summaryrefslogtreecommitdiff
path: root/drivers/firmware/efi/libstub/Makefile
AgeCommit message (Collapse)Author
2025-04-06x86/boot: Move the EFI mixed mode startup code back under arch/x86, into ↵Ard Biesheuvel
startup/ Linus expressed a strong preference for arch-specific asm code (i.e., virtually all of it) to reside under arch/ rather than anywhere else. So move the EFI mixed mode startup code back, and put it under arch/x86/boot/startup/ where all shared x86 startup code is going to live. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20250401133416.1436741-11-ardb+git@google.com
2025-03-14efi/libstub: Avoid legacy decompressor zlib/zstd wrappersArd Biesheuvel
Remove EFI zboot's dependency on the decompression wrappers used by the legacy decompressor boot code, which can only process the input in one go, and this will not work for upcoming support for embedded ELF images. They also do some odd things like providing a barebones malloc() implementation, which is not needed in a hosted environment such as the EFI boot services. So instead, implement GZIP deflate and ZSTD decompression in terms of the underlying libraries. Support for other compression algoritms has already been dropped. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2025-02-21x86/efi/mixed: Move mixed mode startup code into libstubArd Biesheuvel
The EFI mixed mode code has been decoupled from the legacy decompressor, in order to be able to reuse it with generic EFI zboot images for x86. Move the source file into the libstub source directory to facilitate this. Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2025-01-22efi: libstub: Use '-std=gnu11' to fix build with GCC 15Nathan Chancellor
GCC 15 changed the default C standard version to C23, which should not have impacted the kernel because it requests the gnu11 standard via '-std=' in the main Makefile. However, the EFI libstub Makefile uses its own set of KBUILD_CFLAGS for x86 without a '-std=' value (i.e., using the default), resulting in errors from the kernel's definitions of bool, true, and false in stddef.h, which are reserved keywords under C23. ./include/linux/stddef.h:11:9: error: expected identifier before ‘false’ 11 | false = 0, ./include/linux/types.h:35:33: error: two or more data types in declaration specifiers 35 | typedef _Bool bool; Set '-std=gnu11' in the x86 cflags to resolve the error and consistently use the same C standard version for the entire kernel. All other architectures reuse KBUILD_CFLAGS from the rest of the kernel, so this issue is not visible for them. Cc: stable@vger.kernel.org Reported-by: Kostadin Shishmanov <kostadinshishmanov@protonmail.com> Closes: https://lore.kernel.org/4OAhbllK7x4QJGpZjkYjtBYNLd_2whHx9oFiuZcGwtVR4hIzvduultkgfAIRZI3vQpZylu7Gl929HaYFRGeMEalWCpeMzCIIhLxxRhq4U-Y=@protonmail.com/ Reported-by: Jakub Jelinek <jakub@redhat.com> Closes: https://lore.kernel.org/Z4467umXR2PZ0M1H@tucnak/ Signed-off-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2024-07-29Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rmk/linuxLinus Torvalds
Pull ARM updates from Russell King: - ftrace: don't assume stack frames are contiguous in memory - remove unused mod_inwind_map structure - spelling fixes - allow use of LD dead code/data elimination - fix callchain_trace() return value - add support for stackleak gcc plugin - correct some reset asm function prototypes for CFI [ Missed the merge window because Russell forgot to push out ] * tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rmk/linux: ARM: 9408/1: mm: CFI: Fix some erroneous reset prototypes ARM: 9407/1: Add support for STACKLEAK gcc plugin ARM: 9406/1: Fix callchain_trace() return value ARM: 9404/1: arm32: enable HAVE_LD_DEAD_CODE_DATA_ELIMINATION ARM: 9403/1: Alpine: Spelling s/initialiing/initializing/ ARM: 9402/1: Kconfig: Spelling s/Cortex A-/Cortex-A/ ARM: 9400/1: Remove unused struct 'mod_unwind_map'
2024-07-26riscv: enable HAVE_ARCH_STACKLEAKJisheng Zhang
Add support for the stackleak feature. Whenever the kernel returns to user space the kernel stack is filled with a poison value. At the same time, disables the plugin in EFI stub code because EFI stub is out of scope for the protection. Tested on qemu and milkv duo: / # echo STACKLEAK_ERASING > /sys/kernel/debug/provoke-crash/DIRECT [ 38.675575] lkdtm: Performing direct entry STACKLEAK_ERASING [ 38.678448] lkdtm: stackleak stack usage: [ 38.678448] high offset: 288 bytes [ 38.678448] current: 496 bytes [ 38.678448] lowest: 1328 bytes [ 38.678448] tracked: 1328 bytes [ 38.678448] untracked: 448 bytes [ 38.678448] poisoned: 14312 bytes [ 38.678448] low offset: 8 bytes [ 38.689887] lkdtm: OK: the rest of the thread stack is properly erased Signed-off-by: Jisheng Zhang <jszhang@kernel.org> Reviewed-by: Charlie Jenkins <charlie@rivosinc.com> Link: https://lore.kernel.org/r/20240623235316.2010-1-jszhang@kernel.org Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2024-07-08x86/efistub: Enable SMBIOS protocol handling for x86Ard Biesheuvel
The smbios.c source file is not currently included in the x86 build, and before we can do so, it needs some tweaks to build correctly in combination with the EFI mixed mode support. Reviewed-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2024-07-02ARM: 9407/1: Add support for STACKLEAK gcc pluginJinjie Ruan
Add the STACKLEAK gcc plugin to arm32 by adding the helper used by stackleak common code: on_thread_stack(). It initialize the stack with the poison value before returning from system calls which improves the kernel security. Additionally, this disables the plugin in EFI stub code and decompress code, which are out of scope for the protection. Before the test on Qemu versatilepb board: # echo STACKLEAK_ERASING > /sys/kernel/debug/provoke-crash/DIRECT lkdtm: Performing direct entry STACKLEAK_ERASING lkdtm: XFAIL: stackleak is not supported on this arch (HAVE_ARCH_STACKLEAK=n) After: # echo STACKLEAK_ERASING > /sys/kernel/debug/provoke-crash/DIRECT lkdtm: Performing direct entry STACKLEAK_ERASING lkdtm: stackleak stack usage: high offset: 80 bytes current: 280 bytes lowest: 696 bytes tracked: 696 bytes untracked: 192 bytes poisoned: 7220 bytes low offset: 4 bytes lkdtm: OK: the rest of the thread stack is properly erased Signed-off-by: Jinjie Ruan <ruanjinjie@huawei.com> Acked-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
2024-06-10ARM: 9404/1: arm32: enable HAVE_LD_DEAD_CODE_DATA_ELIMINATIONYuntao Liu
