1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
|
// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2025 Samsung Electronics Co., Ltd.
// Author: Michal Wilczynski <m.wilczynski@samsung.com>
//! PWM subsystem abstractions.
//!
//! C header: [`include/linux/pwm.h`](srctree/include/linux/pwm.h).
use crate::{
bindings,
container_of,
device::{self, Bound},
devres,
error::{self, to_result},
prelude::*,
types::{ARef, AlwaysRefCounted, Opaque}, //
};
use core::{marker::PhantomData, ptr::NonNull};
/// Represents a PWM waveform configuration.
/// Mirrors struct [`struct pwm_waveform`](srctree/include/linux/pwm.h).
#[derive(Copy, Clone, Debug, Default, PartialEq, Eq)]
pub struct Waveform {
/// Total duration of one complete PWM cycle, in nanoseconds.
pub period_length_ns: u64,
/// Duty-cycle active time, in nanoseconds.
///
/// For a typical normal polarity configuration (active-high) this is the
/// high time of the signal.
pub duty_length_ns: u64,
/// Duty-cycle start offset, in nanoseconds.
///
/// Delay from the beginning of the period to the first active edge.
/// In most simple PWM setups this is `0`, so the duty cycle starts
/// immediately at each period’s start.
pub duty_offset_ns: u64,
}
impl From<bindings::pwm_waveform> for Waveform {
fn from(wf: bindings::pwm_waveform) -> Self {
Waveform {
period_length_ns: wf.period_length_ns,
duty_length_ns: wf.duty_length_ns,
duty_offset_ns: wf.duty_offset_ns,
}
}
}
impl From<Waveform> for bindings::pwm_waveform {
fn from(wf: Waveform) -> Self {
bindings::pwm_waveform {
period_length_ns: wf.period_length_ns,
duty_length_ns: wf.duty_length_ns,
duty_offset_ns: wf.duty_offset_ns,
}
}
}
/// Describes the outcome of a `round_waveform` operation.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum RoundingOutcome {
/// The requested waveform was achievable exactly or by rounding values down.
ExactOrRoundedDown,
/// The requested waveform could only be achieved by rounding up.
RoundedUp,
}
/// Wrapper for a PWM device [`struct pwm_device`](srctree/include/linux/pwm.h).
#[repr(transparent)]
pub struct Device(Opaque<bindings::pwm_device>);
impl Device {
/// Creates a reference to a [`Device`] from a valid C pointer.
///
/// # Safety
///
/// The caller must ensure that `ptr` is valid and remains valid for the lifetime of the
/// returned [`Device`] reference.
pub(crate) unsafe fn from_raw<'a>(ptr: *mut bindings::pwm_device) -> &'a Self {
// SAFETY: The safety requirements guarantee the validity of the dereference, while the
// `Device` type being transparent makes the cast ok.
unsafe { &*ptr.cast::<Self>() }
}
/// Returns a raw pointer to the underlying `pwm_device`.
fn as_raw(&self) -> *mut bindings::pwm_device {
self.0.get()
}
/// Gets the hardware PWM index for this device within its chip.
pub fn hwpwm(&self) -> u32 {
// SAFETY: `self.as_raw()` provides a valid pointer for `self`'s lifetime.
unsafe { (*self.as_raw()).hwpwm }
}
/// Gets a reference to the parent `Chip` that this device belongs to.
pub fn chip<T: PwmOps>(&self) -> &Chip<T> {
// SAFETY: `self.as_raw()` provides a valid pointer. (*self.as_raw()).chip
// is assumed to be a valid pointer to `pwm_chip` managed by the kernel.
// Chip::from_raw's safety conditions must be met.
unsafe { Chip::<T>::from_raw((*self.as_raw()).chip) }
}
/// Gets the label for this PWM device, if any.
pub fn label(&self) -> Option<&CStr> {
// SAFETY: self.as_raw() provides a valid pointer.
let label_ptr = unsafe { (*self.as_raw()).label };
if label_ptr.is_null() {
return None;
}
// SAFETY: label_ptr is non-null and points to a C string
// managed by the kernel, valid for the lifetime of the PWM device.
