summaryrefslogtreecommitdiff
path: root/rust/kernel/num/bounded.rs
blob: f870080af8ac0a9fe7460fa0edab3f73beeb4de2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
// SPDX-License-Identifier: GPL-2.0

//! Implementation of [`Bounded`], a wrapper around integer types limiting the number of bits
//! usable for value representation.

use core::{
    cmp,
    fmt,
    ops::{
        self,
        Deref, //
    }, //,
};

use kernel::{
    num::Integer,
    prelude::*, //
};

/// Evaluates to `true` if `$value` can be represented using at most `$n` bits in a `$type`.
///
/// `expr` must be of type `type`, or the result will be incorrect.
///
/// Can be used in const context.
macro_rules! fits_within {
    ($value:expr, $type:ty, $n:expr) => {{
        let shift: u32 = <$type>::BITS - $n;

        // `value` fits within `$n` bits if shifting it left by the number of unused bits, then
        // right by the same number, doesn't change it.
        //
        // This method has the benefit of working for both unsigned and signed values.
        ($value << shift) >> shift == $value
    }};
}

/// Returns `true` if `value` can be represented with at most `N` bits in a `T`.
#[inline(always)]
fn fits_within<T: Integer>(value: T, num_bits: u32) -> bool {
    fits_within!(value, T, num_bits)
}

