valid MMIO region that is mappable into the CPUs
/// /// virtual address space.
/// unsafe fn new(paddr: usize) -> Result<Self>{
/// // SAFETY: By the safety requirements of this function [`paddr`, `paddr` + `SIZE`) is
/// // valid for `ioremap`.
/// let addr = unsafe { bindings::ioremap(paddr as _, SIZE as _) };
/// if addr.is_null() {
/// return Err(ENOMEM);
/// }
///
/// Ok(IoMem(IoRaw::new(addr as _, SIZE)?))
/// }
/// }
///
/// impl<const SIZE: usize> Drop for IoMem<SIZE> {
/// fn drop(&mut self) {
/// // SAFETY: `self.0.addr()` is guaranteed to be properly mapped by `Self::new`.
/// unsafe { bindings::iounmap(self.0.addr() as _); };
/// }
/// }
///
/// impl<const SIZE: usize> Deref for IoMem<SIZE> {
/// type Target = Io<SIZE>;
///
/// fn deref(&self) -> &Self::Target {
/// // SAFETY: The memory range stored in `self` has been properly mapped in `Self::new`.
/// unsafe { Io::from_raw(&self.0) }
/// }
/// }
/// # fn no_run(dev: &Device<Bound>) -> Result<(), Error> {
/// // SAFETY: Invalid usage for example purposes.
/// let iomem = unsafe { IoMem::<{ core::mem::size_of::<u32>() }>::new(0xBAAAAAAD)? };
/// let devres = Devres::new(dev, iomem, GFP_KERNEL)?;
///
/// let res = devres.try_access().ok_or(ENXIO)?;
/// res.write8(0x42, 0x0);
/// # Ok(())
/// # }
/// ```
pub struct Devres<T>(Arc<DevresInner<T>>);
impl<T> DevresInner<T> {
fn new(dev: &Device<Bound>, data: T, flags: Flags) -> Result<Arc<DevresInner<T>>> {
let inner = Arc::pin_init(
pin_init!( DevresInner {
dev: dev.into(),
callback: Self::devres_callback,
data <- Revocable::new(data),
revoke <- Completion::new(),
}),
flags,
)?;
// Convert `Arc<DevresInner>` into a raw pointer and make devres own this reference until
// `Self::devres_callback` is called.
let data = inner.clone().into_raw();
// SAFETY: `devm_add_action` guarantees to call `Self::devres_callback` once `dev` is
// detached.
let ret =
unsafe { bindings::devm_add_action(dev.as_raw(), Some(inner.callback), data as _) };
if ret != 0 {
// SAFETY: We just created another reference to `inner` in order to pass it to
// `bindings::devm_add_action`. If `bindings::devm_add_action` fails, we have to drop
// this reference accordingly.
let _ = unsafe { Arc::from_raw(data) };
return Err(Error::from_errno(ret));
}
Ok(inner)
}
fn as_ptr(&self) -> *const Self {
self as _
}
fn remove_action(this: &Arc<Self>) -> bool {
// SAFETY:
// - `self.inner.dev` is a valid `Device`,
// - the `action` and `data` pointers are the exact same ones as given to devm_add_action()
// previously,
// - `self` is always valid, even if the action has been released already.
let success = unsafe {
bindings::devm_remove_action_nowarn(
this.dev.as_raw(),
Some(this.callback),
this.as_ptr() as _,
)
} == 0;
if success {
// SAFETY: We leaked an `Arc` reference to devm_add_action() in `DevresInner::new`; if
// devm_remove_action_nowarn() was successful we can (and have to) claim back ownership
// of this reference.
let _ = unsafe { Arc::from_raw(this.as_ptr()) };
}
success
}
#[allow(clippy::missing_safety_doc)]
unsafe extern "C" fn devres_callback(ptr: *mut kernel::ffi::c_void) {
let ptr = ptr as *mut DevresInner<T>;
// Devres owned this memory; now that we received the callback, drop the `Arc` and hence the
// reference.
