diff options
Diffstat (limited to 'src/mempool.c')
-rw-r--r-- | src/mempool.c | 710 |
1 files changed, 710 insertions, 0 deletions
diff --git a/src/mempool.c b/src/mempool.c new file mode 100644 index 0000000..4713f16 --- /dev/null +++ b/src/mempool.c @@ -0,0 +1,710 @@ +/* + * Copyright (c) 2007-2012, The Tor Project, Inc. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are + * met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * + * * Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following disclaimer + * in the documentation and/or other materials provided with the + * distribution. + * + * * Neither the names of the copyright owners nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +/*! \file mempool.c + * \brief A pooling allocator + * \version $Id: mempool.c 1652 2012-11-13 20:28:53Z michael $ + */ + +#include "stdinc.h" +#include "memory.h" +#include "event.h" +#include "log.h" +#include "mempool.h" + +/** Returns floor(log2(u64)). If u64 is 0, (incorrectly) returns 0. */ +static int +tor_log2(uint64_t u64) +{ + int r = 0; + + if (u64 >= (1LLU << 32)) + { + u64 >>= 32; + r = 32; + } + if (u64 >= (1LLU << 16)) + { + u64 >>= 16; + r += 16; + } + if (u64 >= (1LLU << 8)) + { + u64 >>= 8; + r += 8; + } + if (u64 >= (1LLU << 4)) + { + u64 >>= 4; + r += 4; + } + if (u64 >= (1LLU << 2)) + { + u64 >>= 2; + r += 2; + } + if (u64 >= (1LLU << 1)) + { + u64 >>= 1; + r += 1; + } + + return r; +} + +/** Return the power of 2 in range [1,UINT64_MAX] closest to <b>u64</b>. If + * there are two powers of 2 equally close, round down. */ +static uint64_t +round_to_power_of_2(uint64_t u64) +{ + int lg2; + uint64_t low; + uint64_t high; + + if (u64 == 0) + return 1; + + lg2 = tor_log2(u64); + low = 1LLU << lg2; + + if (lg2 == 63) + return low; + + high = 1LLU << (lg2 + 1); + if (high - u64 < u64 - low) + return high; + else + return low; +} + +/* OVERVIEW: + * + * This is an implementation of memory pools for Tor cells. It may be + * useful for you too. + * + * Generally, a memory pool is an allocation strategy optimized for large + * numbers of identically-sized objects. Rather than the elaborate arena + * and coalescing strategies you need to get good performance for a + * general-purpose malloc(), pools use a series of large memory "chunks", + * each of which is carved into a bunch of smaller "items" or + * "allocations". + * + * To get decent performance, you need to: + * - Minimize the number of times you hit the underlying allocator. + * - Try to keep accesses as local in memory as possible. + * - Try to keep the common case fast. + * + * Our implementation uses three lists of chunks per pool. Each chunk can + * be either "full" (no more room for items); "empty" (no items); or + * "used" (not full, not empty). There are independent doubly-linked + * lists for each state. + * + * CREDIT: + * + * I wrote this after looking at 3 or 4 other pooling allocators, but + * without copying. The strategy this most resembles (which is funny, + * since that's the one I looked at longest ago) is the pool allocator + * underlying Python's obmalloc code. Major differences from obmalloc's + * pools are: + * - We don't even try to be threadsafe. + * - We only handle objects of one size. + * - Our list of empty chunks is doubly-linked, not singly-linked. + * (This could change pretty easily; it's