/// An integer value that requires only the `N` less significant bits of the wrapped type to be
/// encoded.
///
/// This limits the number of usable bits in the wrapped integer type, and thus the stored value to
/// a narrower range, which provides guarantees that can be useful when working with in e.g.
/// bitfields.
///
/// # Invariants
///
/// - `N` is greater than `0`.
/// - `N` is less than or equal to `T::BITS`.
/// - Stored values can be represented with at most `N` bits.
///
/// # Examples
///
/// The preferred way to create values is through constants and the [`Bounded::new`] family of
/// constructors, as they trigger a build error if the type invariants cannot be withheld.
///
/// ```
/// use kernel::num::Bounded;
///
/// // An unsigned 8-bit integer, of which only the 4 LSBs are used.
/// // The value `15` is statically validated to fit that constraint at build time.
/// let v = Bounded::<u8, 4>::new::<15>();
/// assert_eq!(v.get(), 15);
///
/// // Same using signed values.
/// let v = Bounded::<i8, 4>::new::<-8>();
/// assert_eq!(v.get(), -8);
///
/// // This doesn't build: a `u8` is smaller than the requested 9 bits.
/// // let _ = Bounded::<u8, 9>::new::<10>();
///
/// // This also doesn't build: the requested value doesn't fit within 4 signed bits.
/// // let _ = Bounded::<i8, 4>::new::<8>();
/// ```
///
/// Values can also be validated at runtime with [`Bounded::try_new`].
///
/// ```
/// use kernel::num::Bounded;
///
/// //  This succeeds because `15` can be represented with 4 unsigned bits.
/// assert!(Bounded::<u8, 4>::try_new(15).is_some());
///
/// // This fails because `16` cannot be represented with 4 unsigned bits.
/// assert!(Bounded::<u8, 4>::try_new(16).is_none());
/// ```
///
/// Non-constant expressions can be validated at build-time thanks to compiler optimizations. This
/// should be used with caution, on simple expressions only.
///
/// ```
/// use kernel::num::Bounded;
/// # fn some_number() -> u32 { 0xffffffff }
///
/// // Here the compiler can infer from the mask that the type invariants are not violated, even
/// // though the value returned by `some_number` is not statically known.
/// let v = Bounded::<u32, 4>::from_expr(some_number() & 0xf);
/// ```
///
/// Comparison and arithmetic operations are supported on [`Bounded`]s with a compatible backing
/// type, regardless of their number of valid bits.
///
/// ```
/// use kernel::num::Bounded;
///
/// let v1 = Bounded::<u32, 8>::new::<4>();
/// let v2 = Bounded::<u32, 4>::new::<15>();
///
/// assert!(v1 != v2);
/// assert!(v1 < v2);
/// assert_eq!(v1 + v2, 19);
/// assert_eq!(v2 % v1, 3);
/// ```
///
/// These operations are also supported between a [`Bounded`] and its backing type.
///
/// ```
/// use kernel::num::Bounded;
///
/// let v = Bounded::<u8, 4>::new::<15>();
///
/// assert!(v == 15);
/// assert!(v > 12);
/// assert_eq!(v + 5, 20);
/// assert_eq!(v / 3, 5);
/// ```
///
/// A change of backing types is possible using [`Bounded::cast`], and the number of valid bits can
/// be extended or reduced with [`Bounded::extend`] and [`Bounded::try_shrink`].
///
/// ```
/// use kernel::num::Bounded;
///
/// let v = Bounded::<u32, 12>::new::<127>();
///
/// // Changes backing type from `u32` to `u16`.
/// let _: Bounded<u16, 12> = v.cast();
///
/// // This does not build, as `u8` is smaller than 12 bits.
/// // let _: Bounded<u8, 12> = v.cast();
///
/// // We can safely extend the number of bits...
/// let _ = v.extend::<15>();
///
/// // ... to the limits of the backing type. This doesn't build as a `u32` cannot contain 33 bits.
/// // let _ = v.extend::<33>();
///
/// // Reducing the number of bits is validated at runtime. This works because `127` can be
/// // represented with 8 bits.
/// assert!(v.try_shrink::<8>().is_some());
///
/// // ... but not with 6, so this fails.
/// assert!(v.try_shrink::<6>().is_none());
/// ```
///
/// Infallible conversions from a primitive integer to a large-enough [`Bounded`] are supported.
///
/// ```
/// use kernel::num::Bounded;
///
/// // This unsigned `Bounded` has 8 bits, so it can represent any `u8`.
/// let v = Bounded::<u32, 8>::from(128u8);
/// assert_eq!(v.get(), 128);
///
/// // This signed `Bounded` has 8 bits, so it can represent any `i8`.
/// let v = Bounded::<i32, 8>::from(-128i8);
/// assert_eq!(v.get(), -128);
///
/// // This doesn't build, as this 6-bit `Bounded` does not have enough capacity to represent a
/// // `u8` (regardless of the passed value).
/// // let _ = Bounded::<u32, 6>::from(10u8);
///
/// // Booleans can be converted into single-bit `Bounded`s.
///
/// let v = Bounded::<u64, 1>::from(false);
/// assert_eq!(v.get(), 0);
///
/// let v = Bounded::<u64, 1>::from(true);
/// assert_eq!(v.get(), 1);
/// ```
///
/// Infallible conversions from a [`Bounded`] to a primitive integer are also supported, and
/// dependent on the number of bits used for value representation, not on the backing type.
///
/// ```
/// use kernel::num::Bounded;
///
/// // Even though its backing type is `u32`, this `Bounded` only uses 6 bits and thus can safely
/// // be converted to a `u8`.
/// let v = Bounded::<u32, 6>::new::<63>();
/// assert_eq!(u8::from(v), 63);
///
/// // Same using signed values.
/// let v = Bounded::<i32, 8>::new::<-128>();
/// assert_eq!(i8::from(v), -128);
///
/// // This however does not build, as 10 bits won't fit into a `u8` (regardless of the actually
/// // contained value).
/// let _v = Bounded::<u32, 10>::new::<10>();
/// // assert_eq!(u8::from(_v), 10);
///
/// // Single-bit `Bounded`s can be converted into a boolean.
/// let v = Bounded::<u8, 1>::new::<1>();
/// assert_eq!(bool::from(v), true);
///
/// let v = Bounded::<u8, 1>::new::<0>();
/// assert_eq!(bool::from(v), false);
/// ```
///
/// Fallible conversions from any primitive integer to any [`Bounded`] are also supported using the
/// [`TryIntoBounded`] trait.
///
/// ```
/// use kernel::num::{Bounded, TryIntoBounded};
///
/// // Succeeds because `128` fits into 8 bits.
/// let v: Option<Bounded<u16, 8>> = 128u32.try_into_bounded();
/// assert_eq!(v.as_deref().copied(), Some(128));
///
/// // Fails because `128` doesn't fits into 6 bits.
/// let v: Option<Bounded<u16, 6>> = 128u32.try_into_bounded();
/// assert_eq!(v, None);
/// ```
#[repr(transparent)]
#[derive(Clone, Copy, Debug, Default, Hash)]
pub struct Bounded<T: Integer, const N: u32>(T);

