summaryrefslogtreecommitdiff
path: root/lib/crypto/sha3.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/crypto/sha3.c')
-rw-r--r--lib/crypto/sha3.c411
1 files changed, 411 insertions, 0 deletions
diff --git a/lib/crypto/sha3.c b/lib/crypto/sha3.c
new file mode 100644
index 000000000000..32b7074de792
--- /dev/null
+++ b/lib/crypto/sha3.c
@@ -0,0 +1,411 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/*
+ * SHA-3, as specified in
+ * https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
+ *
+ * SHA-3 code by Jeff Garzik <jeff@garzik.org>
+ * Ard Biesheuvel <ard.biesheuvel@linaro.org>
+ * David Howells <dhowells@redhat.com>
+ *
+ * See also Documentation/crypto/sha3.rst
+ */
+
+#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
+#include <crypto/sha3.h>
+#include <crypto/utils.h>
+#include <linux/export.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/unaligned.h>
+#include "fips.h"
+
+/*
+ * On some 32-bit architectures, such as h8300, GCC ends up using over 1 KB of
+ * stack if the round calculation gets inlined into the loop in
+ * sha3_keccakf_generic(). On the other hand, on 64-bit architectures with
+ * plenty of [64-bit wide] general purpose registers, not inlining it severely
+ * hurts performance. So let's use 64-bitness as a heuristic to decide whether
+ * to inline or not.
+ */
+#ifdef CONFIG_64BIT
+#define SHA3_INLINE inline
+#else
+#define SHA3_INLINE noinline
+#endif
+
+#define SHA3_KECCAK_ROUNDS 24
+
+static const u64 sha3_keccakf_rndc[SHA3_KECCAK_ROUNDS] = {
+ 0x0000000000000001ULL, 0x0000000000008082ULL, 0x800000000000808aULL,
+ 0x8000000080008000ULL, 0x000000000000808bULL, 0x0000000080000001ULL,
+ 0x8000000080008081ULL, 0x8000000000008009ULL, 0x000000000000008aULL,
+ 0x0000000000000088ULL, 0x0000000080008009ULL, 0x000000008000000aULL,
+ 0x000000008000808bULL, 0x800000000000008bULL, 0x8000000000008089ULL,
+ 0x8000000000008003ULL, 0x8000000000008002ULL, 0x8000000000000080ULL,
+ 0x000000000000800aULL, 0x800000008000000aULL, 0x8000000080008081ULL,
+ 0x8000000000008080ULL, 0x0000000080000001ULL, 0x8000000080008008ULL
+};
+
+/*
+ * Perform a single round of Keccak mixing.
+ */
+static SHA3_INLINE void sha3_keccakf_one_round_generic(u64 st[25], int round)
+{
+ u64 t[5], tt, bc[5];
+
+ /* Theta */
+ bc[0] = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20];
+ bc[1] = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21];
+ bc[2] = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22];
+ bc[3] = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23];
+ bc[4] = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24];
+
+ t[0] = bc[4] ^ rol64(bc[1], 1);
+ t[1] = bc[0] ^ rol64(bc[2], 1);
+ t[2] = bc[1] ^ rol64(bc[3], 1);
+ t[3] = bc[2] ^ rol64(bc[4], 1);
+ t[4] = bc[3] ^ rol64(bc[0], 1);
+
+ st[0] ^= t[0];
+
+ /* Rho Pi */
+ tt = st[1];
+ st[ 1] = rol64(st[ 6] ^ t[1], 44);
+ st[ 6] = rol64(st[ 9] ^ t[4], 20);
+ st[ 9] = rol64(st[22] ^ t[2], 61);