Some(unsafe { CStr::from_char_ptr(label_ptr) })
}
/// Sets the PWM waveform configuration and enables the PWM signal.
pub fn set_waveform(&self, wf: &Waveform, exact: bool) -> Result {
let c_wf = bindings::pwm_waveform::from(*wf);
// SAFETY: `self.as_raw()` provides a valid `*mut pwm_device` pointer.
// `&c_wf` is a valid pointer to a `pwm_waveform` struct. The C function
// handles all necessary internal locking.
let ret = unsafe { bindings::pwm_set_waveform_might_sleep(self.as_raw(), &c_wf, exact) };
to_result(ret)
}
/// Queries the hardware for the configuration it would apply for a given
/// request.
pub fn round_waveform(&self, wf: &mut Waveform) -> Result<RoundingOutcome> {
let mut c_wf = bindings::pwm_waveform::from(*wf);
// SAFETY: `self.as_raw()` provides a valid `*mut pwm_device` pointer.
// `&mut c_wf` is a valid pointer to a mutable `pwm_waveform` struct that
// the C function will update.
let ret = unsafe { bindings::pwm_round_waveform_might_sleep(self.as_raw(), &mut c_wf) };
to_result(ret)?;
*wf = Waveform::from(c_wf);
if ret == 1 {
Ok(RoundingOutcome::RoundedUp)
} else {
Ok(RoundingOutcome::ExactOrRoundedDown)
}
}
/// Reads the current waveform configuration directly from the hardware.
pub fn get_waveform(&self) -> Result<Waveform> {
let mut c_wf = bindings::pwm_waveform::default();
// SAFETY: `self.as_raw()` is a valid pointer. We provide a valid pointer
// to a stack-allocated `pwm_waveform` struct for the kernel to fill.
let ret = unsafe { bindings::pwm_get_waveform_might_sleep(self.as_raw(), &mut c_wf) };
to_result(ret)?;
Ok(Waveform::from(c_wf))
}
}
/// The result of a `round_waveform_tohw` operation.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct RoundedWaveform<WfHw> {
/// A status code, 0 for success or 1 if values were rounded up.
pub status: c_int,
/// The driver-specific hardware representation of the waveform.
pub hardware_waveform: WfHw,
}
/// Trait defining the operations for a PWM driver.
pub trait PwmOps: 'static + Sized {
/// The driver-specific hardware representation of a waveform.
///
/// This type must be [`Copy`], [`Default`], and fit within `PWM_WFHWSIZE`.
type WfHw: Copy + Default;
/// Optional hook for when a PWM device is requested.
fn request(_chip: &Chip<Self>, _pwm: &Device, _parent_dev: &device::Device<Bound>) -> Result {
Ok(())
}
/// Optional hook for capturing a PWM signal.
fn capture(
_chip: &Chip<Self>,
_pwm: &Device,
_result: &mut bindings::pwm_capture,
_timeout: usize,
_parent_dev: &device::Device<Bound>,
) -> Result {
Err(ENOTSUPP)
}
/// Convert a generic waveform to the hardware-specific representation.
/// This is typically a pure calculation and does not perform I/O.
fn round_waveform_tohw(
_chip: &Chip<Self>,
_pwm: &Device,
_wf: &Waveform,
) -> Result<RoundedWaveform<Self::WfHw>> {
Err(ENOTSUPP)
}
/// Convert a hardware-specific representation back to a generic waveform.
/// This is typically a pure calculation and does not perform I/O.
fn round_waveform_fromhw(
_chip: &Chip<Self>,
_pwm: &Device,
_wfhw: &Self::WfHw,
_wf: &mut Waveform,
) -> Result {
Err(ENOTSUPP)
}
/// Read the current hardware configuration into the hardware-specific representation.
fn read_waveform(
_chip: &Chip<Self>,
_pwm: &Device,
_parent_dev: &device::Device<Bound>,
) -> Result<Self::WfHw> {
Err(ENOTSUPP)
}
/// Write a hardware-specific waveform configuration to the hardware.