/// Validating the value as a const expression cannot be done as a regular method, as the
/// arithmetic operations we rely on to check the bounds are not const. Thus, implement
/// [`Bounded::new`] using a macro.
macro_rules! impl_const_new {
    ($($type:ty)*) => {
        $(
        impl<const N: u32> Bounded<$type, N> {
            /// Creates a [`Bounded`] for the constant `VALUE`.
            ///
            /// Fails at build time if `VALUE` cannot be represented with `N` bits.
            ///
            /// This method should be preferred to [`Self::from_expr`] whenever possible.
            ///
            /// # Examples
            ///
            /// ```
            /// use kernel::num::Bounded;
            ///
            #[doc = ::core::concat!(
                "let v = Bounded::<",
                ::core::stringify!($type),
                ", 4>::new::<7>();")]
            /// assert_eq!(v.get(), 7);
            /// ```
            pub const fn new<const VALUE: $type>() -> Self {
                // Statically assert that `VALUE` fits within the set number of bits.
                const {
                    assert!(fits_within!(VALUE, $type, N));
                }

                // INVARIANT: `fits_within` confirmed that `VALUE` can be represented within
                // `N` bits.
                Self::__new(VALUE)
            }
        }
        )*
    };
}

impl_const_new!(
    u8 u16 u32 u64 usize
    i8 i16 i32 i64 isize
);

impl<T, const N: u32> Bounded<T, N>
where
    T: Integer,
{
    /// Private constructor enforcing the type invariants.
    ///
    /// All instances of [`Bounded`] must be created through this method as it enforces most of the
    /// type invariants.
    ///
    /// The caller remains responsible for checking, either statically or dynamically, that `value`
    /// can be represented as a `T` using at most `N` bits.
    const fn __new(value: T) -> Self {
        // Enforce the type invariants.
        const {
            // `N` cannot be zero.
            assert!(N != 0);
            // The backing type is at least as large as `N` bits.
            assert!(N <= T::BITS);
        }

        Self(value)
    }

    /// Attempts to turn `value` into a `Bounded` using `N` bits.
    ///
    /// Returns [`None`] if `value` doesn't fit within `N` bits.
    ///
    /// # Examples
    ///
    /// ```
    /// use kernel::num::Bounded;
    ///
    /// let v = Bounded::<u8, 1>::try_new(1);
    /// assert_eq!(v.as_deref().copied(), Some(1));
    ///
    /// let v = Bounded::<i8, 4>::try_new(-2);
    /// assert_eq!(v.as_deref().copied(), Some(-2));
    ///
    /// // `0x1ff` doesn't fit into 8 unsigned bits.
    /// let v = Bounded::<u32, 8>::try_new(0x1ff);
    /// assert_eq!(v, None);
    ///
    /// // The range of values representable with 4 bits is `[-8..=7]`. The following tests these
    /// // limits.
    /// let v = Bounded::<i8, 4>::try_new(-8);
    /// assert_eq!(v.map(Bounded::get), Some(-8));
    /// let v = Bounded::<i8, 4>::try_new(-9);
    /// assert_eq!(v, None);
    /// let v = Bounded::<i8, 4>::try_new(7);
    /// assert_eq!(v.map(Bounded::get), Some(7));
    /// let v = Bounded::<i8, 4>::try_new(8);
    /// assert_eq!(v, None);
    /// ```
    pub fn try_new(value: T) -> Option<Self> {
        fits_within(value, N).then(|| {
            // INVARIANT: `fits_within` confirmed that `value` can be represented within `N` bits.
            Self::__new(value)
        })
    }