// SAFETY: Safe, since we leaked an `Arc` reference to devm_add_action() in
// `DevresInner::new`.
let inner = unsafe { Arc::from_raw(ptr) };
if !inner.data.revoke() {
// If `revoke()` returns false, it means that `Devres::drop` already started revoking
// `inner.data` for us. Hence we have to wait until `Devres::drop()` signals that it
// completed revoking `inner.data`.
inner.revoke.wait_for_completion();
}
}
}
impl<T> Devres<T> {
/// Creates a new [`Devres`] instance of the given `data`. The `data` encapsulated within the
/// returned `Devres` instance' `data` will be revoked once the device is detached.
pub fn new(dev: &Device<Bound>, data: T, flags: Flags) -> Result<Self> {
let inner = DevresInner::new(dev, data, flags)?;
Ok(Devres(inner))
}
/// Same as [`Devres::new`], but does not return a `Devres` instance. Instead the given `data`
/// is owned by devres and will be revoked / dropped, once the device is detached.
pub fn new_foreign_owned(dev: &Device<Bound>, data: T, flags: Flags) -> Result {
let _ = DevresInner::new(dev, data, flags)?;
Ok(())
}
/// Obtain `&'a T`, bypassing the [`Revocable`].
///
/// This method allows to directly obtain a `&'a T`, bypassing the [`Revocable`], by presenting
/// a `&'a Device<Bound>` of the same [`Device`] this [`Devres`] instance has been created with.
///
/// # Errors
///
/// An error is returned if `dev` does not match the same [`Device`] this [`Devres`] instance
/// has been created with.
///
/// # Example
///
/// ```no_run
/// # #![cfg(CONFIG_PCI)]
/// # use kernel::{device::Core, devres::Devres, pci};
///
/// fn from_core(dev: &pci::Device<Core>, devres: Devres<pci::Bar<0x4>>) -> Result {
/// let bar = devres.access(dev.as_ref())?;
///
/// let _ = bar.read32(0x0);
///
/// // might_sleep()
///
/// bar.write32(0x42, 0x0);
///
/// Ok(())
/// }
/// ```
pub fn access<'a>(&'a self, dev: &'a Device<Bound>) -> Result<&'a T> {
if self.0.dev.as_raw() != dev.as_raw() {
return Err(EINVAL);
}
// SAFETY: `dev` being the same device as the device this `Devres` has been created for
// proves that `self.0.data` hasn't been revoked and is guaranteed to not be revoked as
// long as `dev` lives; `dev` lives at least as long as `self`.
Ok(unsafe { self.0.data.access() })
}
/// [`Devres`] accessor for [`Revocable::try_access`].
pub fn try_access(&self) -> Option<RevocableGuard<'_, T>> {
self.0.data.try_access()
}
/// [`Devres`] accessor for [`Revocable::try_access_with`].
pub fn try_access_with<R, F: FnOnce(&T) -> R>(&self, f: F) -> Option<R> {
self.0.data.try_access_with(f)
}
/// [`Devres`] accessor for [`Revocable::try_access_with_guard`].
pub fn try_access_with_guard<'a>(&'a self, guard: &'a rcu::Guard) -> Option<&'a T> {
self.0.data.try_access_with_guard(guard)
}
}
impl<T> Drop for Devres<T> {
fn drop(&mut self) {
// SAFETY: When `drop` runs, it is guaranteed that nobody is accessing the revocable data
// anymore, hence it is safe not to wait for the grace period to finish.
if unsafe { self.0.data.revoke_nosync() } {
// We revoked `self.0.data` before the devres action did, hence try to remove it.
if !DevresInner::remove_action(&self.0) {
// We could not remove the devres action, which means that it now runs concurrently,
// hence signal that `self.0.data` has been revoked successfully.
self.0.revoke.complete_all();
}
}
}
}
|