only doubly-linked for + * consistency.) + * - We keep a list of full chunks (so we can have a "nuke everything" + * function). Obmalloc's pools leave full chunks to float unanchored. + * + * LIMITATIONS: + * - Not even slightly threadsafe. + * - Likes to have lots of items per chunks. + * - One pointer overhead per allocated thing. (The alternative is + * something like glib's use of an RB-tree to keep track of what + * chunk any given piece of memory is in.) + * - Only aligns allocated things to void* level: redefine ALIGNMENT_TYPE + * if you need doubles. + * - Could probably be optimized a bit; the representation contains + * a bit more info than it really needs to have. + */ + +/* Tuning parameters */ +/** Largest type that we need to ensure returned memory items are aligned to. + * Change this to "double" if we need to be safe for structs with doubles. */ +#define ALIGNMENT_TYPE void * +/** Increment that we need to align allocated. */ +#define ALIGNMENT sizeof(ALIGNMENT_TYPE) +/** Largest memory chunk that we should allocate. */ +#define MAX_CHUNK (8 *(1L << 20)) +/** Smallest memory chunk size that we should allocate. */ +#define MIN_CHUNK 4096 + +typedef struct mp_allocated_t mp_allocated_t; +typedef struct mp_chunk_t mp_chunk_t; + +/** Holds a single allocated item, allocated as part of a chunk. */ +struct mp_allocated_t { + /** The chunk that this item is allocated in. This adds overhead to each + * allocated item, thus making this implementation inappropriate for + * very small items. */ + mp_chunk_t *in_chunk; + + union { + /** If this item is free, the next item on the free list. */ + mp_allocated_t *next_free; + + /** If this item is not free, the actual memory contents of this item. + * (Not actual size.) */ + char mem[1]; + + /** An extra element to the union to insure correct alignment. */ + ALIGNMENT_TYPE dummy_; + } u; +}; + +/** 'Magic' value used to detect memory corruption. */ +#define MP_CHUNK_MAGIC 0x09870123 + +/** A chunk of memory. Chunks come from malloc; we use them */ +struct mp_chunk_t { + uint32_t magic; /**< Must be MP_CHUNK_MAGIC if this chunk is valid. */ + mp_chunk_t *next; /**< The next free, used, or full chunk in sequence. */ + mp_chunk_t *prev; /**< The previous free, used, or full chunk in sequence. */ + mp_pool_t *pool; /**< The pool that this chunk is part of. */ + + /** First free item in the freelist for this chunk. Note that this may be + * NULL even if this chunk is not at capacity: if so, the free memory at + * next_mem has not yet been carved into items. + */ + mp_allocated_t *first_free; + int n_allocated; /**< Number of currently allocated items in this chunk. */ + int capacity; /**< Number of items that can be fit into this chunk. */ + size_t mem_size; /**< Number of usable bytes in mem. */ + char *next_mem; /**< Pointer into part of <b>mem</b> not yet carved up. */ + char mem[]; /**< Storage for this chunk. */ +}; + +static mp_pool_t *mp_allocated_pools = NULL; + +/** Number of extra bytes needed beyond mem_size to allocate a chunk. */ +#define CHUNK_OVERHEAD offsetof(mp_chunk_t, mem[0]) + +/** Given a pointer to a mp_allocated_t, return a pointer to the memory + * item it holds. */ +#define A2M(a) (&(a)->u.mem) +/** Given a pointer to a memory_item_t, return a pointer to its enclosing + * mp_allocated_t. */ +#define M2A(p) (((char *)p) - offsetof(mp_allocated_t, u.mem)) + +void +mp_pool_init(void) +{ + eventAdd("mp_pool_garbage_collect", &mp_pool_garbage_collect, NULL, 119); +} + +/** Helper: Allocate and return a new memory chunk for <b>pool</b>. Does not + * link the chunk into any list. */ +static mp_chunk_t * +mp_chunk_new(mp_pool_t *pool) +{ + size_t sz = pool->new_chunk_capacity * pool->item_alloc_size; + mp_chunk_t *chunk = MyMalloc(CHUNK_OVERHEAD + sz); + +#ifdef MEMPOOL_STATS + ++pool->total_chunks_allocated; +#endif + chunk->magic = MP_CHUNK_MAGIC; + chunk->capacity = pool->new_chunk_capacity; + chunk->mem_size = sz; + chunk->next_mem = chunk->mem; + chunk->pool = pool; + return chunk; +} + +/** Take a <b>chunk</b> that has just been allocated or removed from + * <b>pool</b>'s empty chunk list, and add it to the head of the used chunk + * list. */ +static void +add_newly_used_chunk_to_used_list(mp_pool_t *pool, mp_chunk_t *chunk) +{ + chunk->next = pool->used_chunks; + if (chunk->next) + chunk->next->prev = chunk; + pool->used_chunks = chunk; + assert(!chunk->prev); +} + +/** Return a newly allocated item from <b>pool</b>. */ +void * +mp_pool_get(mp_pool_t *pool) +{ + mp_chunk_t *chunk; + mp_allocated_t *allocated; + + if (pool->used_chunks != NULL) { + /* + * Common case: there is some chunk that is neither full nor empty. Use + * that one. (We can't use the full ones, obviously, and we should fill + * up the used ones before we start on any empty ones. + */ + chunk = pool->used_chunks; + + } else if (pool->empty_chunks) { + /* + * We have no used chunks, but we have an empty chunk that we haven't + * freed yet: use that. (We pull from the front of the list, which should + * get us the most recently emptied chunk.) + */ + chunk = pool->empty_chunks; + + /* Remove the chunk from the empty list. */ + pool->empty_chunks = chunk->next; + if (chunk->next) + chunk->next->prev = NULL; + + /* Put the chunk on the 'used' list*/ + add_newly_used_chunk_to_used_list(pool, chunk); + + assert(!chunk->prev); + --pool->n_empty_chunks; + if (pool->n_empty_chunks < pool->min_empty_chunks) + pool->min_empty_chunks = pool->n_empty_chunks; + } else { + /* We have no used or empty chunks: allocate a new chunk. */ + chunk = mp_chunk_new(pool); + + /* Add the new chunk to the used list. */ + add_newly_used_chunk_to_used_list(pool, chunk); + } + + assert(chunk->n_allocated < chunk->capacity); + + if (chunk->first_free) { + /* If there's anything on the chunk's freelist, unlink it and use it. */ + allocated = chunk->first_free; + chunk->first_free = allocated->u.next_free; + allocated->u.next_free = NULL; /* For debugging; not really needed. */ + assert(allocated->in_chunk == chunk); + } else { + /* Otherwise, the chunk had better have some free space left on it. */ + assert(chunk->next_mem + pool->item_alloc_size <= + chunk->mem + chunk->mem_size); + + /* Good, it did. Let's carve off a bit of that free space, and use + * that. */ + allocated = (void *)chunk->next_mem; + chunk->next_mem += pool->item_alloc_size; + allocated->in_chunk = chunk; + allocated->u.next_free = NULL; /* For debugging; not really needed. */ + } + + ++chunk->n_allocated; +#ifdef MEMPOOL_STATS + ++pool->total_items_allocated; +#endif + + if (chunk->n_allocated == chunk->capacity) { + /* This chunk just became full. */ + assert(chunk == pool->used_chunks); + assert(chunk->prev == NULL); + + /* Take it off the used list. */ + pool->used_chunks = chunk->next; + if (chunk->next) + chunk->next->prev = NULL; + + /* Put it on the full list. */ + chunk->next = pool->full_chunks; + if (chunk->next) + chunk->next->prev = chunk; + pool->full_chunks = chunk; + } + /* And return the memory portion of the mp_allocated_t. */ + return A2M(allocated); +} + +/** Return an allocated memory item to its memory pool. */ +void +mp_pool_release(void *item) +{ + mp_allocated_t *allocated = (void *)M2A(item); + mp_chunk_t *chunk = allocated->in_chunk; + + assert(chunk); + assert(chunk->magic == MP_CHUNK_MAGIC); + assert(chunk->n_allocated > 0); + + allocated->u.next_free = chunk->first_free; + chunk->first_free = allocated; + + if (chunk->n_allocated == chunk->capacity) { + /* This chunk was full and is about to be used. */ + mp_pool_t *pool = chunk->pool; + /* unlink from the full list */ + if (chunk->prev) + chunk->prev->next = chunk->next; + if (chunk->next) + chunk->next->prev = chunk->prev; + if (chunk == pool->full_chunks) + pool->full_chunks = chunk->next; + + /* link to the used list. */ + chunk->next = pool->used_chunks; + chunk->prev = NULL; + if (chunk->next) + chunk->next->prev = chunk; + pool->used_chunks = chunk; + } else if (chunk->n_allocated == 1) { + /* This was used and is about to be empty. */ + mp_pool_t *pool = chunk->pool; + + /* Unlink from the used list */ + if (chunk->prev) + chunk->prev->next = chunk->next; + if (chunk->next) + chunk->next->prev = chunk->prev; + if (chunk == pool->used_chunks) + pool->used_chunks = chunk->next; + + /* Link to the empty list */ + chunk->next = pool->empty_chunks; + chunk->prev = NULL; + if (chunk->next) + chunk->next->prev = chunk; + pool->empty_chunks = chunk; + + /* Reset the guts of this chunk to defragment it, in case it gets + * used again. */ + chunk->first_free = NULL; + chunk->next_mem = chunk->mem; + + ++pool->n_empty_chunks; + } + + --chunk->n_allocated; +} + +/** Allocate a new memory pool to hold items of size <b>item_size</b>. We'll + * try to fit about <b>chunk_capacity</b> bytes in each chunk. */ +mp_pool_t * +mp_pool_new(size_t item_size, size_t chunk_capacity) +{ + mp_pool_t *pool; + size_t alloc_size, new_chunk_cap; + +/* assert(item_size < SIZE_T_CEILING); + assert(chunk_capacity < SIZE_T_CEILING); + assert(SIZE_T_CEILING / item_size > chunk_capacity); +*/ + pool = MyMalloc(sizeof(mp_pool_t)); + /* + * First, we figure out how much space to allow per item. We'll want to + * use make sure we have enough for the overhead plus the item size. + */ + alloc_size = (size_t)(offsetof(mp_allocated_t, u.mem) + item_size); + /* + * If the item_size is less than sizeof(next_free), we need to make + * the allocation bigger. + */ + if (alloc_size < sizeof(mp_allocated_t)) + alloc_size = sizeof(mp_allocated_t); + + /* If we're not an even multiple of ALIGNMENT, round up. */ + if (alloc_size % ALIGNMENT) { + alloc_size = alloc_size + ALIGNMENT - (alloc_size % ALIGNMENT); + } + if (alloc_size < ALIGNMENT) + alloc_size = ALIGNMENT; + assert((alloc_size % ALIGNMENT) == 0); + + /* + * Now we figure out how many items fit in each chunk. We need to fit at + * least 2 items per chunk. No chunk can be more than MAX_CHUNK bytes long, + * or less than MIN_CHUNK. + */ + if (chunk_capacity > MAX_CHUNK) + chunk_capacity = MAX_CHUNK; + + /* + * Try to be around a power of 2 in size, since that's what allocators like + * handing out. 512K-1 byte is a lot better than 512K+1 byte. + */ + chunk_capacity = (size_t) round_to_power_of_2(chunk_capacity); + while (chunk_capacity < alloc_size * 2 + CHUNK_OVERHEAD) + chunk_capacity *= 2; + if (chunk_capacity < MIN_CHUNK) + chunk_capacity = MIN_CHUNK; + + new_chunk_cap = (chunk_capacity-CHUNK_OVERHEAD) / alloc_size; + assert(new_chunk_cap < INT_MAX); + pool->new_chunk_capacity = (int)new_chunk_cap; + + pool->item_alloc_size = alloc_size; + + pool->next = mp_allocated_pools; + mp_allocated_pools = pool; + + ilog(LOG_TYPE_IRCD, "Capacity is %lu, item size is %lu, alloc size is %lu", + (unsigned long)pool->new_chunk_capacity, + (unsigned long)pool->item_alloc_size, + (unsigned long)(pool->new_chunk_capacity*pool->item_alloc_size)); + + return pool; +} + +/** Helper function for qsort: used to sort pointers to mp_chunk_t into + * descending order of fullness. */ +static int +mp_pool_sort_used_chunks_helper(const void *_a, const void *_b) +{ + mp_chunk_t *a = *(mp_chunk_t * const *)_a; + mp_chunk_t *b = *(mp_chunk_t * const *)_b; + return b->n_allocated - a->n_allocated; +} + +/** Sort the used chunks in <b>pool</b> into descending order of fullness, + * so that we preferentially fill up mostly full chunks before we make + * nearly empty chunks less nearly empty. */ +static void +mp_pool_sort_used_chunks(mp_pool_t *pool) +{ + int i, n = 0, inverted = 0; + mp_chunk_t **chunks, *chunk; + + for (chunk = pool->used_chunks; chunk; chunk = chunk->next) { + ++n; + if (chunk->next && chunk->next->n_allocated > chunk->n_allocated) + ++inverted; + } + + if (!inverted) + return; + + chunks = MyMalloc(sizeof(mp_chunk_t *) * n); + + for (i=0,chunk = pool->used_chunks; chunk; chunk = chunk->next) + chunks[i++] = chunk; + + qsort(chunks, n, sizeof(mp_chunk_t *), mp_pool_sort_used_chunks_helper); + pool->used_chunks = chunks[0]; + chunks[0]->prev = NULL; + + for (i = 1; i < n; ++i) { + chunks[i - 1]->next = chunks[i]; + chunks[i]->prev = chunks[i - 1]; + } + + chunks[n - 1]->next = NULL; + MyFree(chunks); + mp_pool_assert_ok(pool); +} + +/** If there are more than <b>n</b> empty chunks in <b>pool</b>, free the + * excess ones that have been empty for the longest. If + * <b>keep_recently_used</b> is true, do not free chunks unless they have been + * empty since the last call to this function. + **/ +void +mp_pool_clean(mp_pool_t *pool, int n_to_keep, int keep_recently_used) +{ + mp_chunk_t *chunk, **first_to_free; + + mp_pool_sort_used_chunks(pool); + assert(n_to_keep >= 0); + + if (keep_recently_used) { + int n_recently_used = pool->n_empty_chunks - pool->min_empty_chunks; + if (n_to_keep < n_recently_used) + n_to_keep = n_recently_used; + } + + assert(n_to_keep >= 0); + + first_to_free = &pool->empty_chunks; + while (*first_to_free && n_to_keep > 0) { + first_to_free = &(*first_to_free)->next; + --n_to_keep; + } + if (!