    /// Checks that `expr` is valid for this type at compile-time and build a new value.
    ///
    /// This relies on [`build_assert!`] and guaranteed optimization to perform validation at
    /// compile-time. If `expr` cannot be proved to be within the requested bounds at compile-time,
    /// use the fallible [`Self::try_new`] instead.
    ///
    /// Limit this to simple, easily provable expressions, and prefer one of the [`Self::new`]
    /// constructors whenever possible as they statically validate the value instead of relying on
    /// compiler optimizations.
    ///
    /// # Examples
    ///
    /// ```
    /// use kernel::num::Bounded;
    /// # fn some_number() -> u32 { 0xffffffff }
    ///
    /// // Some undefined number.
    /// let v: u32 = some_number();
    ///
    /// // Triggers a build error as `v` cannot be asserted to fit within 4 bits...
    /// // let _ = Bounded::<u32, 4>::from_expr(v);
    ///
    /// // ... but this works as the compiler can assert the range from the mask.
    /// let _ = Bounded::<u32, 4>::from_expr(v & 0xf);
    ///
    /// // These expressions are simple enough to be proven correct, but since they are static the
    /// // `new` constructor should be preferred.
    /// assert_eq!(Bounded::<u8, 1>::from_expr(1).get(), 1);
    /// assert_eq!(Bounded::<u16, 8>::from_expr(0xff).get(), 0xff);
    /// ```
    #[inline(always)]
    pub fn from_expr(expr: T) -> Self {
        crate::build_assert!(
            fits_within(expr, N),
            "Requested value larger than maximal representable value."
        );

        // INVARIANT: `fits_within` confirmed that `expr` can be represented within `N` bits.
        Self::__new(expr)
    }

    /// Returns the wrapped value as the backing type.
    ///
    /// # Examples
    ///
    /// ```
    /// use kernel::num::Bounded;
    ///
    /// let v = Bounded::<u32, 4>::new::<7>();
    /// assert_eq!(v.get(), 7u32);
    /// ```
    pub fn get(self) -> T {
        *self.deref()
    }

    /// Increases the number of bits usable for `self`.
    ///
    /// This operation cannot fail.
    ///
    /// # Examples
    ///
    /// ```
    /// use kernel::num::Bounded;
    ///
    /// let v = Bounded::<u32, 4>::new::<7>();
    /// let larger_v = v.extend::<12>();
    /// // The contained values are equal even though `larger_v` has a bigger capacity.
    /// assert_eq!(larger_v, v);
    /// ```
    pub const fn extend<const M: u32>(self) -> Bounded<T, M> {
        const {
            assert!(
                M >= N,
                "Requested number of bits is less than the current representation."
            );
        }

        // INVARIANT: The value did fit within `N` bits, so it will all the more fit within
        // the larger `M` bits.
        Bounded::__new(self.0)
    }

    /// Attempts to shrink the number of bits usable for `self`.
    ///
    /// Returns [`None`] if the value of `self` cannot be represented within `M` bits.
    ///
    /// # Examples
    ///
    /// ```
    /// use kernel::num::Bounded;
    ///
    /// let v = Bounded::<u32, 12>::new::<7>();
    ///
    /// // `7` can be represented using 3 unsigned bits...
    /// let smaller_v = v.try_shrink::<3>();
    /// assert_eq!(smaller_v.as_deref().copied(), Some(7));
    ///
    /// // ... but doesn't fit within `2` bits.
    /// assert_eq!(v.try_shrink::<2>(), None);
    /// ```
    pub fn try_shrink<const M: u32>(self) -> Option<Bounded<T, M>> {
        Bounded::<T, M>::try_new(self.get())
    }

    /// Casts `self` into a [`Bounded`] backed by a different storage type, but using the same
    /// number of valid bits.
    ///
    /// Both `T` and `U` must be of same signedness, and `U` must be at least as large as
    /// `N` bits, or a build error will occur.
    ///
    /// # Examples
    ///
    /// ```
    /// use kernel::num::Bounded;
    ///
    /// let v = Bounded::<u32, 12>::new::<127>();
    ///
    /// let u16_v: Bounded<u16, 12> = v.cast();
    /// assert_eq!(u16_v.get(), 127);
    ///
    /// // This won't build: a `u8` is smaller than the required 12 bits.
    /// // let _: Bounded<u8, 12> = v.cast();
    /// ```
    pub fn cast<U>(self) -> Bounded<U, N>
    where
        U: TryFrom<T> + Integer,
        T: Integer,
        U: Integer<Signedness = T::Signedness>,
    {
        // SAFETY: The converted value is represented using `N` bits, `U` can contain `N` bits, and
        // `U` and `T` have the same sign, hence this conversion cannot fail.
        let value = unsafe { U::try_from(self.get()).unwrap_unchecked() };