The current arm32 architecture does not yet support the HAVE_LD_DEAD_CODE_DATA_ELIMINATION feature. arm32 is widely used in embedded scenarios, and enabling this feature would be beneficial for reducing the size of the kernel image. In order to make this work, we keep the necessary tables by annotating them with KEEP, also it requires further changes to linker script to KEEP some tables and wildcard compiler generated sections into the right place. When using ld.lld for linking, KEEP is not recognized within the OVERLAY command, and Ard proposed a concise method to solve this problem. It boots normally with defconfig, vexpress_defconfig and tinyconfig. The size comparison of zImage is as follows: defconfig vexpress_defconfig tinyconfig 5137712 5138024 424192 no dce 5032560 4997824 298384 dce 2.0% 2.7% 29.7% shrink When using smaller config file, there is a significant reduction in the size of the zImage. We also tested this patch on a commercially available single-board computer, and the comparison is as follows: a15eb_config 2161384 no dce 2092240 dce 3.2% shrink The zImage size has been reduced by approximately 3.2%, which is 70KB on 2.1M. Signed-off-by: Yuntao Liu <liuyuntao12@huawei.com> Tested-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
2024-05-14Makefile: remove redundant tool coverage variablesMasahiro Yamada
Now Kbuild provides reasonable defaults for objtool, sanitizers, and profilers. Remove redundant variables. Note: This commit changes the coverage for some objects: - include arch/mips/vdso/vdso-image.o into UBSAN, GCOV, KCOV - include arch/sparc/vdso/vdso-image-*.o into UBSAN - include arch/sparc/vdso/vma.o into UBSAN - include arch/x86/entry/vdso/extable.o into KASAN, KCSAN, UBSAN, GCOV, KCOV - include arch/x86/entry/vdso/vdso-image-*.o into KASAN, KCSAN, UBSAN, GCOV, KCOV - include arch/x86/entry/vdso/vdso32-setup.o into KASAN, KCSAN, UBSAN, GCOV, KCOV - include arch/x86/entry/vdso/vma.o into GCOV, KCOV - include arch/x86/um/vdso/vma.o into KASAN, GCOV, KCOV I believe these are positive effects because all of them are kernel space objects. Signed-off-by: Masahiro Yamada <masahiroy@kernel.org> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Roberto Sassu <roberto.sassu@huawei.com>
2024-02-22treewide: update LLVM Bugzilla linksNathan Chancellor
LLVM moved their issue tracker from their own Bugzilla instance to GitHub issues. While all of the links are still valid, they may not necessarily show the most up to date information around the issues, as all updates will occur on GitHub, not Bugzilla. Another complication is that the Bugzilla issue number is not always the same as the GitHub issue number. Thankfully, LLVM maintains this mapping through two shortlinks: https://llvm.org/bz<num> -> https://bugs.llvm.org/show_bug.cgi?id=<num> https://llvm.org/pr<num> -> https://github.com/llvm/llvm-project/issues/<mapped_num> Switch all "https://bugs.llvm.org/show_bug.cgi?id=<num>" links to the "https://llvm.org/pr<num>" shortlink so that the links show the most up to date information. Each migrated issue links back to the Bugzilla entry, so there should be no loss of fidelity of information here. Link: https://lkml.kernel.org/r/20240109-update-llvm-links-v1-3-eb09b59db071@kernel.org Signed-off-by: Nathan Chancellor <nathan@kernel.org> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Fangrui Song <maskray@google.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andrii Nakryiko <andrii@kernel.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: Mykola Lysenko <mykolal@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-01-23riscv/efistub: Tighten ELF relocation checkArd Biesheuvel
The EFI stub makefile contains logic to ensure that the objects that make up the stub do not contain relocations that require runtime fixups (typically to account for the runtime load address of the executable) On RISC-V, we also avoid GP based relocations, as they require that GP is assigned the correct base in the startup code, which is not implemented in the EFI stub. So add these relocation types to the grep expression that is used to carry out this check. Link: https://lkml.kernel.org/r/42c63cb9-87d0-49db-9af8-95771b186684%40siemens.com Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2024-01-23riscv/efistub: Ensure GP-relative addressing is not usedJan Kiszka
The cflags for the RISC-V efistub were missing -mno-relax, thus were under the risk that the compiler could use GP-relative addressing. That happened for _edata with binutils-2.41 and kernel 6.1, causing the relocation to fail due to an invalid kernel_size in handle_kernel_image. It was not yet observed with newer versions, but that may just be luck. Cc: <stable@vger.kernel.org> Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2023-11-10Merge tag 'riscv-for-linus-6.7-mw2' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux Pull more RISC-V updates from Palmer Dabbelt: - Support for handling misaligned accesses in S-mode - Probing for misaligned access support is now properly cached and handled in parallel - PTDUMP now reflects the SW reserved bits, as well as the PBMT and NAPOT extensions - Performance improvements for TLB flushing - Support for many new relocations in the module loader - Various bug fixes and cleanups * tag 'riscv-for-linus-6.7-mw2' of git://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux: (51 commits) riscv: Optimize bitops with Zbb extension riscv: Rearrange hwcap.h and cpufeature.h drivers: perf: Do not broadcast to other cpus when starting a counter drivers: perf: Check find_first_bit() return value of: property: Add fw_devlink support for msi-parent RISC-V: Don't fail in riscv_of_parent_hartid() for disabled HARTs riscv: Fix set_memory_XX() and set_direct_map_XX() by splitting huge linear mappings riscv: Don't use PGD entries for the linear mapping RISC-V: Probe misaligned access speed in parallel RISC-V: Remove __init on unaligned_emulation_finish() RISC-V: Show accurate per-hart isa in /proc/cpuinfo RISC-V: Don't rely on positional structure initialization riscv: Add tests for riscv module loading riscv: Add remaining module relocations riscv: Avoid unaligned access when relocating modules riscv: split cache ops out of dma-noncoherent.c riscv: Improve flush_tlb_kernel_range() riscv: Make __flush_tlb_range() loop over pte instead of flushing the whole tlb riscv: Improve flush_tlb_range() for hugetlb pages riscv: Improve tlb_flush() ...