+ st[22] = rol64(st[14] ^ t[4], 39);
+ st[14] = rol64(st[20] ^ t[0], 18);
+ st[20] = rol64(st[ 2] ^ t[2], 62);
+ st[ 2] = rol64(st[12] ^ t[2], 43);
+ st[12] = rol64(st[13] ^ t[3], 25);
+ st[13] = rol64(st[19] ^ t[4], 8);
+ st[19] = rol64(st[23] ^ t[3], 56);
+ st[23] = rol64(st[15] ^ t[0], 41);
+ st[15] = rol64(st[ 4] ^ t[4], 27);
+ st[ 4] = rol64(st[24] ^ t[4], 14);
+ st[24] = rol64(st[21] ^ t[1], 2);
+ st[21] = rol64(st[ 8] ^ t[3], 55);
+ st[ 8] = rol64(st[16] ^ t[1], 45);
+ st[16] = rol64(st[ 5] ^ t[0], 36);
+ st[ 5] = rol64(st[ 3] ^ t[3], 28);
+ st[ 3] = rol64(st[18] ^ t[3], 21);
+ st[18] = rol64(st[17] ^ t[2], 15);
+ st[17] = rol64(st[11] ^ t[1], 10);
+ st[11] = rol64(st[ 7] ^ t[2], 6);
+ st[ 7] = rol64(st[10] ^ t[0], 3);
+ st[10] = rol64( tt ^ t[1], 1);
+
+ /* Chi */
+ bc[ 0] = ~st[ 1] & st[ 2];
+ bc[ 1] = ~st[ 2] & st[ 3];
+ bc[ 2] = ~st[ 3] & st[ 4];
+ bc[ 3] = ~st[ 4] & st[ 0];
+ bc[ 4] = ~st[ 0] & st[ 1];
+ st[ 0] ^= bc[ 0];
+ st[ 1] ^= bc[ 1];
+ st[ 2] ^= bc[ 2];
+ st[ 3] ^= bc[ 3];
+ st[ 4] ^= bc[ 4];
+
+ bc[ 0] = ~st[ 6] & st[ 7];
+ bc[ 1] = ~st[ 7] & st[ 8];
+ bc[ 2] = ~st[ 8] & st[ 9];
+ bc[ 3] = ~st[ 9] & st[ 5];
+ bc[ 4] = ~st[ 5] & st[ 6];
+ st[ 5] ^= bc[ 0];
+ st[ 6] ^= bc[ 1];
+ st[ 7] ^= bc[ 2];
+ st[ 8] ^= bc[ 3];
+ st[ 9] ^= bc[ 4];
+
+ bc[ 0] = ~st[11] & st[12];
+ bc[ 1] = ~st[12] & st[13];
+ bc[ 2] = ~st[13] & st[14];
+ bc[ 3] = ~st[14] & st[10];
+ bc[ 4] = ~st[10] & st[11];
+ st[10] ^= bc[ 0];
+ st[11] ^= bc[ 1];
+ st[12] ^= bc[ 2];
+ st[13] ^= bc[ 3];
+ st[14] ^= bc[ 4];
+
+ bc[ 0] = ~st[16] & st[17];
+ bc[ 1] = ~st[17] & st[18];
+ bc[ 2] = ~st[18] & st[19];
+ bc[ 3] = ~st[19] & st[15];
+ bc[ 4] = ~st[15] & st[16];
+ st[15] ^= bc[ 0];
+ st[16] ^= bc[ 1];
+ st[17] ^= bc[ 2];
+ st[18] ^= bc[ 3];
+ st[19] ^= bc[ 4];
+
+ bc[ 0] = ~st[21] & st[22];
+ bc[ 1] = ~st[22] & st[23];
+ bc[ 2] = ~st[23] & st[24];
+ bc[ 3] = ~st[24] & st[20];
+ bc[ 4] = ~st[20] & st[21];
+ st[20] ^= bc[ 0];
+ st[21] ^= bc[ 1];
+ st[22] ^= bc[ 2];
+ st[23] ^= bc[ 3];
+ st[24] ^= bc[ 4];
+
+ /* Iota */
+ st[0] ^= sha3_keccakf_rndc[round];
+}
+
+/* Generic implementation of the Keccak-f[1600] permutation */
+static void sha3_keccakf_generic(struct sha3_state *state)
+{
+ /*
+ * Temporarily convert the state words from little-endian to native-
+ * endian so that they can be operated on. Note that on little-endian
+ * machines this conversion is a no-op and is optimized out.
+ */
+
+ for (int i = 0; i < ARRAY_SIZE(state->words); i++)
+ state->native_words[i] = le64_to_cpu(state->words[i]);
+
+ for (int round = 0; round < SHA3_KECCAK_ROUNDS; round++)
+ sha3_keccakf_one_round_generic(state->native_words, round);
+
+ for (int i = 0; i < ARRAY_SIZE(state->words); i++)
+ state->words[i] = cpu_to_le64(state->native_words[i]);
+}
+
+/*
+ * Generic implementation of absorbing the given nonzero number of full blocks
+ * into the sponge function Keccak[r=8*block_size, c=1600-8*block_size].