fn write_waveform(
_chip: &Chip<Self>,
_pwm: &Device,
_wfhw: &Self::WfHw,
_parent_dev: &device::Device<Bound>,
) -> Result {
Err(ENOTSUPP)
}
}
/// Bridges Rust `PwmOps` to the C `pwm_ops` vtable.
struct Adapter<T: PwmOps> {
_p: PhantomData<T>,
}
impl<T: PwmOps> Adapter<T> {
const VTABLE: PwmOpsVTable = create_pwm_ops::<T>();
/// # Safety
///
/// `wfhw_ptr` must be valid for writes of `size_of::<T::WfHw>()` bytes.
unsafe fn serialize_wfhw(wfhw: &T::WfHw, wfhw_ptr: *mut c_void) -> Result {
let size = core::mem::size_of::<T::WfHw>();
build_assert!(size <= bindings::PWM_WFHWSIZE as usize);
// SAFETY: The caller ensures `wfhw_ptr` is valid for `size` bytes.
unsafe {
core::ptr::copy_nonoverlapping(
core::ptr::from_ref::<T::WfHw>(wfhw).cast::<u8>(),
wfhw_ptr.cast::<u8>(),
size,
);
}
Ok(())
}
/// # Safety
///
/// `wfhw_ptr` must be valid for reads of `size_of::<T::WfHw>()` bytes.
unsafe fn deserialize_wfhw(wfhw_ptr: *const c_void) -> Result<T::WfHw> {
let size = core::mem::size_of::<T::WfHw>();
build_assert!(size <= bindings::PWM_WFHWSIZE as usize);
let mut wfhw = T::WfHw::default();
// SAFETY: The caller ensures `wfhw_ptr` is valid for `size` bytes.
unsafe {
core::ptr::copy_nonoverlapping(
wfhw_ptr.cast::<u8>(),
core::ptr::from_mut::<T::WfHw>(&mut wfhw).cast::<u8>(),
size,
);
}
Ok(wfhw)
}
/// # Safety
///
/// `dev` must be a valid pointer to a `bindings::device` embedded within a
/// `bindings::pwm_chip`. This function is called by the device core when the
/// last reference to the device is dropped.
unsafe extern "C" fn release_callback(dev: *mut bindings::device) {
// SAFETY: The function's contract guarantees that `dev` points to a `device`
// field embedded within a valid `pwm_chip`. `container_of!` can therefore
// safely calculate the address of the containing struct.
let c_chip_ptr = unsafe { container_of!(dev, bindings::pwm_chip, dev) };
// SAFETY: `c_chip_ptr` is a valid pointer to a `pwm_chip` as established
// above. Calling this FFI function is safe.
let drvdata_ptr = unsafe { bindings::pwmchip_get_drvdata(c_chip_ptr) };
// SAFETY: The driver data was initialized in `new`. We run its destructor here.
unsafe { core::ptr::drop_in_place(drvdata_ptr.cast::<T>()) };
// Now, call the original release function to free the `pwm_chip` itself.
// SAFETY: `dev` is the valid pointer passed into this callback, which is
// the expected argument for `pwmchip_release`.
unsafe {
bindings::pwmchip_release(dev);
}
}
/// # Safety
///
/// Pointers from C must be valid.
unsafe extern "C" fn request_callback(
chip_ptr: *mut bindings::pwm_chip,
pwm_ptr: *mut bindings::pwm_device,
) -> c_int {
// SAFETY: PWM core guarentees `chip_ptr` and `pwm_ptr` are valid pointers.
let (chip, pwm) = unsafe { (Chip::<T>::from_raw(chip_ptr), Device::from_raw(pwm_ptr)) };
// SAFETY: The PWM core guarantees the parent device exists and is bound during callbacks.
let bound_parent = unsafe { chip.bound_parent_device() };
match T::request(chip, pwm, bound_parent) {
Ok(()) => 0,
Err(e) => e.to_errno(),
}
}
/// # Safety
///
/// Pointers from C must be valid.