2023-11-09riscv: Optimize bitops with Zbb extensionXiao Wang
This patch leverages the alternative mechanism to dynamically optimize bitops (including __ffs, __fls, ffs, fls) with Zbb instructions. When Zbb ext is not supported by the runtime CPU, legacy implementation is used. If Zbb is supported, then the optimized variants will be selected via alternative patching. The legacy bitops support is taken from the generic C implementation as fallback. If the parameter is a build-time constant, we leverage compiler builtin to calculate the result directly, this approach is inspired by x86 bitops implementation. EFI stub runs before the kernel, so alternative mechanism should not be used there, this patch introduces a macro NO_ALTERNATIVE for this purpose. Signed-off-by: Xiao Wang <xiao.w.wang@intel.com> Reviewed-by: Charlie Jenkins <charlie@rivosinc.com> Link: https://lore.kernel.org/r/20231031064553.2319688-3-xiao.w.wang@intel.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2023-09-15x86/efi: Drop EFI stub .bss from .data sectionArd Biesheuvel
Now that the EFI stub always zero inits its BSS section upon entry, there is no longer a need to place the BSS symbols carried by the stub into the .data section. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230912090051.4014114-18-ardb@google.com
2023-09-08Merge patch series "riscv: Introduce KASLR"Palmer Dabbelt
Alexandre Ghiti <alexghiti@rivosinc.com> says: The following KASLR implementation allows to randomize the kernel mapping: - virtually: we expect the bootloader to provide a seed in the device-tree - physically: only implemented in the EFI stub, it relies on the firmware to provide a seed using EFI_RNG_PROTOCOL. arm64 has a similar implementation hence the patch 3 factorizes KASLR related functions for riscv to take advantage. The new virtual kernel location is limited by the early page table that only has one PUD and with the PMD alignment constraint, the kernel can only take < 512 positions. * b4-shazam-merge: riscv: libstub: Implement KASLR by using generic functions libstub: Fix compilation warning for rv32 arm64: libstub: Move KASLR handling functions to kaslr.c riscv: Dump out kernel offset information on panic riscv: Introduce virtual kernel mapping KASLR Link: https://lore.kernel.org/r/20230722123850.634544-1-alexghiti@rivosinc.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2023-09-05riscv: libstub: Implement KASLR by using generic functionsAlexandre Ghiti
We can now use arm64 functions to handle the move of the kernel physical mapping: if KASLR is enabled, we will try to get a random seed from the firmware, if not possible, the kernel will be moved to a location that suits its alignment constraints. Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com> Tested-by: Conor Dooley <conor.dooley@microchip.com> Tested-by: Song Shuai <songshuaishuai@tinylab.org> Reviewed-by: Sami Tolvanen <samitolvanen@google.com> Tested-by: Sami Tolvanen <samitolvanen@google.com> Link: https://lore.kernel.org/r/20230722123850.634544-6-alexghiti@rivosinc.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2023-09-05arm64: libstub: Move KASLR handling functions to kaslr.cAlexandre Ghiti
This prepares for riscv to use the same functions to handle the pĥysical kernel move when KASLR is enabled. Signed-off-by: Alexandre Ghiti <alexghiti@rivosinc.com> Acked-by: Ard Biesheuvel <ardb@kernel.org> Tested-by: Conor Dooley <conor.dooley@microchip.com> Tested-by: Song Shuai <songshuaishuai@tinylab.org> Reviewed-by: Sami Tolvanen <samitolvanen@google.com> Tested-by: Sami Tolvanen <samitolvanen@google.com> Link: https://lore.kernel.org/r/20230722123850.634544-4-alexghiti@rivosinc.com Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
2023-08-28Merge tag 'efi-next-for-v6.6' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi Pull EFI updates from Ard Biesheuvel: "This primarily covers some cleanup work on the EFI runtime wrappers, which are shared between all EFI architectures except Itanium, and which provide some level of isolation to prevent faults occurring in the firmware code (which runs at the same privilege level as the kernel) from bringing down the system. Beyond that, there is a fix that did not make it into v6.5, and some doc fixes and dead code cleanup. - one bugfix for x86 mixed mode that did not make it into v6.5 - first pass of cleanup for the EFI runtime wrappers - some cosmetic touchups" * tag 'efi-next-for-v6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: x86/efistub: Fix PCI ROM preservation in mixed mode efi/runtime-wrappers: Clean up white space and add __init annotation acpi/prmt: Use EFI runtime sandbox to invoke PRM handlers efi/runtime-wrappers: Don't duplicate setup/teardown code efi/runtime-wrappers: Remove duplicated macro for service returning void efi/runtime-wrapper: Move workqueue manipulation out of line efi/runtime-wrappers: Use type safe encapsulation of call arguments efi/riscv: Move EFI runtime call setup/teardown helpers out of line efi/arm64: Move EFI runtime call setup/teardown helpers out of line efi/riscv: libstub: Fix comment about absolute relocation efi: memmap: Remove kernel-doc warnings efi: Remove unused extern declaration efi_lookup_mapped_addr()
2023-08-07x86/efistub: Perform 4/5 level paging switch from the stubArd Biesheuvel
In preparation for updating the EFI stub boot flow to avoid the bare metal decompressor code altogether, implement the support code for switching between 4 and 5 levels of paging before jumping to the kernel proper. Reuse the newly refactored trampoline that the bare metal decompressor uses, but relies on EFI APIs to allocate 32-bit addressable memory and remap it with the appropriate permissions. Given that the bare metal decompressor will no longer call into the trampoline if the number of paging levels is already set correctly, it is no longer needed to remove NX restrictions from the memory range where this trampoline may end up. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Link: https://lore.kernel.org/r/20230807162720.545787-17-ardb@kernel.org
2023-08-03efi/riscv: libstub: Fix comment about absolute relocationXiao Wang
We don't want absolute symbols references in the stub, so fix the double negation in the comment. Signed-off-by: Xiao Wang <xiao.w.wang@intel.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2023-06-06efi/libstub: Implement support for unaccepted memoryKirill A. Shutemov