        // INVARIANT: Although the backing type has changed, the value is still represented within
        // `N` bits, and with the same signedness.
        Bounded::__new(value)
    }
}

impl<T, const N: u32> Deref for Bounded<T, N>
where
    T: Integer,
{
    type Target = T;

    fn deref(&self) -> &Self::Target {
        // Enforce the invariant to inform the compiler of the bounds of the value.
        if !fits_within(self.0, N) {
            // SAFETY: Per the `Bounded` invariants, `fits_within` can never return `false` on the
            // value of a valid instance.
            unsafe { core::hint::unreachable_unchecked() }
        }

        &self.0
    }
}

/// Trait similar to [`TryInto`] but for [`Bounded`], to avoid conflicting implementations.
///
/// # Examples
///
/// ```
/// use kernel::num::{Bounded, TryIntoBounded};
///
/// // Succeeds because `128` fits into 8 bits.
/// let v: Option<Bounded<u16, 8>> = 128u32.try_into_bounded();
/// assert_eq!(v.as_deref().copied(), Some(128));
///
/// // Fails because `128` doesn't fits into 6 bits.
/// let v: Option<Bounded<u16, 6>> = 128u32.try_into_bounded();
/// assert_eq!(v, None);
/// ```
pub trait TryIntoBounded<T: Integer, const N: u32> {
    /// Attempts to convert `self` into a [`Bounded`] using `N` bits.
    ///
    /// Returns [`None`] if `self` does not fit into the target type.
    fn try_into_bounded(self) -> Option<Bounded<T, N>>;
}

/// Any integer value can be attempted to be converted into a [`Bounded`] of any size.
impl<T, U, const N: u32> TryIntoBounded<T, N> for U
where
    T: Integer,
    U: TryInto<T>,
{
    fn try_into_bounded(self) -> Option<Bounded<T, N>> {
        self.try_into().ok().and_then(Bounded::try_new)
    }
}

// Comparisons between `Bounded`s.

impl<T, U, const N: u32, const M: u32> PartialEq<Bounded<U, M>> for Bounded<T, N>
where
    T: Integer,
    U: Integer,
    T: PartialEq<U>,
{
    fn eq(&self, other: &Bounded<U, M>) -> bool {
        self.get() == other.get()
    }
}

impl<T, const N: u32> Eq for Bounded<T, N> where T: Integer {}

impl<T, U, const N: u32, const M: u32> PartialOrd<Bounded<U, M>> for Bounded<T, N>
where
    T: Integer,
    U: Integer,
    T: PartialOrd<U>,
{
    fn partial_cmp(&self, other: &Bounded<U, M>) -> Option<cmp::Ordering> {
        self.get().partial_cmp(&other.get())
    }
}

impl<T, const N: u32> Ord for Bounded<T, N>
where
    T: Integer,
    T: Ord,
{
    fn cmp(&self, other: &Self) -> cmp::Ordering {
        self.get().cmp(&other.get())
    }
}

// Comparisons between a `Bounded` and its backing type.

impl<T, const N: u32> PartialEq<T> for Bounded<T, N>
where
    T: Integer,
    T: PartialEq,
{
    fn eq(&self, other: &T) -> bool {
        self.get() == *other
    }
}

impl<T, const N: u32> PartialOrd<T> for Bounded<T, N>
where
    T: Integer,
    T: PartialOrd,
{
    fn partial_cmp(&self, other: &T) -> Option<cmp::Ordering> {
        self.get().partial_cmp(other)
    }
}

// Implementations of `core::ops` for two `Bounded` with the same backing type.

impl<T, const N: u32, const M: u32> ops::Add<Bounded<T, M>> for Bounded<T, N>
where
    T: Integer,
    T: ops::Add<Output = T>,
{
    type Output = T;

    fn add(self, rhs: Bounded<T, M>) -> Self::Output {
        self.get() + rhs.get()
    }
}

impl<T, const N: u32, const M: u32> ops::BitAnd<Bounded<T, M>> for Bounded<T, N>
where
    T: Integer,
    T: ops::BitAnd<Output = T>,
{
    type Output = T;

    fn bitand(self, rhs: Bounded<T, M>) -> Self::Output {
        self.get() & rhs.get()
    }
}

impl<T, const N: u32, const M: u32> ops::BitOr<Bounded<T, M>> for Bounded<T, N>
where
    T: Integer,
    T: ops::BitOr<Output = T>,
{
    type Output = T;