*first_to_free) { + pool->min_empty_chunks = pool->n_empty_chunks; + return; + } + + chunk = *first_to_free; + while (chunk) { + mp_chunk_t *next = chunk->next; + chunk->magic = 0xdeadbeef; + MyFree(chunk); +#ifdef MEMPOOL_STATS + ++pool->total_chunks_freed; +#endif + --pool->n_empty_chunks; + chunk = next; + } + + pool->min_empty_chunks = pool->n_empty_chunks; + *first_to_free = NULL; +} + +/** Helper: Given a list of chunks, free all the chunks in the list. */ +static void +destroy_chunks(mp_chunk_t *chunk) +{ + mp_chunk_t *next; + + while (chunk) { + chunk->magic = 0xd3adb33f; + next = chunk->next; + MyFree(chunk); + chunk = next; + } +} + +/** Helper: make sure that a given chunk list is not corrupt. */ +static int +assert_chunks_ok(mp_pool_t *pool, mp_chunk_t *chunk, int empty, int full) +{ + mp_allocated_t *allocated; + int n = 0; + + if (chunk) + assert(chunk->prev == NULL); + + while (chunk) { + n++; + assert(chunk->magic == MP_CHUNK_MAGIC); + assert(chunk->pool == pool); + for (allocated = chunk->first_free; allocated; + allocated = allocated->u.next_free) { + assert(allocated->in_chunk == chunk); + } + if (empty) + assert(chunk->n_allocated == 0); + else if (full) + assert(chunk->n_allocated == chunk->capacity); + else + assert(chunk->n_allocated > 0 && chunk->n_allocated < chunk->capacity); + + assert(chunk->capacity == pool->new_chunk_capacity); + + assert(chunk->mem_size == + pool->new_chunk_capacity * pool->item_alloc_size); + + assert(chunk->next_mem >= chunk->mem && + chunk->next_mem <= chunk->mem + chunk->mem_size); + + if (chunk->next) + assert(chunk->next->prev == chunk); + + chunk = chunk->next; + } + + return n; +} + +/** Fail with an assertion if <b>pool</b> is not internally consistent. */ +void +mp_pool_assert_ok(mp_pool_t *pool) +{ + int n_empty; + + n_empty = assert_chunks_ok(pool, pool->empty_chunks, 1, 0); + assert_chunks_ok(pool, pool->full_chunks, 0, 1); + assert_chunks_ok(pool, pool->used_chunks, 0, 0); + + assert(pool->n_empty_chunks == n_empty); +} + +void +mp_pool_garbage_collect(void *arg) +{ + mp_pool_t *pool = mp_allocated_pools; + + for (; pool; pool = pool->next) + mp_pool_clean(pool, 0, 1); +} + +/** Dump information about <b>pool</b>'s memory usage to the Tor log at level + * <b>severity</b>. */ +void +mp_pool_log_status(mp_pool_t *pool) +{ + uint64_t bytes_used = 0; + uint64_t bytes_allocated = 0; + uint64_t bu = 0, ba = 0; + mp_chunk_t *chunk; + int n_full = 0, n_used = 0; + + assert(pool); + + for (chunk = pool->empty_chunks; chunk; chunk = chunk->next) + bytes_allocated += chunk->mem_size; + + ilog(LOG_TYPE_DEBUG, "%llu bytes in %d empty chunks", + bytes_allocated, pool->n_empty_chunks); + for (chunk = pool->used_chunks; chunk; chunk = chunk->next) { + ++n_used; + bu += chunk->n_allocated * pool->item_alloc_size; + ba += chunk->mem_size; + + ilog(LOG_TYPE_DEBUG, " used chunk: %d items allocated", + chunk->n_allocated); + } + + ilog(LOG_TYPE_DEBUG, "%llu/%llu bytes in %d partially full chunks", + bu, ba, n_used); + bytes_used += bu; + bytes_allocated += ba; + bu = ba = 0; + + for (chunk = pool->full_chunks; chunk; chunk = chunk->next) { + ++n_full; + bu += chunk->n_allocated * pool->item_alloc_size; + ba += chunk->mem_size; + } + + ilog(LOG_TYPE_DEBUG, "%llu/%llu bytes in %d full chunks", + bu, ba, n_full); + bytes_used += bu; + bytes_allocated += ba; + + ilog(LOG_TYPE_DEBUG, "Total: %llu/%llu bytes allocated " + "for cell pools are full.", + bytes_used, bytes_allocated); + +#ifdef MEMPOOL_STATS + ilog(LOG_TYPE_DEBUG, "%llu cell allocations ever; " + "%llu chunk allocations ever; " + "%llu chunk frees ever.", + pool->total_items_allocated, + pool->total_chunks_allocated, + pool->total_chunks_freed); +#endif +} |