UEFI Specification version 2.9 introduces the concept of memory acceptance: Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP, requiring memory to be accepted before it can be used by the guest. Accepting happens via a protocol specific for the Virtual Machine platform. Accepting memory is costly and it makes VMM allocate memory for the accepted guest physical address range. It's better to postpone memory acceptance until memory is needed. It lowers boot time and reduces memory overhead. The kernel needs to know what memory has been accepted. Firmware communicates this information via memory map: a new memory type -- EFI_UNACCEPTED_MEMORY -- indicates such memory. Range-based tracking works fine for firmware, but it gets bulky for the kernel: e820 (or whatever the arch uses) has to be modified on every page acceptance. It leads to table fragmentation and there's a limited number of entries in the e820 table. Another option is to mark such memory as usable in e820 and track if the range has been accepted in a bitmap. One bit in the bitmap represents a naturally aligned power-2-sized region of address space -- unit. For x86, unit size is 2MiB: 4k of the bitmap is enough to track 64GiB or physical address space. In the worst-case scenario -- a huge hole in the middle of the address space -- It needs 256MiB to handle 4PiB of the address space. Any unaccepted memory that is not aligned to unit_size gets accepted upfront. The bitmap is allocated and constructed in the EFI stub and passed down to the kernel via EFI configuration table. allocate_e820() allocates the bitmap if unaccepted memory is present, according to the size of unaccepted region. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20230606142637.5171-4-kirill.shutemov@linux.intel.com
2023-04-20arm64: efi: Enable BTI codegen and add PE/COFF annotationArd Biesheuvel
UEFI heavily relies on so-called protocols, which are essentially tables populated with pointers to executable code, and these are invoked indirectly using BR or BLR instructions. This makes the EFI execution context vulnerable to attacks on forward edge control flow, and so it would help if we could enable hardware enforcement (BTI) on CPUs that implement it. So let's no longer disable BTI codegen for the EFI stub, and set the newly introduced PE/COFF header flag when the kernel is built with BTI landing pads. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Mark Brown <broonie@kernel.org>
2023-01-24efi: arm64: enter with MMU and caches enabledArd Biesheuvel
Instead of cleaning the entire loaded kernel image to the PoC and disabling the MMU and caches before branching to the kernel's bare metal entry point, we can leave the MMU and caches enabled, and rely on EFI's cacheable 1:1 mapping of all of system RAM (which is mandated by the spec) to populate the initial page tables. This removes the need for managing coherency in software, which is tedious and error prone. Note that we still need to clean the executable region of the image to the PoU if this is required for I/D coherency, but only if we actually decided to move the image in memory, as otherwise, this will have been taken care of by the loader. This change affects both the builtin EFI stub as well as the zboot decompressor, which now carries the entire EFI stub along with the decompression code and the compressed image. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20230111102236.1430401-7-ardb@kernel.org Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2022-12-13Merge tag 'efi-next-for-v6.2' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi Pull EFI updates from Ard Biesheuvel: "Another fairly sizable pull request, by EFI subsystem standards. Most of the work was done by me, some of it in collaboration with the distro and bootloader folks (GRUB, systemd-boot), where the main focus has been on removing pointless per-arch differences in the way EFI boots a Linux kernel. - Refactor the zboot code so that it incorporates all the EFI stub logic, rather than calling the decompressed kernel as a EFI app. - Add support for initrd= command line option to x86 mixed mode. - Allow initrd= to be used with arbitrary EFI accessible file systems instead of just the one the kernel itself was loaded from. - Move some x86-only handling and manipulation of the EFI memory map into arch/x86, as it is not used anywhere else. - More flexible handling of any random seeds provided by the boot environment (i.e., systemd-boot) so that it becomes available much earlier during the boot. - Allow improved arch-agnostic EFI support in loaders, by setting a uniform baseline of supported features, and adding a generic magic number to the DOS/PE header. This should allow loaders such as GRUB or systemd-boot to reduce the amount of arch-specific handling substantially. - (arm64) Run EFI runtime services from a dedicated stack, and use it to recover from synchronous exceptions that might occur in the firmware code. - (arm64) Ensure that we don't allocate memory outside of the 48-bit addressable physical range. - Make EFI pstore record size configurable - Add support for decoding CXL specific CPER records" * tag 'efi-next-for-v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: (43 commits) arm64: efi: Recover from synchronous exceptions occurring in firmware arm64: efi: Execute runtime services from a dedicated stack arm64: efi: Limit allocations to 48-bit addressable physical region efi: Put Linux specific magic number in the DOS header efi: libstub: Always enable initrd command line loader and bump version efi: stub: use random seed from EFI variable efi: vars: prohibit reading random seed variables efi: random: combine bootloader provided RNG seed with RNG protocol output efi/cper, cxl: Decode CXL Error Log efi/cper, cxl: Decode CXL Protocol Error Section efi: libstub: fix efi_load_initrd_dev_path() kernel-doc comment efi: x86: Move EFI runtime map sysfs code to arch/x86 efi: runtime-maps: Clarify purpose and enable by default for kexec efi: pstore: Add module parameter for setting the record size efi: xen: Set EFI_PARAVIRT for Xen dom0 boot on all architectures efi: memmap: Move manipulation routines into x86 arch tree efi: memmap: Move EFI fake memmap support into x86 arch tree efi: libstub: Undeprecate the command line initrd loader efi: libstub: Add mixed mode support to command line initrd loader efi: libstub: Permit mixed mode return types other than efi_status_t ...
