Age | Commit message (Collapse) | Author |
|
This patch moves the PSCI services and BL31 frameworks like context
management and per-cpu data into new library components `PSCI` and
`el3_runtime` respectively. This enables PSCI to be built independently from
BL31. A new `psci_lib.mk` makefile is introduced which adds the relevant
PSCI library sources and gets included by `bl31.mk`. Other changes which
are done as part of this patch are:
* The runtime services framework is now moved to the `common/` folder to
enable reuse.
* The `asm_macros.S` and `assert_macros.S` helpers are moved to architecture
specific folder.
* The `plat_psci_common.c` is moved from the `plat/common/aarch64/` folder
to `plat/common` folder. The original file location now has a stub which
just includes the file from new location to maintain platform compatibility.
Most of the changes wouldn't affect platform builds as they just involve
changes to the generic bl1.mk and bl31.mk makefiles.
NOTE: THE `plat_psci_common.c` FILE HAS MOVED LOCATION AND THE STUB FILE AT
THE ORIGINAL LOCATION IS NOW DEPRECATED. PLATFORMS SHOULD MODIFY THEIR
MAKEFILES TO INCLUDE THE FILE FROM THE NEW LOCATION.
Change-Id: I6bd87d5b59424995c6a65ef8076d4fda91ad5e86
|
|
The per-cpu stacks should be aligned to the cache-line size and
the `declare_stack` helper in asm_macros.S macro assumed a
cache-line size of 64 bytes. The platform defines the cache-line
size via CACHE_WRITEBACK_GRANULE macro. This patch modifies
`declare_stack` helper macro to derive stack alignment from the
platform defined macro.
Change-Id: I1e1b00fc8806ecc88190ed169f4c8d3dd25fe95b
|
|
The documentation of the GNU assembler specifies the following about
the .align assembler directive:
"the padding bytes are normally zero. However, on some systems, if
the section is marked as containing code and the fill value is
omitted, the space is filled with no-op instructions."
(see https://sourceware.org/binutils/docs/as/Align.html)
When building Trusted Firmware, the AArch64 GNU assembler uses a
mix of zero bytes and no-op instructions as the padding bytes to
align exception vectors.
This patch mandates to use zero bytes to be stored in the padding
bytes in the exception vectors. In the AArch64 instruction set, no
valid instruction encodes as zero so this effectively inserts
illegal instructions. Should this code end up being executed for
any reason, it would crash immediately. This gives us an extra
protection against misbehaving code at no extra cost.
Change-Id: I4f2abb39d0320ca0f9d467fc5af0cb92ae297351
|
|
This patch introduces some assembler macros to simplify the
declaration of the exception vectors. It abstracts the section
the exception code is put into as well as the alignments
constraints mandated by the ARMv8 architecture. For all TF images,
the exception code has been updated to make use of these macros.
This patch also updates some invalid comments in the exception
vector code.
Change-Id: I35737b8f1c8c24b6da89b0a954c8152a4096fa95
|
|
This patch changes the build time behaviour when using deprecated API within
Trusted Firmware. Previously the use of deprecated APIs would only trigger a
build warning (which was always treated as a build error), when
WARN_DEPRECATED = 1. Now, the use of deprecated C declarations will always
trigger a build time warning. Whether this warning is treated as error or not
is determined by the build flag ERROR_DEPRECATED which is disabled by default.
When the build flag ERROR_DEPRECATED=1, the invocation of deprecated API or
inclusion of deprecated headers will result in a build error.
Also the deprecated context management helpers in context_mgmt.c are now
conditionally compiled depending on the value of ERROR_DEPRECATED flag
so that the APIs themselves do not result in a build error when the
ERROR_DEPRECATED flag is set.
NOTE: Build systems that use the macro WARN_DEPRECATED must migrate to
using ERROR_DEPRECATED, otherwise deprecated API usage will no longer
trigger a build error.
Change-Id: I843bceef6bde979af7e9b51dddf861035ec7965a
|
|
This patch defines deprecated platform APIs to enable Trusted
Firmware components like Secure Payload and their dispatchers(SPD)
to continue to build and run when platform compatibility is disabled.
This decouples the migration of platform ports to the new platform API
from SPD and enables them to be migrated independently. The deprecated
platform APIs defined in this patch are : platform_get_core_pos(),
platform_get_stack() and platform_set_stack().