    fn bitor(self, rhs: Bounded<T, M>) -> Self::Output {
        self.get() | rhs.get()
    }
}

impl<T, const N: u32, const M: u32> ops::BitXor<Bounded<T, M>> for Bounded<T, N>
where
    T: Integer,
    T: ops::BitXor<Output = T>,
{
    type Output = T;

    fn bitxor(self, rhs: Bounded<T, M>) -> Self::Output {
        self.get() ^ rhs.get()
    }
}

impl<T, const N: u32, const M: u32> ops::Div<Bounded<T, M>> for Bounded<T, N>
where
    T: Integer,
    T: ops::Div<Output = T>,
{
    type Output = T;

    fn div(self, rhs: Bounded<T, M>) -> Self::Output {
        self.get() / rhs.get()
    }
}

impl<T, const N: u32, const M: u32> ops::Mul<Bounded<T, M>> for Bounded<T, N>
where
    T: Integer,
    T: ops::Mul<Output = T>,
{
    type Output = T;

    fn mul(self, rhs: Bounded<T, M>) -> Self::Output {
        self.get() * rhs.get()
    }
}

impl<T, const N: u32, const M: u32> ops::Rem<Bounded<T, M>> for Bounded<T, N>
where
    T: Integer,
    T: ops::Rem<Output = T>,
{
    type Output = T;

    fn rem(self, rhs: Bounded<T, M>) -> Self::Output {
        self.get() % rhs.get()
    }
}

impl<T, const N: u32, const M: u32> ops::Sub<Bounded<T, M>> for Bounded<T, N>
where
    T: Integer,
    T: ops::Sub<Output = T>,
{
    type Output = T;

    fn sub(self, rhs: Bounded<T, M>) -> Self::Output {
        self.get() - rhs.get()
    }
}

// Implementations of `core::ops` between a `Bounded` and its backing type.

impl<T, const N: u32> ops::Add<T> for Bounded<T, N>
where
    T: Integer,
    T: ops::Add<Output = T>,
{
    type Output = T;

    fn add(self, rhs: T) -> Self::Output {
        self.get() + rhs
    }
}

impl<T, const N: u32> ops::BitAnd<T> for Bounded<T, N>
where
    T: Integer,
    T: ops::BitAnd<Output = T>,
{
    type Output = T;

    fn bitand(self, rhs: T) -> Self::Output {
        self.get() & rhs
    }
}

impl<T, const N: u32> ops::BitOr<T> for Bounded<T, N>
where
    T: Integer,
    T: ops::BitOr<Output = T>,
{
    type Output = T;

    fn bitor(self, rhs: T) -> Self::Output {
        self.get() | rhs
    }
}

impl<T, const N: u32> ops::BitXor<T> for Bounded<T, N>
where
    T: Integer,
    T: ops::BitXor<Output = T>,
{
    type Output = T;

    fn bitxor(self, rhs: T) -> Self::Output {
        self.get() ^ rhs
    }
}

impl<T, const N: u32> ops::Div<T> for Bounded<T, N>
where
    T: Integer,
    T: ops::Div<Output = T>,
{
    type Output = T;

    fn div(self, rhs: T) -> Self::Output {
        self.get() / rhs
    }
}

impl<T, const N: u32> ops::Mul<T> for Bounded<T, N>
where
    T: Integer,
    T: ops::Mul<Output = T>,
{
    type Output = T;

    fn mul(self, rhs: T) -> Self::Output {
        self.get() * rhs
    }
}

impl<T, const N: u32> ops::Neg for Bounded<T, N>
where
    T: Integer,
    T: ops::Neg<Output = T>,
{
    type Output = T;

    fn neg(self) -> Self::Output {
        -self.get()
    }
}

impl<T, const N: u32> ops::Not for Bounded<T, N>
where
    T: Integer,
    T: ops::Not<Output = T>,
{
    type Output = T;

    fn not(self) -> Self::Output {
        !self.get()
    }
}

impl<T, const N: u32> ops::Rem<T> for Bounded<T, N>
where
    T: Integer,
    T: ops::Rem<Output = T>,
{
    type Output = T;

    fn rem(self, rhs: T) -> Self::Output {
        self.get() % rhs
    }
}

impl<T, const N: u32> ops::Sub<T> for Bounded<T, N>
where
    T: Integer,
    T: ops::Sub<Output = T>,
{
    type Output = T;

    fn sub(self, rhs: T) -> Self::Output {
        self.get() - rhs
    }
}

// Proxy implementations of `core::fmt`.