unsafe extern "C" fn capture_callback(
chip_ptr: *mut bindings::pwm_chip,
pwm_ptr: *mut bindings::pwm_device,
res: *mut bindings::pwm_capture,
timeout: usize,
) -> c_int {
// SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
// pointers.
let (chip, pwm, result) = unsafe {
(
Chip::<T>::from_raw(chip_ptr),
Device::from_raw(pwm_ptr),
&mut *res,
)
};
// SAFETY: The PWM core guarantees the parent device exists and is bound during callbacks.
let bound_parent = unsafe { chip.bound_parent_device() };
match T::capture(chip, pwm, result, timeout, bound_parent) {
Ok(()) => 0,
Err(e) => e.to_errno(),
}
}
/// # Safety
///
/// Pointers from C must be valid.
unsafe extern "C" fn round_waveform_tohw_callback(
chip_ptr: *mut bindings::pwm_chip,
pwm_ptr: *mut bindings::pwm_device,
wf_ptr: *const bindings::pwm_waveform,
wfhw_ptr: *mut c_void,
) -> c_int {
// SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
// pointers.
let (chip, pwm, wf) = unsafe {
(
Chip::<T>::from_raw(chip_ptr),
Device::from_raw(pwm_ptr),
Waveform::from(*wf_ptr),
)
};
match T::round_waveform_tohw(chip, pwm, &wf) {
Ok(rounded) => {
// SAFETY: `wfhw_ptr` is valid per this function's safety contract.
if unsafe { Self::serialize_wfhw(&rounded.hardware_waveform, wfhw_ptr) }.is_err() {
return EINVAL.to_errno();
}
rounded.status
}
Err(e) => e.to_errno(),
}
}
/// # Safety
///
/// Pointers from C must be valid.
unsafe extern "C" fn round_waveform_fromhw_callback(
chip_ptr: *mut bindings::pwm_chip,
pwm_ptr: *mut bindings::pwm_device,
wfhw_ptr: *const c_void,
wf_ptr: *mut bindings::pwm_waveform,
) -> c_int {
// SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
// pointers.
let (chip, pwm) = unsafe { (Chip::<T>::from_raw(chip_ptr), Device::from_raw(pwm_ptr)) };
// SAFETY: `deserialize_wfhw`'s safety contract is met by this function's contract.
let wfhw = match unsafe { Self::deserialize_wfhw(wfhw_ptr) } {
Ok(v) => v,
Err(e) => return e.to_errno(),
};
let mut rust_wf = Waveform::default();
match T::round_waveform_fromhw(chip, pwm, &wfhw, &mut rust_wf) {
Ok(()) => {
// SAFETY: `wf_ptr` is guaranteed valid by the C caller.
unsafe {
*wf_ptr = rust_wf.into();
};
0
}
Err(e) => e.to_errno(),
}
}
/// # Safety
///
/// Pointers from C must be valid.
unsafe extern "C" fn read_waveform_callback(
chip_ptr: *mut bindings::pwm_chip,
pwm_ptr: *mut bindings::pwm_device,
wfhw_ptr: *mut c_void,
) -> c_int {
// SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
// pointers.
let (chip, pwm) = unsafe { (Chip::<T>::from_raw(chip_ptr), Device::from_raw(pwm_ptr)) };
// SAFETY: The PWM core guarantees the parent device exists and is bound during callbacks.
let bound_parent = unsafe { chip.bound_parent_device() };
match T::read_waveform(chip, pwm, bound_parent) {
// SAFETY: `wfhw_ptr` is valid per this function's safety contract.