The patch also deprecates MPIDR based context management helpers like
cm_get_context_by_mpidr(), cm_set_context_by_mpidr() and cm_init_context().
A mechanism to deprecate APIs and identify callers of these APIs during
build is introduced, which is controlled by the build flag WARN_DEPRECATED.
If WARN_DEPRECATED is defined to 1, the users of the deprecated APIs will be
flagged either as a link error for assembly files or compile time warning
for C files during build.
Change-Id: Ib72c7d5dc956e1a74d2294a939205b200f055613
|
|
This commit does the switch to the new PSCI framework implementation replacing
the existing files in PSCI folder with the ones in PSCI1.0 folder. The
corresponding makefiles are modified as required for the new implementation.
The platform.h header file is also is switched to the new one
as required by the new frameworks. The build flag ENABLE_PLAT_COMPAT defaults
to 1 to enable compatibility layer which let the existing platform ports to
continue to build and run with minimal changes.
The default weak implementation of platform_get_core_pos() is now removed from
platform_helpers.S and is provided by the compatibility layer.
Note: The Secure Payloads and their dispatchers still use the old platform
and framework APIs and hence it is expected that the ENABLE_PLAT_COMPAT build
flag will remain enabled in subsequent patch. The compatibility for SPDs using
the older APIs on platforms migrated to the new APIs will be added in the
following patch.
Change-Id: I18c51b3a085b564aa05fdd98d11c9f3335712719
|
|
This patch introduces new platform APIs and context management helper APIs
to support the new topology framework based on linear core position. This
framework will be introduced in the follwoing patch and it removes the
assumption that the MPIDR based affinity levels map directly to levels
in a power domain tree. The new platforms APIs and context management
helpers based on core position are as described below:
* plat_my_core_pos() and plat_core_pos_by_mpidr()
These 2 new mandatory platform APIs are meant to replace the existing
'platform_get_core_pos()' API. The 'plat_my_core_pos()' API returns the
linear index of the calling core and 'plat_core_pos_by_mpidr()' returns
the linear index of a core specified by its MPIDR. The latter API will also
validate the MPIDR passed as an argument and will return an error code (-1)
if an invalid MPIDR is passed as the argument. This enables the caller to
safely convert an MPIDR of another core to its linear index without querying
the PSCI topology tree e.g. during a call to PSCI CPU_ON.
Since the 'plat_core_pos_by_mpidr()' API verifies an MPIDR, which is always
platform specific, it is no longer possible to maintain a default implementation
of this API. Also it might not be possible for a platform port to verify an
MPIDR before the C runtime has been setup or the topology has been initialized.
This would prevent 'plat_core_pos_by_mpidr()' from being callable prior to
topology setup. As a result, the generic Trusted Firmware code does not call
this API before the topology setup has been done.
The 'plat_my_core_pos' API should be able to run without a C runtime.
Since this API needs to return a core position which is equal to the one
returned by 'plat_core_pos_by_mpidr()' API for the corresponding MPIDR,
this too cannot have default implementation and is a mandatory API for
platform ports. These APIs will be implemented by the ARM reference platform
ports later in the patch stack.
* plat_get_my_stack() and plat_set_my_stack()
These APIs are the stack management APIs which set/return stack addresses
appropriate for the calling core. These replace the 'platform_get_stack()' and
'platform_set_stack()' APIs. A default weak MP version and a global UP version
of these APIs are provided for the platforms.
* Context management helpers based on linear core position
A set of new context management(CM) helpers viz cm_get_context_by_index(),
cm_set_context_by_index(), cm_init_my_context() and cm_init_context_by_index()
are defined which are meant to replace the old helpers which took MPIDR
as argument. The old CM helpers are implemented based on the new helpers to
allow for code consolidation and will be deprecated once the switch to the new
framework is done.
Change-Id: I89758632b370c2812973a4b2efdd9b81a41f9b69
|
|
The attempt to run the CPU reset code as soon as possible after reset
results in highly complex conditional code relating to the
RESET_TO_BL31 option.
This patch relaxes this requirement a little. In the BL1, BL3-1 and
PSCI entrypoints code, the sequence of operations is now as follows:
1) Detect whether it is a cold or warm boot;
2) For cold boot, detect whether it is the primary or a secondary
CPU. This is needed to handle multiple CPUs entering cold reset
simultaneously;
3) Run the CPU init code.