impl<T, const N: u32> fmt::Display for Bounded<T, N>
where
    T: Integer,
    T: fmt::Display,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.get().fmt(f)
    }
}

impl<T, const N: u32> fmt::Binary for Bounded<T, N>
where
    T: Integer,
    T: fmt::Binary,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.get().fmt(f)
    }
}

impl<T, const N: u32> fmt::LowerExp for Bounded<T, N>
where
    T: Integer,
    T: fmt::LowerExp,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.get().fmt(f)
    }
}

impl<T, const N: u32> fmt::LowerHex for Bounded<T, N>
where
    T: Integer,
    T: fmt::LowerHex,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.get().fmt(f)
    }
}

impl<T, const N: u32> fmt::Octal for Bounded<T, N>
where
    T: Integer,
    T: fmt::Octal,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.get().fmt(f)
    }
}

impl<T, const N: u32> fmt::UpperExp for Bounded<T, N>
where
    T: Integer,
    T: fmt::UpperExp,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.get().fmt(f)
    }
}

impl<T, const N: u32> fmt::UpperHex for Bounded<T, N>
where
    T: Integer,
    T: fmt::UpperHex,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        self.get().fmt(f)
    }
}

/// Implements `$trait` for all [`Bounded`] types represented using `$num_bits`.
///
/// This is used to declare size properties as traits that we can constrain against in impl blocks.
macro_rules! impl_size_rule {
    ($trait:ty, $($num_bits:literal)*) => {
        $(
        impl<T> $trait for Bounded<T, $num_bits> where T: Integer {}
        )*
    };
}

/// Local trait expressing the fact that a given [`Bounded`] has at least `N` bits used for value
/// representation.
trait AtLeastXBits<const N: usize> {}

/// Implementations for infallibly converting a primitive type into a [`Bounded`] that can contain
/// it.
///
/// Put into their own module for readability, and to avoid cluttering the rustdoc of the parent
/// module.
mod atleast_impls {
    use super::*;

    // Number of bits at least as large as 64.
    impl_size_rule!(AtLeastXBits<64>, 64);

    // Anything 64 bits or more is also larger than 32.
    impl<T> AtLeastXBits<32> for T where T: AtLeastXBits<64> {}
    // Other numbers of bits at least as large as 32.
    impl_size_rule!(AtLeastXBits<32>,
        32 33 34 35 36 37 38 39
        40 41 42 43 44 45 46 47
        48 49 50 51 52 53 54 55
        56 57 58 59 60 61 62 63
    );

    // Anything 32 bits or more is also larger than 16.
    impl<T> AtLeastXBits<16> for T where T: AtLeastXBits<32> {}
    // Other numbers of bits at least as large as 16.
    impl_size_rule!(AtLeastXBits<16>,
        16 17 18 19 20 21 22 23
        24 25 26 27 28 29 30 31
    );

    // Anything 16 bits or more is also larger than 8.
    impl<T> AtLeastXBits<8> for T where T: AtLeastXBits<16> {}
    // Other numbers of bits at least as large as 8.
    impl_size_rule!(AtLeastXBits<8>, 8 9 10 11 12 13 14 15);
}

/// Generates `From` implementations from a primitive type into a [`Bounded`] with
/// enough bits to store any value of that type.
///
/// Note: The only reason for having this macro is that if we pass `$type` as a generic
/// parameter, we cannot use it in the const context of [`AtLeastXBits`]'s generic parameter. This
/// can be fixed once the `generic_const_exprs` feature is usable, and this macro replaced by a
/// regular `impl` block.
macro_rules! impl_from_primitive {
    ($($type:ty)*) => {
        $(
        #[doc = ::core::concat!(
            "Conversion from a [`",
            ::core::stringify!($type),
            "`] into a [`Bounded`] of same signedness with enough bits to store it.")]
        impl<T, const N: u32> From<$type> for Bounded<T, N>
        where
            $type: Integer,
            T: Integer<Signedness = <$type as Integer>::Signedness> + From<$type>,
            Self: AtLeastXBits<{ <$type as Integer>::BITS as usize }>,
        {
            fn from(value: $type) -> Self {
                // INVARIANT: The trait bound on `Self` guarantees that `N` bits is
                // enough to hold any value of the source type.
                Self::__new(T::from(value))
            }
        }
        )*
    }
}

impl_from_primitive!(
    u8 u16 u32 u64 usize
    i8 i16 i32 i64 isize
);