Ok(wfhw) => match unsafe { Self::serialize_wfhw(&wfhw, wfhw_ptr) } {
Ok(()) => 0,
Err(e) => e.to_errno(),
},
Err(e) => e.to_errno(),
}
}
/// # Safety
///
/// Pointers from C must be valid.
unsafe extern "C" fn write_waveform_callback(
chip_ptr: *mut bindings::pwm_chip,
pwm_ptr: *mut bindings::pwm_device,
wfhw_ptr: *const c_void,
) -> c_int {
// SAFETY: Relies on the function's contract that `chip_ptr` and `pwm_ptr` are valid
// pointers.
let (chip, pwm) = unsafe { (Chip::<T>::from_raw(chip_ptr), Device::from_raw(pwm_ptr)) };
// SAFETY: The PWM core guarantees the parent device exists and is bound during callbacks.
let bound_parent = unsafe { chip.bound_parent_device() };
// SAFETY: `wfhw_ptr` is valid per this function's safety contract.
let wfhw = match unsafe { Self::deserialize_wfhw(wfhw_ptr) } {
Ok(v) => v,
Err(e) => return e.to_errno(),
};
match T::write_waveform(chip, pwm, &wfhw, bound_parent) {
Ok(()) => 0,
Err(e) => e.to_errno(),
}
}
}
/// VTable structure wrapper for PWM operations.
/// Mirrors [`struct pwm_ops`](srctree/include/linux/pwm.h).
#[repr(transparent)]
pub struct PwmOpsVTable(bindings::pwm_ops);
// SAFETY: PwmOpsVTable is Send. The vtable contains only function pointers
// and a size, which are simple data types that can be safely moved across
// threads. The thread-safety of calling these functions is handled by the
// kernel's locking mechanisms.
unsafe impl Send for PwmOpsVTable {}
// SAFETY: PwmOpsVTable is Sync. The vtable is immutable after it is created,
// so it can be safely referenced and accessed concurrently by multiple threads
// e.g. to read the function pointers.
unsafe impl Sync for PwmOpsVTable {}
impl PwmOpsVTable {
/// Returns a raw pointer to the underlying `pwm_ops` struct.
pub(crate) fn as_raw(&self) -> *const bindings::pwm_ops {
&self.0
}
}
/// Creates a PWM operations vtable for a type `T` that implements `PwmOps`.
///
/// This is used to bridge Rust trait implementations to the C `struct pwm_ops`
/// expected by the kernel.
pub const fn create_pwm_ops<T: PwmOps>() -> PwmOpsVTable {
// SAFETY: `core::mem::zeroed()` is unsafe. For `pwm_ops`, all fields are
// `Option<extern "C" fn(...)>` or data, so a zeroed pattern (None/0) is valid initially.
let mut ops: bindings::pwm_ops = unsafe { core::mem::zeroed() };
ops.request = Some(Adapter::<T>::request_callback);
ops.capture = Some(Adapter::<T>::capture_callback);
ops.round_waveform_tohw = Some(Adapter::<T>::round_waveform_tohw_callback);
ops.round_waveform_fromhw = Some(Adapter::<T>::round_waveform_fromhw_callback);
ops.read_waveform = Some(Adapter::<T>::read_waveform_callback);
ops.write_waveform = Some(Adapter::<T>::write_waveform_callback);
ops.sizeof_wfhw = core::mem::size_of::<T::WfHw>();
PwmOpsVTable(ops)
}
/// Wrapper for a PWM chip/controller ([`struct pwm_chip`](srctree/include/linux/pwm.h)).
#[repr(transparent)]
pub struct Chip<T: PwmOps>(Opaque<bindings::pwm_chip>, PhantomData<T>);
impl<T: PwmOps> Chip<T> {
/// Creates a reference to a [`Chip`] from a valid pointer.
///
/// # Safety
///
/// The caller must ensure that `ptr` is valid and remains valid for the lifetime of the
/// returned [`Chip`] reference.
pub(crate) unsafe fn from_raw<'a>(ptr: *mut bindings::pwm_chip) -> &'a Self {
// SAFETY: The safety requirements guarantee the validity of the dereference, while the
// `Chip` type being transparent makes the cast ok.
unsafe { &*ptr.cast::<Self>() }
}
/// Returns a raw pointer to the underlying `pwm_chip`.
pub(crate) fn as_raw(&self) -> *mut bindings::pwm_chip {
self.0.get()
}
/// Gets the number of PWM channels (hardware PWMs) on this chip.
pub fn num_channels(&self) -> u32 {
// SAFETY: `self.as_raw()` provides a valid pointer for `self`'s lifetime.
unsafe { (*self.as_raw()).npwm }
}
/// Returns `true` if the chip supports atomic operations for configuration.
pub fn is_atomic(&self) -> bool {
// SAFETY: `self.as_raw()` provides a valid pointer for `self`'s lifetime.
unsafe { (*self.as_raw()).atomic }
}
/// Returns a reference to the embedded `struct device` abstraction.
pub fn device(&self) -> &device::Device {
// SAFETY:
// - `self.as_raw()` provides a valid pointer to `bindings::pwm_chip`.