This patch also abstracts the EL3 registers initialisation done by
the BL1, BL3-1 and PSCI entrypoints into common code.
This improves code re-use and consolidates the code flows for
different types of systems.
NOTE: THE FUNCTION plat_secondary_cold_boot() IS NOW EXPECTED TO
NEVER RETURN. THIS PATCH FORCES PLATFORM PORTS THAT RELIED ON THE
FORMER RETRY LOOP AT THE CALL SITE TO MODIFY THEIR IMPLEMENTATION.
OTHERWISE, SECONDARY CPUS WILL PANIC.
Change-Id: If5ecd74d75bee700b1bd718d23d7556b8f863546
|
|
Some assembly files containing macros are included like header files
into other assembly files. This will cause assembler errors if they
are included multiple times.
Add header guards to assembly macro files to avoid assembler errors.
Change-Id: Ia632e767ed7df7bf507b294982b8d730a6f8fe69
|
|
In order for the symbol table in the ELF file to contain the size of
functions written in assembly, it is necessary to report it to the
assembler using the .size directive.
To fulfil the above requirements, this patch introduces an 'endfunc'
macro which contains the .endfunc and .size directives. It also adds
a .func directive to the 'func' assembler macro.
The .func/.endfunc have been used so the assembler can fail if
endfunc is omitted.
Fixes ARM-Software/tf-issues#295
Change-Id: If8cb331b03d7f38fe7e3694d4de26f1075b278fc
Signed-off-by: Kévin Petit <kevin.petit@arm.com>
|
|
This patch introduces platform APIs to initialise and
print a character on a designated crash console.
For the FVP platform, PL011_UART0 is the designated
crash console. The platform porting guide is also updated
to document the new APIs.
Change-Id: I5e97d8762082e0c88c8c9bbb479353eac8f11a66
|
|
This change adds optional reset vector support to BL3-1
which means BL3-1 entry point can detect cold/warm boot,
initialise primary cpu, set up cci and mail box.
When using BL3-1 as a reset vector it is assumed that
the BL3-1 platform code can determine the location of
the BL3-2 images, or load them as there are no parameters
that can be passed to BL3-1 at reset.
It also fixes the incorrect initialisation of mailbox
registers on the FVP platform
This feature can be enabled by building the code with
make variable RESET_TO_BL31 set as 1
Fixes ARM-software/TF-issues#133
Fixes ARM-software/TF-issues#20
Change-Id: I4e23939b1c518614b899f549f1e8d412538ee570
|
|
Optimise data cache clean/invalidate operation v2
|
|
The data cache clean and invalidate operations dcsw_op_all()
and dcsw_op_loius() were implemented to invoke a DSB and ISB
barrier for every set/way operation. This adds a substantial
performance penalty to an already expensive operation.
These functions have been reworked to provide an optimised
implementation derived from the code in section D3.4 of the
ARMv8 ARM. The helper macro setup_dcsw_op_args has been moved
and reworked alongside the implementation.
Fixes ARM-software/tf-issues#146
Change-Id: Icd5df57816a83f0a842fce935320a369f7465c7f
|
|
Instead of using the system register helper functions to read
or write system registers, assembler coded functions should
use MRS/MSR instructions. This results in faster and more
compact code.
This change replaces all usage of the helper functions with
direct register accesses.
Change-Id: I791d5f11f257010bb3e6a72c6c5ab8779f1982b3
|
|
Reduce the number of header files included from other header
files as much as possible without splitting the files. Use forward
declarations where possible. This allows removal of some unnecessary
"#ifndef __ASSEMBLY__" statements.
Also, review the .c and .S files for which header files really need
including and reorder the #include statements alphabetically.
Fixes ARM-software/tf-issues#31
Change-Id: Iec92fb976334c77453e010b60bcf56f3be72bd3e
|
|
Move almost all system include files to a logical sub-directory
under ./include. The only remaining system include directories
not under ./include are specific to the platform. Move the
corresponding source files to match the include directory
structure.
Also remove pm.h as it is no longer used.
Change-Id: Ie5ea6368ec5fad459f3e8a802ad129135527f0b3
|