2022-12-12Merge tag 'arm64-upstream' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Will Deacon: "The highlights this time are support for dynamically enabling and disabling Clang's Shadow Call Stack at boot and a long-awaited optimisation to the way in which we handle the SVE register state on system call entry to avoid taking unnecessary traps from userspace. Summary: ACPI: - Enable FPDT support for boot-time profiling - Fix CPU PMU probing to work better with PREEMPT_RT - Update SMMUv3 MSI DeviceID parsing to latest IORT spec - APMT support for probing Arm CoreSight PMU devices CPU features: - Advertise new SVE instructions (v2.1) - Advertise range prefetch instruction - Advertise CSSC ("Common Short Sequence Compression") scalar instructions, adding things like min, max, abs, popcount - Enable DIT (Data Independent Timing) when running in the kernel - More conversion of system register fields over to the generated header CPU misfeatures: - Workaround for Cortex-A715 erratum #2645198 Dynamic SCS: - Support for dynamic shadow call stacks to allow switching at runtime between Clang's SCS implementation and the CPU's pointer authentication feature when it is supported (complete with scary DWARF parser!) Tracing and debug: - Remove static ftrace in favour of, err, dynamic ftrace! - Seperate 'struct ftrace_regs' from 'struct pt_regs' in core ftrace and existing arch code - Introduce and implement FTRACE_WITH_ARGS on arm64 to replace the old FTRACE_WITH_REGS - Extend 'crashkernel=' parameter with default value and fallback to placement above 4G physical if initial (low) allocation fails SVE: - Optimisation to avoid disabling SVE unconditionally on syscall entry and just zeroing the non-shared state on return instead Exceptions: - Rework of undefined instruction handling to avoid serialisation on global lock (this includes emulation of user accesses to the ID registers) Perf and PMU: - Support for TLP filters in Hisilicon's PCIe PMU device - Support for the DDR PMU present in Amlogic Meson G12 SoCs - Support for the terribly-named "CoreSight PMU" architecture from Arm (and Nvidia's implementation of said architecture) Misc: - Tighten up our boot protocol for systems with memory above 52 bits physical - Const-ify static keys to satisty jump label asm constraints - Trivial FFA driver cleanups in preparation for v1.1 support - Export the kernel_neon_* APIs as GPL symbols - Harden our instruction generation routines against instrumentation - A bunch of robustness improvements to our arch-specific selftests - Minor cleanups and fixes all over (kbuild, kprobes, kfence, PMU, ...)" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (151 commits) arm64: kprobes: Return DBG_HOOK_ERROR if kprobes can not handle a BRK arm64: kprobes: Let arch do_page_fault() fix up page fault in user handler arm64: Prohibit instrumentation on arch_stack_walk() arm64:uprobe fix the uprobe SWBP_INSN in big-endian arm64: alternatives: add __init/__initconst to some functions/variables arm_pmu: Drop redundant armpmu->map_event() in armpmu_event_init() kselftest/arm64: Allow epoll_wait() to return more than one result kselftest/arm64: Don't drain output while spawning children kselftest/arm64: Hold fp-stress children until they're all spawned arm64/sysreg: Remove duplicate definitions from asm/sysreg.h arm64/sysreg: Convert ID_DFR1_EL1 to automatic generation arm64/sysreg: Convert ID_DFR0_EL1 to automatic generation arm64/sysreg: Convert ID_AFR0_EL1 to automatic generation arm64/sysreg: Convert ID_MMFR5_EL1 to automatic generation arm64/sysreg: Convert MVFR2_EL1 to automatic generation arm64/sysreg: Convert MVFR1_EL1 to automatic generation arm64/sysreg: Convert MVFR0_EL1 to automatic generation arm64/sysreg: Convert ID_PFR2_EL1 to automatic generation arm64/sysreg: Convert ID_PFR1_EL1 to automatic generation arm64/sysreg: Convert ID_PFR0_EL1 to automatic generation ...