// - The `dev` field is an instance of `bindings::device` embedded
// within `pwm_chip`.
// - Taking a pointer to this embedded field is valid.
// - `device::Device` is `#[repr(transparent)]`.
// - The lifetime of the returned reference is tied to `self`.
unsafe { device::Device::from_raw(&raw mut (*self.as_raw()).dev) }
}
/// Gets the typed driver specific data associated with this chip's embedded device.
pub fn drvdata(&self) -> &T {
// SAFETY: `pwmchip_get_drvdata` returns the pointer to the private data area,
// which we know holds our `T`. The pointer is valid for the lifetime of `self`.
unsafe { &*bindings::pwmchip_get_drvdata(self.as_raw()).cast::<T>() }
}
/// Returns a reference to the parent device of this PWM chip's device.
///
/// # Safety
///
/// The caller must guarantee that the parent device exists and is bound.
/// This is guaranteed by the PWM core during `PwmOps` callbacks.
unsafe fn bound_parent_device(&self) -> &device::Device<Bound> {
// SAFETY: Per the function's safety contract, the parent device exists.
let parent = unsafe { self.device().parent().unwrap_unchecked() };
// SAFETY: Per the function's safety contract, the parent device is bound.
// This is guaranteed by the PWM core during `PwmOps` callbacks.
unsafe { parent.as_bound() }
}
/// Allocates and wraps a PWM chip using `bindings::pwmchip_alloc`.
///
/// Returns an [`ARef<Chip>`] managing the chip's lifetime via refcounting
/// on its embedded `struct device`.
pub fn new(
parent_dev: &device::Device,
num_channels: u32,
data: impl pin_init::PinInit<T, Error>,
) -> Result<ARef<Self>> {
let sizeof_priv = core::mem::size_of::<T>();
// SAFETY: `pwmchip_alloc` allocates memory for the C struct and our private data.
let c_chip_ptr_raw =
unsafe { bindings::pwmchip_alloc(parent_dev.as_raw(), num_channels, sizeof_priv) };
let c_chip_ptr: *mut bindings::pwm_chip = error::from_err_ptr(c_chip_ptr_raw)?;
// SAFETY: The `drvdata` pointer is the start of the private area, which is where
// we will construct our `T` object.
let drvdata_ptr = unsafe { bindings::pwmchip_get_drvdata(c_chip_ptr) };
// SAFETY: We construct the `T` object in-place in the allocated private memory.
unsafe { data.__pinned_init(drvdata_ptr.cast())? };
// SAFETY: `c_chip_ptr` points to a valid chip.
unsafe {
(*c_chip_ptr).dev.release = Some(Adapter::<T>::release_callback);
}
// SAFETY: `c_chip_ptr` points to a valid chip.
// The `Adapter`'s `VTABLE` has a 'static lifetime, so the pointer
// returned by `as_raw()` is always valid.
unsafe {
(*c_chip_ptr).ops = Adapter::<T>::VTABLE.as_raw();
}
// Cast the `*mut bindings::pwm_chip` to `*mut Chip`. This is valid because
// `Chip` is `repr(transparent)` over `Opaque<bindings::pwm_chip>`, and
// `Opaque<T>` is `repr(transparent)` over `T`.
let chip_ptr_as_self = c_chip_ptr.cast::<Self>();
// SAFETY: `chip_ptr_as_self` points to a valid `Chip` (layout-compatible with
// `bindings::pwm_chip`) whose embedded device has refcount 1.
// `ARef::from_raw` takes this pointer and manages it via `AlwaysRefCounted`.