+ */
+static void __maybe_unused
+sha3_absorb_blocks_generic(struct sha3_state *state, const u8 *data,
+ size_t nblocks, size_t block_size)
+{
+ do {
+ for (size_t i = 0; i < block_size; i += 8)
+ state->words[i / 8] ^= get_unaligned((__le64 *)&data[i]);
+ sha3_keccakf_generic(state);
+ data += block_size;
+ } while (--nblocks);
+}
+
+#ifdef CONFIG_CRYPTO_LIB_SHA3_ARCH
+#include "sha3.h" /* $(SRCARCH)/sha3.h */
+#else
+#define sha3_keccakf sha3_keccakf_generic
+#define sha3_absorb_blocks sha3_absorb_blocks_generic
+#endif
+
+void __sha3_update(struct __sha3_ctx *ctx, const u8 *in, size_t in_len)
+{
+ const size_t block_size = ctx->block_size;
+ size_t absorb_offset = ctx->absorb_offset;
+
+ /* Warn if squeezing has already begun. */
+ WARN_ON_ONCE(absorb_offset >= block_size);
+
+ if (absorb_offset && absorb_offset + in_len >= block_size) {
+ crypto_xor(&ctx->state.bytes[absorb_offset], in,
+ block_size - absorb_offset);
+ in += block_size - absorb_offset;
+ in_len -= block_size - absorb_offset;
+ sha3_keccakf(&ctx->state);
+ absorb_offset = 0;
+ }
+
+ if (in_len >= block_size) {
+ size_t nblocks = in_len / block_size;
+
+ sha3_absorb_blocks(&ctx->state, in, nblocks, block_size);
+ in += nblocks * block_size;
+ in_len -= nblocks * block_size;
+ }
+
+ if (in_len) {
+ crypto_xor(&ctx->state.bytes[absorb_offset], in, in_len);
+ absorb_offset += in_len;
+ }
+ ctx->absorb_offset = absorb_offset;
+}
+EXPORT_SYMBOL_GPL(__sha3_update);
+
+void sha3_final(struct sha3_ctx *sha3_ctx, u8 *out)
+{
+ struct __sha3_ctx *ctx = &sha3_ctx->ctx;
+
+ ctx->state.bytes[ctx->absorb_offset] ^= 0x06;
+ ctx->state.bytes[ctx->block_size - 1] ^= 0x80;
+ sha3_keccakf(&ctx->state);
+ memcpy(out, ctx->state.bytes, ctx->digest_size);
+ sha3_zeroize_ctx(sha3_ctx);
+}
+EXPORT_SYMBOL_GPL(sha3_final);
+
+void shake_squeeze(struct shake_ctx *shake_ctx, u8 *out, size_t out_len)
+{
+ struct __sha3_ctx *ctx = &shake_ctx->ctx;
+ const size_t block_size = ctx->block_size;
+ size_t squeeze_offset = ctx->squeeze_offset;
+
+ if (ctx->absorb_offset < block_size) {
+ /* First squeeze: */
+
+ /* Add the domain separation suffix and padding. */
+ ctx->state.bytes[ctx->absorb_offset] ^= 0x1f;
+ ctx->state.bytes[block_size - 1] ^= 0x80;
+
+ /* Indicate that squeezing has begun. */
+ ctx->absorb_offset = block_size;
+
+ /*
+ * Indicate that no output is pending yet, i.e. sha3_keccakf()
+ * will need to be called before the first copy.