2022-11-18Merge tag 'efi-zboot-direct-for-v6.2' into efi/nextArd Biesheuvel
2022-11-10arm64: efi: Force the use of SetVirtualAddressMap() on Altra machinesArd Biesheuvel
Ampere Altra machines are reported to misbehave when the SetTime() EFI runtime service is called after ExitBootServices() but before calling SetVirtualAddressMap(). Given that the latter is horrid, pointless and explicitly documented as optional by the EFI spec, we no longer invoke it at boot if the configured size of the VA space guarantees that the EFI runtime memory regions can remain mapped 1:1 like they are at boot time. On Ampere Altra machines, this results in SetTime() calls issued by the rtc-efi driver triggering synchronous exceptions during boot. We can now recover from those without bringing down the system entirely, due to commit 23715a26c8d81291 ("arm64: efi: Recover from synchronous exceptions occurring in firmware"). However, it would be better to avoid the issue entirely, given that the firmware appears to remain in a funny state after this. So attempt to identify these machines based on the 'family' field in the type #1 SMBIOS record, and call SetVirtualAddressMap() unconditionally in that case. Tested-by: Alexandru Elisei <alexandru.elisei@gmail.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-11-09arm64: unwind: add asynchronous unwind tables to kernel and modulesArd Biesheuvel
Enable asynchronous unwind table generation for both the core kernel as well as modules, and emit the resulting .eh_frame sections as init code so we can use the unwind directives for code patching at boot or module load time. This will be used by dynamic shadow call stack support, which will rely on code patching rather than compiler codegen to emit the shadow call stack push and pop instructions. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Reviewed-by: Sami Tolvanen <samitolvanen@google.com> Tested-by: Sami Tolvanen <samitolvanen@google.com> Link: https://lore.kernel.org/r/20221027155908.1940624-2-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-11-09efi/loongarch: libstub: Split off kernel image relocation for builtin stubArd Biesheuvel
The LoongArch build of the EFI stub is part of the core kernel image, and therefore accesses section markers directly when it needs to figure out the size of the various section. The zboot decompressor does not have access to those symbols, but doesn't really need that either. So let's move handle_kernel_image() into a separate file (or rather, move everything else into a separate file) so that the zboot build does not pull in unused code that links to symbols that it does not define. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-11-09efi/arm64: libstub: Split off kernel image relocation for builtin stubArd Biesheuvel
The arm64 build of the EFI stub is part of the core kernel image, and therefore accesses section markers directly when it needs to figure out the size of the various section. The zboot decompressor does not have access to those symbols, but doesn't really need that either. So let's move handle_kernel_image() into a separate file (or rather, move everything else into a separate file) so that the zboot build does not pull in unused code that links to symbols that it does not define. While at it, introduce a helper routine that the generic zboot loader will need to invoke after decompressing the image but before invoking it, to ensure that the I-side view of memory is consistent. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-11-09efi/riscv: libstub: Split off kernel image relocation for builtin stubArd Biesheuvel
The RISC-V build of the EFI stub is part of the core kernel image, and therefore accesses section markers directly when it needs to figure out the size of the various section. The zboot decompressor does not have access to those symbols, but doesn't really need that either. So let's move handle_kernel_image() into a separate file (or rather, move everything else into a separate file) so that the zboot build does not pull in unused code that links to symbols that it does not define. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-11-09efi: libstub: Factor out EFI stub entrypoint into separate fileArd Biesheuvel
In preparation for allowing the EFI zboot decompressor to reuse most of the EFI stub machinery, factor out the actual EFI PE/COFF entrypoint into a separate file. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-11-09efi: libstub: Provide local implementations of strrchr() and memchr()Ard Biesheuvel
Clone the implementations of strrchr() and memchr() in lib/string.c so we can use them in the standalone zboot decompressor app. These routines are used by the FDT handling code. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-11-09efi: libstub: Move screen_info handling to common codeArd Biesheuvel
Currently, arm64, RISC-V and LoongArch rely on the fact that struct screen_info can be accessed directly, due to the fact that the EFI stub and the core kernel are part of the same image. This will change after a future patch, so let's ensure that the screen_info handling is able to deal with this, by adopting the arm32 approach of passing it as a configuration table. While at it, switch to ACPI reclaim memory to hold the screen_info data, which is more appropriate for this kind of allocation. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-11-09efi: libstub: Enable efi_printk() in zboot decompressorArd Biesheuvel
Split the efi_printk() routine into its own source file, and provide local implementations of strlen() and strnlen() so that the standalone zboot app can efi_err and efi_info etc. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-11-09arm64: efi: Move efi-entry.S into the libstub source directoryArd Biesheuvel
We will be sharing efi-entry.S with the zboot decompressor build, which does not link against vmlinux directly. So move it into the libstub source directory so we can include in the libstub static library. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com>
2022-11-09efi: libstub: Deduplicate ftrace command line argument filteringArd Biesheuvel
No need for the same pattern to be used four times for each architecture individually if we can just apply it once later. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-10-10Merge tag 'mm-stable-2022-10-08' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - Yu Zhao's Multi-Gen LRU patches are here. They've been under test in linux-next for a couple of months without, to my knowledge, any negative reports (or any positive ones, come to that). - Also the Maple Tree from Liam Howlett. An overlapping range-based tree for vmas. It it apparently slightly more efficient in its own right, but is mainly targeted at enabling work to reduce mmap_lock contention. Liam has identified a number of other tree users in the kernel which could be beneficially onverted to mapletrees. Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat at [1]. This has yet to be addressed due to Liam's unfortunately timed vacation. He is now back and we'll get this fixed up. - Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses clang-generated instrumentation to detect used-unintialized bugs down to the single bit level. KMSAN keeps finding bugs. New ones, as well as the legacy ones. - Yang Shi adds a userspace mechanism (madvise) to induce a collapse of memory into THPs. - Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to support file/shmem-backed pages. - userfaultfd updates from Axel Rasmussen - zsmalloc cleanups from Alexey Romanov - cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and memory-failure - Huang Ying adds enhancements to NUMA balancing memory tiering mode's page promotion, with a new way of detecting hot pages. - memcg updates from Shakeel Butt: charging optimizations and reduced memory consumption. - memcg cleanups from Kairui Song. - memcg fixes and cleanups from Johannes Weiner. - Vishal Moola provides more folio conversions - Zhang Yi removed ll_rw_block() :( - migration enhancements from Peter Xu - migration error-path bugfixes from Huang Ying - Aneesh Kumar added ability for a device driver to alter the memory tiering promotion paths. For optimizations by PMEM drivers, DRM drivers, etc. - vma merging improvements from Jakub Matěn. - NUMA hinting cleanups from David Hildenbrand. - xu xin added aditional userspace visibility into KSM merging activity. - THP & KSM code consolidation from Qi Zheng. - more folio work from Matthew Wilcox. - KASAN updates from Andrey Konovalov. - DAMON cleanups from Kaixu Xia. - DAMON work from SeongJae Park: fixes, cleanups. - hugetlb sysfs cleanups from Muchun Song. - Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core. Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1] * tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits) hugetlb: allocate vma lock for all sharable vmas hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer hugetlb: fix vma lock handling during split vma and range unmapping mglru: mm/vmscan.c: fix imprecise comments mm/mglru: don't sync disk for each aging cycle mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol mm: memcontrol: use do_memsw_account() in a few more places mm: memcontrol: deprecate swapaccounting=0 mode mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled mm/secretmem: remove reduntant return value mm/hugetlb: add available_huge_pages() func mm: remove unused inline functions from include/linux/mm_inline.h selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd selftests/vm: add thp collapse shmem testing selftests/vm: add thp collapse file and tmpfs testing selftests/vm: modularize thp collapse memory operations selftests/vm: dedup THP helpers mm/khugepaged: add tracepoint to hpage_collapse_scan_file() mm/madvise: add file and shmem support to MADV_COLLAPSE ...