Ok(unsafe { ARef::from_raw(NonNull::new_unchecked(chip_ptr_as_self)) })
}
}
// SAFETY: Implements refcounting for `Chip` using the embedded `struct device`.
unsafe impl<T: PwmOps> AlwaysRefCounted for Chip<T> {
#[inline]
fn inc_ref(&self) {
// SAFETY: `self.0.get()` points to a valid `pwm_chip` because `self` exists.
// The embedded `dev` is valid. `get_device` increments its refcount.
unsafe {
bindings::get_device(&raw mut (*self.0.get()).dev);
}
}
#[inline]
unsafe fn dec_ref(obj: NonNull<Chip<T>>) {
let c_chip_ptr = obj.cast::<bindings::pwm_chip>().as_ptr();
// SAFETY: `obj` is a valid pointer to a `Chip` (and thus `bindings::pwm_chip`)
// with a non-zero refcount. `put_device` handles decrement and final release.
unsafe {
bindings::put_device(&raw mut (*c_chip_ptr).dev);
}
}
}
// SAFETY: `Chip` is a wrapper around `*mut bindings::pwm_chip`. The underlying C
// structure's state is managed and synchronized by the kernel's device model
// and PWM core locking mechanisms. Therefore, it is safe to move the `Chip`
// wrapper (and the pointer it contains) across threads.
unsafe impl<T: PwmOps + Send> Send for Chip<T> {}
// SAFETY: It is safe for multiple threads to have shared access (`&Chip`) because
// the `Chip` data is immutable from the Rust side without holding the appropriate
// kernel locks, which the C core is responsible for. Any interior mutability is
// handled and synchronized by the C kernel code.
unsafe impl<T: PwmOps + Sync> Sync for Chip<T> {}
/// A resource guard that ensures `pwmchip_remove` is called on drop.
///
/// This struct is intended to be managed by the `devres` framework by transferring its ownership
/// via [`devres::register`]. This ties the lifetime of the PWM chip registration
/// to the lifetime of the underlying device.
pub struct Registration<T: PwmOps> {
chip: ARef<Chip<T>>,
}
impl<T: 'static + PwmOps + Send + Sync> Registration<T> {
/// Registers a PWM chip with the PWM subsystem.
///
/// Transfers its ownership to the `devres` framework, which ties its lifetime
/// to the parent device.
/// On unbind of the parent device, the `devres` entry will be dropped, automatically
/// calling `pwmchip_remove`. This function should be called from the driver's `probe`.
pub fn register(dev: &device::Device<Bound>, chip: ARef<Chip<T>>) -> Result {
let chip_parent = chip.device().parent().ok_or(EINVAL)?;
if dev.as_raw() != chip_parent.as_raw() {
return Err(EINVAL);
}
let c_chip_ptr = chip.as_raw();
// SAFETY: `c_chip_ptr` points to a valid chip with its ops initialized.
// `__pwmchip_add` is the C function to register the chip with the PWM core.
unsafe {
to_result(bindings::__pwmchip_add(c_chip_ptr, core::ptr::null_mut()))?;
}
let registration = Registration { chip };
devres::register(dev, registration, GFP_KERNEL)
}
}
impl<T: PwmOps> Drop for Registration<T> {
fn drop(&mut self) {
let chip_raw = self.chip.as_raw();
// SAFETY: `chip_raw` points to a chip that was successfully registered.
// `bindings::pwmchip_remove` is the correct C function to unregister it.
// This `drop` implementation is called automatically by `devres` on driver unbind.
unsafe {
bindings::pwmchip_remove(chip_raw);
}
}
}
/// Declares a kernel module that exposes a single PWM driver.
///
/// # Examples
///
///```ignore
/// kernel::module_pwm_platform_driver! {
/// type: MyDriver,
/// name: "Module name",
/// authors: ["Author name"],
/// description: "Description",
/// license: "GPL v2",
/// }
///```
#[macro_export]
macro_rules! module_pwm_platform_driver {
($($user_args:tt)*) => {
$crate::module_platform_driver! {
$($user_args)*
imports_ns: ["PWM"],
}
};
}
|