+ */
+ squeeze_offset = block_size;
+ }
+ while (out_len) {
+ if (squeeze_offset == block_size) {
+ sha3_keccakf(&ctx->state);
+ squeeze_offset = 0;
+ }
+ size_t copy = min(out_len, block_size - squeeze_offset);
+
+ memcpy(out, &ctx->state.bytes[squeeze_offset], copy);
+ out += copy;
+ out_len -= copy;
+ squeeze_offset += copy;
+ }
+ ctx->squeeze_offset = squeeze_offset;
+}
+EXPORT_SYMBOL_GPL(shake_squeeze);
+
+#ifndef sha3_224_arch
+static inline bool sha3_224_arch(const u8 *in, size_t in_len,
+ u8 out[SHA3_224_DIGEST_SIZE])
+{
+ return false;
+}
+#endif
+#ifndef sha3_256_arch
+static inline bool sha3_256_arch(const u8 *in, size_t in_len,
+ u8 out[SHA3_256_DIGEST_SIZE])
+{
+ return false;
+}
+#endif
+#ifndef sha3_384_arch
+static inline bool sha3_384_arch(const u8 *in, size_t in_len,
+ u8 out[SHA3_384_DIGEST_SIZE])
+{
+ return false;
+}
+#endif
+#ifndef sha3_512_arch
+static inline bool sha3_512_arch(const u8 *in, size_t in_len,
+ u8 out[SHA3_512_DIGEST_SIZE])
+{
+ return false;
+}
+#endif
+
+void sha3_224(const u8 *in, size_t in_len, u8 out[SHA3_224_DIGEST_SIZE])
+{
+ struct sha3_ctx ctx;
+
+ if (sha3_224_arch(in, in_len, out))
+ return;
+ sha3_224_init(&ctx);
+ sha3_update(&ctx, in, in_len);
+ sha3_final(&ctx, out);
+}
+EXPORT_SYMBOL_GPL(sha3_224);
+
+void sha3_256(const u8 *in, size_t in_len, u8 out[SHA3_256_DIGEST_SIZE])
+{
+ struct sha3_ctx ctx;
+
+ if (sha3_256_arch(in, in_len, out))
+ return;
+ sha3_256_init(&ctx);
+ sha3_update(&ctx, in, in_len);
+ sha3_final(&ctx, out);
+}
+EXPORT_SYMBOL_GPL(sha3_256);
+
+void sha3_384(const u8 *in, size_t in_len, u8 out[SHA3_384_DIGEST_SIZE])
+{
+ struct sha3_ctx ctx;
+
+ if (sha3_384_arch(in, in_len, out))
+ return;
+ sha3_384_init(&ctx);
+ sha3_update(&ctx, in, in_len);
+ sha3_final(&ctx, out);
+}
+EXPORT_SYMBOL_GPL(sha3_384);
+
+void sha3_512(const u8 *in, size_t in_len, u8 out[SHA3_512_DIGEST_SIZE])
+{
+ struct sha3_ctx ctx;
+
+ if (sha3_512_arch(in, in_len, out))
+ return;
+ sha3_512_init(&ctx);
+ sha3_update(&ctx, in, in_len);
+ sha3_final(&ctx, out);
+}
+EXPORT_SYMBOL_GPL(sha3_512);
+
+void shake128(const u8 *in, size_t in_len, u8 *out, size_t out_len)
+{
+ struct shake_ctx ctx;
+
+ shake128_init(&ctx);
+ shake_update(&ctx, in, in_len);
+ shake_squeeze(&ctx, out, out_len);
+ shake_zeroize_ctx(&ctx);
+}
+EXPORT_SYMBOL_GPL(shake128);
+
+void shake256(const u8 *in, size_t in_len, u8 *out, size_t out_len)
+{
+ struct shake_ctx ctx;
+
+ shake256_init(&ctx);
+ shake_update(&ctx, in, in_len);
+ shake_squeeze(&ctx, out, out_len);
+ shake_zeroize_ctx(&ctx);
+}
+EXPORT_SYMBOL_GPL(shake256);
+
+#if defined(sha3_mod_init_arch) || defined(CONFIG_CRYPTO_FIPS)
+static int __init sha3_mod_init(void)
+{
+#ifdef sha3_mod_init_arch
+ sha3_mod_init_arch();
+#endif
+ if (fips_enabled) {
+ /*
+ * FIPS cryptographic algorithm self-test. As per the FIPS
+ * Implementation Guidance, testing any SHA-3 algorithm
+ * satisfies the test requirement for all of them.
+ */
+ u8 hash[SHA3_256_DIGEST_SIZE];
+
+ sha3_256(fips_test_data, sizeof(fips_test_data), hash);
+ if (memcmp(fips_test_sha3_256_value, hash, sizeof(hash)) != 0)
+ panic("sha3: FIPS self-test failed\n");
+ }
+ return 0;
+}
+subsys_initcall(sha3_mod_init);
+
+static void __exit sha3_mod_exit(void)
+{
+}
+module_exit(sha3_mod_exit);
+#endif
+
+MODULE_DESCRIPTION("SHA-3 library functions");
+MODULE_LICENSE("GPL");