/// Local trait expressing the fact that a given [`Bounded`] fits into a primitive type of `N` bits,
/// provided they have the same signedness.
trait FitsInXBits<const N: usize> {}

/// Implementations for infallibly converting a [`Bounded`] into a primitive type that can contain
/// it.
///
/// Put into their own module for readability, and to avoid cluttering the rustdoc of the parent
/// module.
mod fits_impls {
    use super::*;

    // Number of bits that fit into a 8-bits primitive.
    impl_size_rule!(FitsInXBits<8>, 1 2 3 4 5 6 7 8);

    // Anything that fits into 8 bits also fits into 16.
    impl<T> FitsInXBits<16> for T where T: FitsInXBits<8> {}
    // Other number of bits that fit into a 16-bits primitive.
    impl_size_rule!(FitsInXBits<16>, 9 10 11 12 13 14 15 16);

    // Anything that fits into 16 bits also fits into 32.
    impl<T> FitsInXBits<32> for T where T: FitsInXBits<16> {}
    // Other number of bits that fit into a 32-bits primitive.
    impl_size_rule!(FitsInXBits<32>,
        17 18 19 20 21 22 23 24
        25 26 27 28 29 30 31 32
    );

    // Anything that fits into 32 bits also fits into 64.
    impl<T> FitsInXBits<64> for T where T: FitsInXBits<32> {}
    // Other number of bits that fit into a 64-bits primitive.
    impl_size_rule!(FitsInXBits<64>,
        33 34 35 36 37 38 39 40
        41 42 43 44 45 46 47 48
        49 50 51 52 53 54 55 56
        57 58 59 60 61 62 63 64
    );
}

/// Generates [`From`] implementations from a [`Bounded`] into a primitive type that is
/// guaranteed to contain it.
///
/// Note: The only reason for having this macro is that if we pass `$type` as a generic
/// parameter, we cannot use it in the const context of `AtLeastXBits`'s generic parameter. This
/// can be fixed once the `generic_const_exprs` feature is usable, and this macro replaced by a
/// regular `impl` block.
macro_rules! impl_into_primitive {
    ($($type:ty)*) => {
        $(
        #[doc = ::core::concat!(
            "Conversion from a [`Bounded`] with no more bits than a [`",
            ::core::stringify!($type),
            "`] and of same signedness into [`",
            ::core::stringify!($type),
            "`]")]
        impl<T, const N: u32> From<Bounded<T, N>> for $type
        where
            $type: Integer + TryFrom<T>,
            T: Integer<Signedness = <$type as Integer>::Signedness>,
            Bounded<T, N>: FitsInXBits<{ <$type as Integer>::BITS as usize }>,
        {
            fn from(value: Bounded<T, N>) -> $type {
                // SAFETY: The trait bound on `Bounded` ensures that any value it holds (which
                // is constrained to `N` bits) can fit into the destination type, so this
                // conversion cannot fail.
                unsafe { <$type>::try_from(value.get()).unwrap_unchecked() }
            }
        }
        )*
    }
}

impl_into_primitive!(
    u8 u16 u32 u64 usize
    i8 i16 i32 i64 isize
);

// Single-bit `Bounded`s can be converted from/to a boolean.

impl<T> From<Bounded<T, 1>> for bool
where
    T: Integer + Zeroable,
{
    fn from(value: Bounded<T, 1>) -> Self {
        value.get() != Zeroable::zeroed()
    }
}

impl<T, const N: u32> From<bool> for Bounded<T, N>
where
    T: Integer + From<bool>,
{
    fn from(value: bool) -> Self {
        // INVARIANT: A boolean can be represented using a single bit, and thus fits within any
        // integer type for any `N` > 0.
        Self::__new(T::from(value))
    }
}