2022-10-09Merge tag 'efi-next-for-v6.1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi Pull EFI updates from Ard Biesheuvel: "A bit more going on than usual in the EFI subsystem. The main driver for this has been the introduction of the LoonArch architecture last cycle, which inspired some cleanup and refactoring of the EFI code. Another driver for EFI changes this cycle and in the future is confidential compute. The LoongArch architecture does not use either struct bootparams or DT natively [yet], and so passing information between the EFI stub and the core kernel using either of those is undesirable. And in general, overloading DT has been a source of issues on arm64, so using DT for this on new architectures is a to avoid for the time being (even if we might converge on something DT based for non-x86 architectures in the future). For this reason, in addition to the patch that enables EFI boot for LoongArch, there are a number of refactoring patches applied on top of which separate the DT bits from the generic EFI stub bits. These changes are on a separate topich branch that has been shared with the LoongArch maintainers, who will include it in their pull request as well. This is not ideal, but the best way to manage the conflicts without stalling LoongArch for another cycle. Another development inspired by LoongArch is the newly added support for EFI based decompressors. Instead of adding yet another arch-specific incarnation of this pattern for LoongArch, we are introducing an EFI app based on the existing EFI libstub infrastructure that encapulates the decompression code we use on other architectures, but in a way that is fully generic. This has been developed and tested in collaboration with distro and systemd folks, who are eager to start using this for systemd-boot and also for arm64 secure boot on Fedora. Note that the EFI zimage files this introduces can also be decompressed by non-EFI bootloaders if needed, as the image header describes the location of the payload inside the image, and the type of compression that was used. (Note that Fedora's arm64 GRUB is buggy [0] so you'll need a recent version or switch to systemd-boot in order to use this.) Finally, we are adding TPM measurement of the kernel command line provided by EFI. There is an oversight in the TCG spec which results in a blind spot for command line arguments passed to loaded images, which means that either the loader or the stub needs to take the measurement. Given the combinatorial explosion I am anticipating when it comes to firmware/bootloader stacks and firmware based attestation protocols (SEV-SNP, TDX, DICE, DRTM), it is good to set a baseline now when it comes to EFI measured boot, which is that the kernel measures the initrd and command line. Intermediate loaders can measure additional assets if needed, but with the baseline in place, we can deploy measured boot in a meaningful way even if you boot into Linux straight from the EFI firmware. Summary: - implement EFI boot support for LoongArch - implement generic EFI compressed boot support for arm64, RISC-V and LoongArch, none of which implement a decompressor today - measure the kernel command line into the TPM if measured boot is in effect - refactor the EFI stub code in order to isolate DT dependencies for architectures other than x86 - avoid calling SetVirtualAddressMap() on arm64 if the configured size of the VA space guarantees that doing so is unnecessary - move some ARM specific code out of the generic EFI source files - unmap kernel code from the x86 mixed mode 1:1 page tables" * tag 'efi-next-for-v6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: (24 commits) efi/arm64: libstub: avoid SetVirtualAddressMap() when possible efi: zboot: create MemoryMapped() device path for the parent if needed efi: libstub: fix up the last remaining open coded boot service call efi/arm: libstub: move ARM specific code out of generic routines efi/libstub: measure EFI LoadOptions efi/libstub: refactor the initrd measuring functions efi/loongarch: libstub: remove dependency on flattened DT efi: libstub: install boot-time memory map as config table efi: libstub: remove DT dependency from generic stub efi: libstub: unify initrd loading between architectures efi: libstub: remove pointless goto kludge efi: libstub: simplify efi_get_memory_map() and struct efi_boot_memmap efi: libstub: avoid efi_get_memory_map() for allocating the virt map efi: libstub: drop pointless get_memory_map() call efi: libstub: fix type confusion for load_options_size arm64: efi: enable generic EFI compressed boot loongarch: efi: enable generic EFI compressed boot riscv: efi: enable generic EFI compressed boot efi/libstub: implement generic EFI zboot efi/libstub: move efi_system_table global var into separate object ...
2022-10-03Merge tag 'kcfi-v6.1-rc1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull kcfi updates from Kees Cook: "This replaces the prior support for Clang's standard Control Flow Integrity (CFI) instrumentation, which has required a lot of special conditions (e.g. LTO) and work-arounds. The new implementation ("Kernel CFI") is specific to C, directly designed for the Linux kernel, and takes advantage of architectural features like x86's IBT. This series retains arm64 support and adds x86 support. GCC support is expected in the future[1], and additional "generic" architectural support is expected soon[2]. Summary: - treewide: Remove old CFI support details - arm64: Replace Clang CFI support with Clang KCFI support - x86: Introduce Clang KCFI support" Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=107048 [1] Link: https://github.com/samitolvanen/llvm-project/commits/kcfi_generic [2] * tag 'kcfi-v6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (22 commits) x86: Add support for CONFIG_CFI_CLANG x86/purgatory: Disable CFI x86: Add types to indirectly called assembly functions x86/tools/relocs: Ignore __kcfi_typeid_ relocations kallsyms: Drop CONFIG_CFI_CLANG workarounds objtool: Disable CFI warnings objtool: Preserve special st_shndx indexes in elf_update_symbol treewide: Drop __cficanonical treewide: Drop WARN_ON_FUNCTION_MISMATCH treewide: Drop function_nocfi init: Drop __nocfi from __init arm64: Drop unneeded __nocfi attributes arm64: Add CFI error handling arm64: Add types to indirect called assembly functions psci: Fix the function type for psci_initcall_t lkdtm: Emit an indirect call for CFI tests cfi: Add type helper macros cfi: Switch to -fsanitize=kcfi cfi: Drop __CFI_ADDRESSABLE cfi: Remove CONFIG_CFI_CLANG_SHADOW ...
2022-10-03kmsan: disable instrumentation of unsupported common kernel codeAlexander Potapenko
EFI stub cannot be linked with KMSAN runtime, so we disable instrumentation for it. Instrumenting kcov, stackdepot or lockdep leads to infinite recursion caused by instrumentation hooks calling instrumented code again. Link: https://lkml.kernel.org/r/20220915150417.722975-13-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Reviewed-by: Marco Elver <elver@google.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Konovalov <andreyknvl@google.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Christoph Hellwig <hch@lst.de> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Eric Biggers <ebiggers@google.com> Cc: Eric Biggers <ebiggers@kernel.org> Cc: Eric Dumazet <edumazet@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Cc: Ilya Leoshkevich <iii@linux.ibm.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Kees Cook <keescook@chromium.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michael S. Tsirkin <mst@redhat.com> Cc: Pekka Enberg <penberg@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vegard Nossum <vegard.nossum@oracle.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-27Merge tag 'efi-loongarch-for-v6.1-2' into HEADArd Biesheuvel
Second shared stable tag between EFI and LoongArch trees This is necessary because the EFI libstub refactoring patches are mostly directed at enabling LoongArch to wire up generic EFI boot support without being forced to consume DT properties that conflict with information that EFI also provides, e.g., memory map and reservations, etc.
2022-09-27efi/loongarch: libstub: remove dependency on flattened DTArd Biesheuvel
LoongArch does not use FDT or DT natively [yet], and the only reason it currently uses it is so that it can reuse the existing EFI stub code. Overloading the DT with data passed between the EFI stub and the core kernel has been a source of problems: there is the overlap between information provided by EFI which DT can also provide (initrd base/size, command line, memory descriptions), requiring us to reason about which is which and what to prioritize. It has also resulted in ABI leaks, i.e., internal ABI being promoted to external ABI inadvertently because the bootloader can set the EFI stub's DT properties as well (e.g., "kaslr-seed"). This has become especially problematic with boot environments that want to pretend that EFI boot is being done (to access ACPI and SMBIOS tables, for instance) but have no ability to execute the EFI stub, and so the environment that the EFI stub creates is emulated [poorly, in some cases]. Another downside of treating DT like this is that the DT binary that the kernel receives is different from the one created by the firmware, which is undesirable in the context of secure and measured boot. Given that LoongArch support in Linux is brand new, we can avoid these pitfalls, and treat the DT strictly as a hardware description, and use a separate handover method between the EFI stub and the kernel. Now that initrd loading and passing the EFI memory map have been refactored into pure EFI routines that use EFI configuration tables, the only thing we need to pass directly is the kernel command line (even if we could pass this via a config table as well, it is used extremely early, so passing it directly is preferred in this case.) Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Huacai Chen <chenhuacai@loongson.cn>
2022-09-26treewide: Filter out CC_FLAGS_CFISami Tolvanen
In preparation for removing CC_FLAGS_CFI from CC_FLAGS_LTO, explicitly filter out CC_FLAGS_CFI in all the makefiles where we currently filter out CC_FLAGS_LTO. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Tested-by: Kees Cook <keescook@chromium.org> Tested-by: Nathan Chancellor <nathan@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20220908215504.3686827-2-samitolvanen@google.com
2022-09-20efi/libstub: implement generic EFI zbootArd Biesheuvel
Implement a minimal EFI app that decompresses the real kernel image and launches it using the firmware's LoadImage and StartImage boot services. This removes the need for any arch-specific hacks. Note that on systems that have UEFI secure boot policies enabled, LoadImage/StartImage require images to be signed, or their hashes known a priori, in order to be permitted to boot. There are various possible strategies to work around this requirement, but they all rely either on overriding internal PI/DXE protocols (which are not part of the EFI spec) or omitting the firmware provided LoadImage() and StartImage() boot services, which is also undesirable, given that they encapsulate platform specific policies related to secure boot and measured boot, but also related to memory permissions (whether or not and which types of heap allocations have both write and execute permissions.) The only generic and truly portable way around this is to simply sign both the inner and the outer image with the same key/cert pair, so this is what is implemented here. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-09-19efi/libstub: move efi_system_table global var into separate objectArd Biesheuvel
To avoid pulling in the wrong object when using the libstub static library to build the decompressor, define efi_system_table in a separate compilation unit. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-09-17efi/libstub: use EFI provided memcpy/memset routinesArd Biesheuvel
The stub is used in different execution environments, but on arm64, RISC-V and LoongArch, we still use the core kernel's implementation of memcpy and memset, as they are just a branch instruction away, and can generally be reused even from code such as the EFI stub that runs in a completely different address space. KAsan complicates this slightly, resulting in the need for some hacks to expose the uninstrumented, __ prefixed versions as the normal ones, as the latter are instrumented to include the KAsan checks, which only work in the core kernel. Unfortunately, #define'ing memcpy to __memcpy when building C code does not guarantee that no explicit memcpy() calls will be emitted. And with the upcoming zboot support, which consists of a separate binary which therefore needs its own implementation of memcpy/memset anyway, it's better to provide one explicitly instead of linking to the existing one. Given that EFI exposes implementations of memmove() and memset() via the boot services table, let's wire those up in the appropriate way, and drop the references to the core kernel ones. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2022-09-06efi/loongarch: Add efistub booting supportHuacai Chen
This patch adds efistub booting support, which is the standard UEFI boot protocol for LoongArch to use. We use generic efistub, which means we can pass boot information (i.e., system table, memory map, kernel command line, initrd) via a light FDT and drop a lot of non-standard code. We use a flat mapping to map the efi runtime in the kernel's address space. In efi, VA = PA; in kernel, VA = PA + PAGE_OFFSET. As a result, flat mapping is not identity mapping, SetVirtualAddressMap() is still needed for the efi runtime. Tested-by: Xi Ruoyao <xry111@xry111.site> Signed-off-by: Huacai Chen <chenhuacai@loongson.cn> [ardb: change fpic to fpie as suggested by Xi Ruoyao] Signed-off-by: Ard Biesheuvel <ardb@kernel.org>